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Online-monitoring systems in intensive care are affected by a high rate of false threshold alarms. These are caused by irrelevant
noise and outliers in the measured time series data. The high false alarm rates can be lowered by separating relevant signals from
noise and outliers online, in such a way that signal estimations, instead of raw measurements, are compared to the alarm limits.
This paper presents a clinical validation study for two recently developed online signal filters. The filters are based on robust
repeated median regression in moving windows of varying width. Validation is done offline using a large annotated reference
database. The performance criteria are sensitivity and the proportion of false alarms suppressed by the signal filters.

1. Introduction

In intensive care, the condition of a patient is supervised
by online-monitoring systems which measure several vital
signs with a high sampling rate of up to one observation per
second. These devices produce different types of alarms to
alert the clinical staff. Most frequently these alarms are so-
called simple threshold alarms, which are given when the
measured values of a vital sign lie outside of specified alarm
limits. The high rate of irrelevant threshold alarms, caused
by artefacts and short fluctuations, is a well-known problem
and shown in several studies; see [1] or [2], for instance. High
false alarm rates may lead to a dangerous desensitization of
medical staff toward alarms and, thus, dramatically reduce
the effective sensitivity of the entire alarm system [3–5].
Moreover, alarm limits may be set inadequately wide or
alarms disabled completely. Obviously, online-monitoring
systems are in need of improvement with respect to the high
rates of false positive alarms.

Several approaches for improved alarm systems have
been proposed. For instance, median filters can be used
to eliminate noise and artefacts [6]; in [7], a method
based on control charts is developed to detect the onset of

changes in systolic blood pressure; in [8], a preprocessing
algorithm is proposed which provides a basis for an online
trend extraction methodology [9]. An overview of alarm
algorithms in critical care monitoring is given in [10].

One approach to decreasing the false alarm rate is
statistical signal extraction or filtering. Assume that the data
consist of a true but unknown relevant signal overlaid with
irrelevant noise and outliers. The signal can then be extracted
online, meaning that the signal is extracted sequentially with
each new incoming measurement. Then, the alarm limits
can be compared to the online extracted signal instead of
to the raw measured data, leading to fewer threshold alarms.
Figure 1 illustrates this approach.

Time series from clinical online monitoring are not
stationary but show level shifts, enduring and changing
trends, a high level of noise, and are corrupted by (patches
of) outliers. A suitable approach for online signal extraction,
given such difficult data, is robust linear regression in
a moving time window [11–13]. Then, the level of the
regression line at the central or, alternatively, rightmost
window position is used as the signal estimation. Using the
level at the rightmost window position has the advantage that
in an online application, the signal is estimated at the current
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time point, that is, without a time delay. We will, therefore,
consider this type of moving window regression.

Since outliers appear frequently, robust regression meth-
ods should be applied. The robust Repeated Median (RM)
regression [14] has proven to be a suitable candidate for the
special situation of clinical online monitoring [11, 13]. It
outperforms other robust regression methods with respect
to robustness, computing time, and efficiency, in the sense of
low bias and variability. However, as for any moving window
technique, the RM signal estimation is strongly affected by
the window size: large windows induce “smooth” signal
estimations with little variability whereas small windows
lead to signal estimations that are closer to the data. The
adaptive online RM (aoRM) [15] chooses the window width
for the RM automatically; as long as the data are “stable”, the
window width gradually grows but when a structural change,
for example, a level shift, occurs, the window width is set
to a predetermined minimum value. The aoRM is enhanced
to a filtering procedure for multivariate time series, namely,
the adaptive online Trimmed Repeated Median-Least Squares
(aoTRM-LS) filter [16]. This procedure factors in local cross-
correlations (e.g., systolic and diastolic arterial pressure are
highly correlated) in order to improve the filtering outcome.

A good filtering procedure suppresses “many” irrelevant
(i.e., false) alarms while suppressing only “a few” relevant
(i.e., true) alarms. In this paper, we will investigate aoRM and
aoTRM-LS with respect to these criteria. The investigation is
done using recorded monitoring data from an intensive care
unit; all given alarms have been annotated retrospectively
by an experienced physician as true or false. The aoRM
and aoTRM-LS filters are applied offline to the data in
order to determine the number of suppressed false alarms
and the number of correctly reproduced true alarms. The
corresponding performance criteria are sensitivity and false
alarm reduction rate.

In the next section, we explain the aoRM and aoTRM-LS
algorithms. Section 3 describes the study setting, focussing
on data collection and annotation. In Section 4, we illustrate
the considered performance criteria and the way we deter-
mine them. Section 5 presents the results of our analysis. A
summary and an outlook are given in Section 6.

2. Signal Extraction Algorithms

The monitoring of k vital signs (e.g., heart rate, oxygen
saturation, and systolic, diastolic, and mean arterial pressure)
leads to a k-variate time series y(t) = (y1(t), . . . , yk(t))T,
where t ∈ N is the time index, indicating each second,
for instance. The online signal extraction approach is based
on the assumption that the observed data y(t) can be
decomposed into a true but unknown signal which is
overlaid with noise and outliers

y(t) = μ(t) + ε(t) + η(t) ∈ Rk. (1)

Here, μ(t) = (μ1(t), . . . ,μk(t))T denotes the k-dimensional
signal at time t. The noise term is ε(t), where ε1(t), . . . , εk(t)
are errors with zero median and time-dependent variances
σ1(t), . . . , σk(t). The errors may be correlated, that is, possibly
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Figure 1: Generated time series data (dotted) consisting of the true
signal (solid) overlaid with noise and outliers. Although the signal
is within the alarm bounds (dashed), outliers would cause several
unnecessary threshold alarms.

Cov(εi(t), εj(t)) /= 0 for any i /= j. An outlier generating
mechanism that produces impulsive spiky noise is denoted
by η(t).

Both the aoRM and aoTRM-LS can be used to extract
the signal vector μ(t) online: with each incoming new
observation at time t, a new signal estimation output μ̂(t) is
produced. The aoRM is developed for univariate time series,
meaning that it must be applied separately to each univariate
component of a k-variate time series. On the contrary, the
aoTRM-LS filter is developed for multivariate time series.
It takes into account local dependences between variables
and ensures robustness against outliers regarding the local
covariance structure. Since aoTRM-LS is based on aoRM, we
introduce the univariate aoRM first.

2.1. The Adaptive Online Repeated Median Filter (aoRM).
In [15], it is assumed that the underlying signal μ(t) of
a univariate time series is approximately linear in a small
moving window {t − n + 1, . . . , t} of length n

μ(t − n + s) ≈ μ(t) + β(t) · (s− n), (2)

where s = 1, . . . ,n and n ≤ t. Here, μ(t) is the level of the
straight line at the rightmost time point t, and β(t) is the
associated slope in the time window. The rightmost window
time point t corresponds to the current time point in the
online case. Then, the RM estimates of μ(t) and β(t) in (2)
are

̂βRM(t)

= med
s∈{1,...,n}

{

med
v /= s,v∈{1,...,n}

{

y(t − n + s)− y(t − n + v)
s− v

}}

,

μ̂RM(t) = med
s∈{1,...,n}

{

y(t − n + s) + ̂βRM(t) · (s− n)
}

.

(3)

The aoRM estimates the signal by the RM, after the window
width has been adapted to the current data situation. The
window width adaption is done automatically when a new
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Initilization: wait until t = n(t) = nmin observation y(t − n(t) + 1), . . . , y(t) are given

RM regression on sample y(t − n(t) + 1), . . . , y(t)

is RM fit adequate in time window {t − n(t) + 1, . . . , t}?

is n(t) nmin?
No

No

Yes

Yes

Store RM signal estimation μ̂RM(t) = μ̂aoRM(t)
Decrease window width:

set n(t)←n(t)− 1

Set n(t + 1)←min{n(t) + 1,nmax}; update window: set t←t + 1

Figure 2: The aoRM algorithm.

observation comes in, that is, at each time point t. The
adapted window width at time t is, therefore, denoted by
n(t). After n(t) is determined, the signal μ(t) is estimated by
RM regression in the time window {t − n(t) + 1, . . . , t}.

In [15], it is demanded that n(t) ∈ {nmin, . . . ,nmax}. The
minimum width nmin guarantees robustness against a certain
number of outliers while the maximum width nmax limits the
computing time. Both nmin and nmax must be set beforehand
by the user. A flow chart for the complete aoRM algorithm
is shown in Figure 2. The main step of the aoRM algorithm
is the decision of whether or not the RM fit in the time
window {t − n(t) + 1, . . . , t}, that is, on the window sample
y(t − n(t) + 1), . . . , y(t), is adequate. This decision is made
by means of a test procedure which is based on the fact that
an RM regression results in an equal number of positive and
negative residuals. If the positive and negative residuals are
not balanced for the m rightmost residuals within the time
window of width n(t), the RM fit is regarded as inadequate.
The input parameter m should be chosen such that m ≤
n(t)/2. For more details regarding the test procedure and the
choice of m, see [15].

The aoRM filter estimates the signal at the rightmost
or current time point, meaning that the signal is extracted
without relevant time delay. (Its computing time depends
on the chosen input parameters. The R package robfilter
[17] provides a function of the aoRM; see Section 5.2.
We applied this aoRM function using a 2.3 GHz computer
with 2 GB RAM and obtained a mean computing time of
0.007 seconds for one iteration, resp., time point.) However,
estimating the signal by the level at the right end of the
regression line implies that the signal estimates possibly
deviate distinctly from the data, especially when level shifts
occur. Then, signal estimates “overshoot”; that is, they leave
the range given by the window observations, see Figure 3(a).
It shows a generated time series (dotted) with upwards and
downwards level shifts at time points t = 50 and t =
100 and the corresponding aoRM signal estimation time
series (solid). Around time t = 70 and t = 120, aoRM
signal estimations overshoot. Those overshoots are crucial
in our context since a sudden change in the data may cause
the signal estimations to cross an alarm limit although the

measurements do not, as can be seen in the figure. That is,
an aoRM-based alarm system could theoretically cause more
false alarms than a system based on raw measurements.

In order to prevent signal estimations from overshooting
and causing false alarms, it is suggested in [15] to restrict
the signal estimation μ̂aoRM(t) to a value within the range of
the m most recent observations y(t −m + 1), . . . , y(t). (Note
that this is the subsample which is used for the decision of
whether or not the RM fit is adequate.) Defining the mini-
mum and maximum of the m most recent observations by

ymin
m (t) := min

{

y(t −m + 1), . . . , y(t)
}

,

ymax
m (t) := max

{

y(t −m + 1), . . . , y(t)
}

,
(4)

the restrict-to-range rule is

set μ̂aoRM(t) ←−
⎧

⎨

⎩

ymin
m (t), if μ̂aoRM(t) < ymin

m (t),

ymax
m (t), if μ̂aoRM(t) > ymax

m (t).
(5)

The effect of this rule can be seen in Figure 3(b). The signal
estimations around time t = 70 and t = 120 are “pulled
back” to the measurements. They do not violate the alarm
limits, and, therefore, unjustified alarms are prevented.

Figure 3 also shows that aoRM signal estimations trace
changes in the data time series with a certain time delay.
This inert reaction to sudden data changes is due to the RM’s
robustness against outliers. It has a finite sample replacement
breakdown point of 50% [18]. That is, in order for a patch of
level-shifted observations to affect the RM, the patch must
consist of more than half of the window observations. Since
a sudden change in the data implies that the window width
is set down to nmin, the choice of nmin is crucial: it defines the
distinction between outlier patches and level shifts as well as
the tracing delay for structural changes in the data, which is
approximately nmin/2 time points. In Figure 3, nmin = 40, so
the tracing delay is approximately 20 time points.

The aoRM can be used for filtering multivariate time
series by applying it separately to each univariate component
time series. However, it does not account for dependences
between the variables. The aoTRM-LS [16] is developed
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Figure 3: (a) aoRM signal estimations (solid) overshoot after sudden changes in the data (dotted). (b) effect of the restrict-to-range rule (5).

as a multivariate enhancement of the aoRM, which uses
information given by the local covariance structure.

2.2. The Adaptive Online Trimmed Repeated Median-Least
Squares Filter (aoTRM-LS). The aoTRM-LS arises out of
a combination of the aoRM and the multivariate TRM-LS
[19]. Similarly to (2), it is assumed that each component of
the underlying k-variate signal μ(t) is approximately linear in
a short moving time window {t − n + 1, . . . , t}

μ(t − n + s) ≈ μ(t) + β(t) · (s− n) ∈ Rk, (6)

where s = 1, . . . ,n and n ≤ t. Here, μ(t) is the level vector at
the rightmost or current time point t, and β(t) the vector of
the k slopes; see (2).

The aoTRM-LS filter can be used to estimate μ(t) and
β(t) in (6). At each time t, the aoTRM-LS algorithm searches
for an overall window width nov(t) ∈ {nmin, . . . ,nmax} which
is adequate for all of the k variables. That is, it searches for
the greatest nov(t) such that the linear approximation (6)
with n = nov(t) is adequate. This search is done using the
aoRM window width adaption principle. Thereafter, within
the time window specified by nov(t), the signal vector μ(t)
is estimated by means of multivariate TRM-LS regression
which is explained later on. The aoTRM-LS algorithm is as
follows:

(0) initialization: wait until t = n = nmin observations
yi(t − n + 1), . . . , yi(t), i = 1, . . . , k, are present,

(1) apply the aoRM window width adaption procedure
to each of the k window samples yi(t−n+1), . . . , yi(t)
in order to obtain k appropriate individual window
widths ni(t) ≤ n, and set the overall window width
nov(t) ← mini{ni(t)};

(2) perform TRM-LS regression on the multivariate
sample y(t − nov(t) + 1), . . . , y(t), where y(·) =
(y1(·), . . . , yk(·))T, and store the TRM-LS signal
estimation μ̂TRM-LS(t) =: μ̂aoTRM-LS(t),

(3) set n ← min{nov(t) + 1,nmax}, and update the
window: set t ← t + 1 and go to step (1).

After the overall window width nov(t) is determined at step
(1), the signal is estimated by means of TRM-LS regression
at step (2). An outline of the TRM-LS regression algorithm is
as follows (for simplicity, we set n∗ = nov(t)).

First, RM regression is performed separately on each of
the k window samples yi(t − n∗ + 1), . . . , yi(t). Then the
RM residuals are regarded as a multivariate (k × n∗)-sample
r(t − n∗ + 1), . . . , r(t), where r(·) = (r1(·), . . . , rk(·))T. The
local error covariance matrix Σ(t) ∼ (k×k) is then estimated
on this residual sample using a robust estimator proposed
in [20]. The estimate ̂Σ(t) is utilised to detect residual vectors
that are outliers regarding the local covariance structure, that
is, residual vectors r(t − n∗ + s), s = 1, . . . ,n∗, with

r(t − n∗ + s)T
̂Σ(t)−1r(t − n∗ + s) > d, (7)

where d > 0 is an adequate upper bound. (For more details
see [16, 19] or [20].) Then, observation vectors y(t− n∗ + s),
which correspond to outlying residual vectors r(t−n∗+s), are
removed from the window sample. Finally, a multivariate LS
regression is performed on the outlier-free window sample,
and the levels at the right end of the k LS regression lines
build the signal estimation vector.

The aoTRM-LS yields robust but also efficient signal
estimations since the signal vector is finally estimated by
means of LS regression. Just like aoRM, aoTRM-LS estimates
the signal vector μ(t) at the right end point of the moving
time window. Hence, the restrict-to-range rule (5) is also
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recommended for aoTRM-LS. Furthermore, for data that
exhibit a known correlation structure, it is suggested to apply
the aoTRM-LS filter not to the whole k-variate time series
but separately to blocks that consist of highly positively
correlated variables [16]. For instance, systolic, mean, and
diastolic blood pressure are highly positively correlated and,
therefore, can be combined into a correlation block. A block
wise application of aoTRM-LS improves the window width
adaption, leading to smoother signal extraction time series.

We apply both aoRM and aoTRM-LS retrospectively
to recorded online-monitoring data from intensive care
in order to evaluate their ability to suppress false and to
reproduce true alarms. In the following, we describe the
study setting, including data collection and annotation.

3. Study Setting

In accordance with the declaration of Helsinki, the study
was approved by the Ethics Committee of the University
of Regensburg. The data were collected at an intensive care
unit at the University Hospital Regensburg [21]. Only adult
patients with continuous monitoring of at least invasive
arterial blood pressure, heart rate, and oxygen saturation
were included into the study. The deployed monitoring
system was an Infinity Monitor by Dräger Medical, Lübeck,
Germany. Data acquisition from the Infinity Monitoring
System took place using the special software eData by Dräger
Medical, Lübeck, Germany. The data were recorded at a
250 Hz sampling rate, labeled with a time index, and stored.
The reference data that we consider were extracted from
these data at a sampling rate of one per second and stored
in text files. This reference database includes

(i) numerical measurements of the vital signs,

(ii) all monitoring system alarms with corresponding
time and alarm message (e.g., “heart rate lower limit
violation”),

(iii) the alarm limits that were set by the medical staff,

(iv) information when alarms were deactivated (“alarms
off” periods).

For more details about the database, see Section 5.1.
All alarm situations were retrospectively annotated by

an experienced physician by means of graphical represen-
tations of the collected data from the monitoring system
in combination with video recordings showing the patient
and the screens of the monitoring system. Since the data
contain the alarm time points, the physician could wind
the video tape and watch the patient and the screens of
the monitoring system at these alarm time points. Then,
by means of a specially developed JavaScript program [22],
each alarm situation was assessed in terms of whether it was
clinically relevant and whether it was technically true.

In this study, an alarm is regarded as technically true if it is
based on a correct measurement or if the monitoring system
correctly recognizes a technical problem and gives a technical
alarm. All other alarms are technically false. Furthermore, a
situation is defined as alarm relevant or true, if it implicates
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Figure 4: Measurements of mean arterial blood pressure (ART.M,
dotted) and RM signal estimations (solid).

a diagnostic or therapeutic decision or the correction of a
technical problem. A technically true alarm is annotated as
advisory if it does not require immediate action; that is, it is
not alarm relevant but judged to be helpful. All other alarms
are annotated as not alarm relevant or false, respectively. A
technically false alarm is always a false alarm.

4. Performance Criteria

Our aim is to evaluate the “new” aoRM and aoTRM-LS
alarm systems and compare their performances to that of
the “old” alarm system based on raw measurements. In
this context, an alarm system is a diagnostic tool: an alarm
corresponds to the diagnosis “alarm relevant situation”.
Common performance criteria for diagnostic methods are
sensitivity (SE) and specificity (SP). In our context, SE is
the conditional probability of an alerting monitoring system
given that the situation is actually alarm relevant, and SP
is the conditional probability of a non-alerting monitoring
system, given that the situation is actually not alarm relevant

SE = P
(

alarm given | alarm relevant situation
)

,

SP = P
(

no alarm given | not alarm relevant situation
)

.
(8)

While SE assesses the performance with respect to the
detection of alarm relevant situations, SP quantifies the
liability of the alarm system to produce false alarms. Both SE
and SP of a diagnostic method should be large; at best, both
equal to 1.

The common approach to estimate an alarm system’s SE
is to determine the ratio of detected alarm relevant situations
and all alarm relevant situations. In our study, alarms given
by the old system (positive alarms) were annotated as either
true positive or false positive. Nongiven alarms, that is,
negative alarms, including false negative alarms, do not occur.
Conversely, this means that the old system detects all alarm
relevant situations and, therefore, has 100% SE. However,
this is not de facto but follows from the study design.

The SE of a new alarm system based on signal filtering
can be estimated by the ratio of the number of alarm relevant
situations that are detected, that is, reproduced correctly, and
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the number of all alarm relevant situations. A situation is
regarded as detected by a new system if the signal estimations
violate the alarm limits close to the time when the alarm was
given by the old system. A detailed description is given later
on.

Similar to SE, SP is usually estimated by the ratio of
the number of true negative alarms and the number of not
alarm relevant situations. However, due to the study design,
there is no information about these numbers. Therefore, in
[23], an alternative approach for estimating the SP of an
online-monitoring alarm system is used: defining FPmax as
the highest expected number of false positive alarms and FP
as the actual number of false positive alarms, the difference
FPmax − FP is an estimate for the number of true negative
alarms. This number is then divided by the worst case
number FPmax to get an alternative estimation of SP:

̂SP =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

FPmax − FP
FPmax

, FP ≤ FPmax,

0, FP > FPmax.
(9)

For SP estimation as proposed in [23], the analyst has
to decide whether or not to count in alarms of the new
system that occur during “alarms off” periods. In these
periods, alarms were deactivated by the clinical staff—even
if the measurements violated the alarm thresholds, no alarm
was given. Since alarms are often deactivated as a reaction
to threshold alarms, a new system would be favoured if
it cannot produce alarms in these periods; see Figure 4.
It shows a part of a time series of mean arterial blood
pressure measurements (dotted) and the corresponding
signal estimations by the simple RM with window width n =
60 (solid). Due to the RM’s robustness against outliers, its
signal estimations react to changes in the data with a tracing
delay of approximately n/2 = 30 time points, as explained
in Section 2. Since the staff deactivated all alarms at t = 82,
only four seconds after the false alarm at t = 78 occurred,
the signal extraction time series violates the lower alarm limit
within the “alarms off” period. If “alarms off” periods were
not considered in the analysis, the false alarm at t = 78
would be regarded as suppressed by the new system although
its signal estimations violate the lower alarm limit. Thus,
in order to not favour the new system, one must include
alarms of the new system that would be given during “alarms
off” periods. However, during those periods the old system
cannot produce threshold alarms, but the new system can.
Moreover, each alarm of the new system is regarded as false if
it does not belong to a situation annotated as relevant. That
is, within “alarms off” periods, each limit violation of a new
system would be regarded as false alarm. In a nutshell, due to
the given study design and data basis, for SP estimation the
analyst must decide in favour of the old or new system.

Due to these considerations, we refrain from determining
SP. Instead, we consider the ratio of false alarms, which
are suppressed by the new system, to all false alarms,
denominated as false alarm reduction rate (FARR) of the new
system:

FARR = # suppressed false alarms
# false alarms

. (10)

Table 1: Alarm validation time: measurements must violate the
upper/lower alarm limit for a certain time in order that an alarm
is given.

Vital sign Upper alarm limit Lower alarm limit

Heart rate 2 seconds immediately

Blood pressure 4 seconds 4 seconds

Oxygen saturation 4 seconds 10 seconds

Similarly to the detection of true alarms, a false alarm
is regarded as suppressed by the new system if its signal
estimations do not violate the alarm limits close to the time
when the false alarm occurs.

Obviously, the old alarm system has a FARR of 0%; that
is, the new system cannot be worse with respect to this
criterion. Moreover, there might be alarms of the new system
that are not regarded. Hence, alarms of the new system
should rather be considered independently from false alarms
of the old system.

However, the restrict-to-range rule (5) guarantees that
the estimated signal only violates the upper (e.g.) alarm
limit, if at least one of the m most recent measurements also
violates the upper limit. Thus, an aoRM/aoTRM-LS alarm
system cannot generate more alarms than the old system.
However, the old system already includes a simple algorithm
to suppress false alarms. It gives an alarm only if observations
lie outside the alarm limits for a certain time span, the alarm
validation time; see Table 1. For instance, an alarm caused
by a too high systolic blood pressure is not given until four
consecutive measurements are above the upper alarm limit
whereas a single heart rate measurement below the lower
alarm limit causes an alarm immediately.

Because of alarm validation times, aoRM/aoTRM-LS
signal estimations can violate an alarm limit (and hence
produce an alarm) although the old system has not given
an alarm beforehand. However, such cases are very rare
and occur only if measurements fluctuate around an alarm
limit. In those cases, an alarm is rather helpful: either the
alarm limits are set too narrow, or the patient’s condition
deteriorates.

Due to these considerations and taking into account the
fact that SP does not allow for a fair comparison, we conclude
that FARR is a more sensible performance criterion in our
situation.

In the following, we explain how we estimate SE and
determine the FARR of a new alarm system based on signal
extractions. For simplicity, SE now denotes the estimated
sensitivity.

As mentioned above, SE of a new alarm system can be
determined by the ratio of detected true alarms and all true
alarms. A true alarm can be regarded as detected if the
signal estimations violate the alarm limits close to the time
when the true alarm occurred. Hence, we consider all true
alarm time points ttrue

i , i = 1, . . . ,M, which correspond to
true threshold alarms of the old system. If signal estimations
violate the alarm limits in a certain time range in proximity
to ttrue

i , the referring true alarm is regarded as detected by the
new alarm system.
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Table 2: Numbers of threshold alarms regarding ART.S, ART.M, HR, and SpO2. The percentages marked with ∗ are the proportions of the
individual true, advisory, and false alarm rates to all alarms of the respective individual vital parameter.

Annotation ART.S ART.M HR SpO2 Σ

True 189 (10%∗) 54 (11%∗) 71 (8%∗) 135 (12%∗) 449 (10%)

Advisory 981 (53%∗) 237 (49%∗) 704 (77%∗) 110 (10%∗) 2032 (47%)

False 680 (37%∗) 195 (40%∗) 134 (15%∗) 869 (78%∗) 1878 (43%)

Σ 1850 (42%) 486 (11%) 909 (21%) 1114 (26%) 4359 (100%)

In contrast to SE, FARR is determined using all alarm
time points which are annotated as false, that is, tfalse

j , j =
1, . . . ,N . If aoRM/aoTRM-LS signal estimations do not
violate the alarm limits in a certain time range in proximity to
tfalse
j , the corresponding false alarm is regarded as suppressed

by the new alarm system. Then, the FARR of the new system
is the ratio of suppressed false alarms to all false alarms.

In order to specify the range around true alarm time
points ttrue

i , we build true alarm intervals {ttrue
i −D, . . . , ttrue

i +
D}. The detection tolerance time D was chosen by the
physicians involved in the study. For ART.M, ART.S, and
SpO2, this time is D = 60, and for HR it is D = 30 seconds.
However, we decided to build true alarm intervals which
merely include D time points after an alarm time point,
that is, {ttrue

i , . . . , ttrue
i +D}, since aoRM and aoTRM-LS were

developed for suppressing false alarms. They do not forecast
alarm situations but react to the data which is reflected in the
tracing delay. Thus, including time points left from ttrue

i into
the alarm interval makes little sense.

Similar to true alarms, the range after a false alarm tfalse
j

is specified by a false alarm interval {tfalse
j , . . . , tfalse

j + S}. The
suppression tolerance time S must be chosen such that it is
greater than the tracing delay of the signal estimations. This
prevents false alarms from being assessed as suppressed by
the new system just because its signal estimations violate the
alarm limits too late. The largest minimum window width is
nmin = 90 in our study, which corresponds to a tracing delay
of approximately 45 seconds. Hence, we think that S = 60 is
an ample suppression tolerance time.

The determination of SE and FARR based on true
and false alarm intervals does not work without further
complications: we have to bear in mind that some false
alarms appear close to true alarms so that the corresponding
alarm intervals overlap. Thus, there might be inconsistencies
since a new alarm could be regarded as detected true alarm
and as not suppressed false alarm. Since the detection of true
alarms is more crucial than the suppression of false alarms,
we simply exclude those false alarms from the analysis
whose false alarm intervals overlap with true alarm intervals.
Hence, approximately 10% of false alarms are excluded from
the analysis.

5. Evaluation of the aoRM and
aoTRM-LS Alarm Systems

In this section, we first analyse the database and introduce
a strategy to handle advisory alarms; that is, alarms that

were not alarm relevant but helpful. Then, the results of
our analysis regarding SE and FARR of the new aoRM and
aoTRM-LS alarm systems are presented.

5.1. The Database and Reassessment of Advisory Alarms. Our
reference database contains recorded online-monitoring data
from 85 different cases between January 2006 and May 2008.
A case stands for one disease episode of a patient, meaning
that some patients correspond to several cases.

The overall monitoring time is 1245:52:28 hours, and
the mean monitoring time for each case is 14:39:26 hours
(minimum 0:55:01 hours, maximum 31:35:25 hours). The
monitoring system generated a total number of 9290 alarms,
of which 4825 (52%) were simple threshold alarms. A total
number of 9290 alarms means a frequency of 7-8 alarms
per hour. However, considering the 85 cases, the-alarm-per
hour frequency was quite dissimilar. Furthermore, the alarm
frequency is higher in the morning and the afternoon, which
is probably related to nursing actions during the day.

Several vital parameters were monitored like the heart
rate, pulse, blood oxygen saturation and temperature, res-
piratory rate, and systolic, mean, and diastolic artery blood
pressure. However, only mean artery blood pressure, heart
rate, and blood oxygen saturation were monitored in each
case.

Since 90% of all threshold alarms are caused by systolic
and mean artery blood pressure (ART.S and ART.M), heart
rate (HR), and oxygen saturation (SpO2), our analysis
concentrates on these four vital signs. The numbers of
true, false, and advisory threshold alarms regarding ART.S,
ART.M, HR, and SpO2 are listed in Table 2.

Only 10% of all alarms were true whereas 43% were false
and 47% advisory alarms. This low rate of relevant alarms
matches other studies; see [10]. (All alarms means all alarms
given by the four considered vital signs in the following.)
The most alarms were produced by ART.S (42%). This vital
sign exhibits a lower rate of false alarms but more advisory
alarms than average. SpO2 produced 26% of all alarms. Its
false alarm rate is highest, and it has the lowest proportion of
advisory alarms. For HR, which produces 21% of all alarms,
the opposite is true: most HR alarms were advisory. ART.M
produced the least alarms (11%), of which 11% were true,
49% advisory, and 40% false alarms.

Advisory alarms are problematic, since our analysis is
based on true/false decisions. One possibility is to simply
exclude advisory alarms from the analysis. However, this
approach is not really satisfying since nearly half the alarms
were advisory, for heart rate even more than three-quarters.
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Table 3: Numbers of threshold alarms regarding ART.S, ART.M, HR, and SpO2 after each advisory alarm has been assessed as true or false.
The percentages marked with ∗ are the proportions of the individual true and false alarm rates to all alarms of the respective individual vital
parameter.

Annotation ART.S ART.M HR SpO2 Σ

true 735 (45%∗) 215 (49%∗) 481 (61%∗) 219 (21%∗) 1650 (42%)

false 908 (55%∗) 228 (51%∗) 309 (39%∗) 846 (79%∗) 2291 (58%)

Σ 1643 (42%) 443 (11%) 790 (20%) 1065 (27%) 3941 (100%)

Too many situations would be excluded, so the informa-
tive value of the analysis would be lowered substantially.
Moreover, advisory alarms also involve an alarm sound and,
therefore, need to be considered. We, therefore, decide to
assess each individual advisory alarm as either true or false.
The assessment is done regarding the alarm length, which is
the time an alarm is active, that is, the time span for which the
measurements lie outside the alarm limits. The idea is that
short alarm limit violations do not exhibit clinical relevance
and are interfering rather than helpful [24, 25]. According to
the physicians involved in the study, advisory alarms of ART.S
and ART.M that are shorter than 10 seconds can be regarded
as irrelevant. An advisory HR or SpO2 alarm is regarded as
irrelevant if it is shorter than 5 or 15 seconds, respectively.
Using this strategy, the set of 2032 advisory alarms is split
into 1201 true and 831 false alarms. That is, there are 1650
(38%) true and 2709 (62%) false alarms now. However, due
to overlapping alarm intervals (see Section 4), we exclude 418
false alarms from the analysis so that we obtain 1650 (42%)
true and 2291 (58%) false alarms (Table 3). The highest false
alarm rate is still produced by SpO2 with 79% irrelevant
alarms. ART.S exhibits a 55% and ART.M a 51% false alarm
rate. HR has the lowest false alarm rate (39%).

Due to the reassessment of advisory alarms, we are able
to perform the analysis regarding SE and FARR as described
in Section 4. In the following, we explain how aoRM and
aoTRM-LS are applied to the data. Afterwards, we present
the results.

5.2. Application of aoRM and aoTRM-LS. For the offline
application of aoRM and aoTRM-LS to the recorded
monitoring data, we use the open source software R,
version 2.10.1. The R package robfilter [17] contains
functions of aoRM and aoTRM-LS, the function names are
adore.filter (equates to aoRM) and madore.filter
(equates to aoTRM-LS).

Using R, one can handle a broad range of data storage
formats, also including the text file format of the reference
data. Each of the 85 cases refers to one data set, that is,
one text file. Each data set text file is loaded in R in form
of a data matrix with Ti rows, i = 1, . . . , 85, where each
column contains the measurements of one vital parameter.
The number of rows Ti equals the monitoring time in
seconds of case i.

The adore.filter function is designed for univariate
time series which correspond to vectors in R. Hence, the
adore.filter function is applied column by column.
In contrast, the madore.filter function is designed for

multivariate time series and can, therefore, be applied to
a whole data matrix. The signal estimation outputs of the
adore.filter and madore.filter functions are stored in
text files, so that they can be analysed regarding SE and FARR
as explained in Section 4. This analysis is also done by means
of R 2.10.1.

For an application of the filters in clinical practice, the
treatment of missing values is an issue we are concerned
with: due to technical problems, online-monitoring data
can contain missing values at single points as well as long
stretches of missing values. The functions adore.filter
and madore.filter have similar strategies to deal with
missing values. Their algorithms give an output only if
enough observations for a reasonable signal estimation are
present. Otherwise, the signal estimation output is a missing
value. For more details, see the R help or [15, 16].

Since the monitored vital signs hold a block dependence
structure (cf. Section 2.2), we apply aoTRM-LS block wise to
one block consisting of ART.S, ART.M, and diastolic artery
blood pressure, and to one block consisting of HR and
pulse. SpO2 has an exceptional position since it is a “block”
on its own. In this case, the madore.filter algorithm
applies the univariate adore.filter meaning that the
madore.filter and adore.filter signal estimations are
equal for SpO2. Our analysis still concentrates solely on
ART.M, ART.S, HR, and SpO2 although aoTRM-LS is
also applied to diastolic artery blood pressure and pulse
rate measurements—these measurements provide additional
information for the aoTRM-LS filter.

As explained in Section 2, the minimum window width
nmin is crucial, since it determines (a) the tracing delay
of aoRM/aoTRM-LS signal estimations when reacting to
sudden data changes and (b) the number of outliers the
filtering procedures can resist. Therefore, we apply aoRM and
aoTRM-LS to the whole data set using nmin = 10, 20, . . . , 90.
The width m of the time window, which is used to assess the
RM regression fit and as comparison sample for the restrict-
to-range rule, is always m = nmin/2. The maximum window
width is always nmax = 300.

5.3. Results. We determine SE and FARR of the aoRM and
aoTRM-LS alarm systems separately for each of the four
vital signs ART.M, ART.S, HR, and SpO2. In Figure 5, we
plot FARR against SE for each vital sign and each minimum
window width nmin = 10, 20, . . . , 90. SE and FARR of aoRM
are indicated by dots, SE and FARR of aoTRM-LS by crosses.
The number below (above) a dot (cross) indicates the used
minimum window width nmin. Note that for HR the plot
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Figure 5: SE and FARR of aoRM and aoTRM-LS for each of the four vital signs. The number below (above) a dot (cross) indicates the used
nmin.

range is [0, 1] × [0, 1] whereas for the other vital signs it is
[0, 0.5] × [0.5, 1]. As can be seen in Figure 5, the greater the
nmin, the greater the FARR and the smaller the SE. According
to the physicians involved in the study, we demand at least
95% SE, marked by the grey lines in Figure 5. This helps with
finding the nmin which induces the largest FARR under the
restriction of at least 95% SE.

For ART.M, aoTRM-LS with nmin = 80 offers SE ≈
96% and FARR ≈ 36%. The aoRM filter with nmin = 60
yields comparable results with SE ≈ 95% and FARR ≈
35%. Regarding ART.S and demanding at least 95% SE, we
obtain somewhat worse results with FARR ≈ 25% for aoRM
(nmin = 50) and FARR ≈ 28% for aoTRM-LS (nmin =
80). In order to obtain at least 95% SE for HR, a smaller
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minimum window width must be chosen. Using aoRM with
nmin = 20, approximately one-third of all HR false alarms
can be suppressed with SE ≈ 95%. Using the same minimum
window width for aoTRM-LS, we obtain SE ≈ 99% but
merely FARR ≈ 22%; using nmin = 30 leads to FARR ≈
38% but with SE ≈ 91%. Since SpO2 builds a block on
its own, the multivariate madore.filter algorithm applies
the univariate adore.filter to this block. Thus, the aoRM
and aoTRM-LS signal estimations are equal for SpO2. Using
nmin = 60 we obtain FARR ≈ 26% and SE ≈ 95%.

6. Summary and Outlook

The aoRM and aoTRM-LS signal filters can be used to extract
signals online from nonstationary, noisy, and outlier con-
taminated online-monitoring time series from intensive care.
By comparing signal estimates instead of raw measurements
to upper and lower alarm limits, the number of threshold
alarms can be reduced.

The evaluation of aoRM and aoTRM-LS for an appli-
cation in clinical practice is done based on recorded data
from an intensive care unit. In this data record, each alarm
has been annotated retrospectively as either true or false. In
order to evaluate the aoRM and aoTRM-LS alarm systems,
we estimate their sensitivity (SE) but not their specificity.
The reason is that for a specificity estimation one has to
decide whether or not to regard limit violations of the new
system within “alarms off” periods, meaning that either the
new or old alarm system is favoured. Hence, we refrain
from estimating specificity and determine the false alarm
reduction rate (FARR) of the new system instead.

FARR and SE of the new system are determined by
building false and true alarm intervals which consist of a
certain number of time points after a false and true alarm,
respectively. If the aoRM/aoTRM-LS signal estimations
violate the alarm limits within a true alarm interval, the
according true alarm is regarded as detected. Analogically, a
false alarm of the old system is regarded as suppressed by the
new system, if its signal estimations do not violate the alarm
limits within the false alarm interval.

An analysis of the database shows that more than 90% of
all threshold alarms were caused by ART.S, ART.M, HR, and
SpO2. Hence, we concentrate our analysis on these four vital
signs. Furthermore, almost half of all alarms were assessed
as advisory; these alarms do not require immediate action
but are helpful. Since our evaluation strategy is based on
true/false decisions, we reassess advisory alarms as false or
true.

The application of aoRM and aoTRM-LS is performed
retrospectively using the R functions adore.filter and
madore.filter from the R package robfilter. Since
the choice of the minimum window width nmin has a
great impact on the aoRM/aoTRM-LS signal extraction, we
apply the filters using nmin = 10, 20, . . . , 90. The function
madore.filter (aoTRM-LS) has been applied block wise
with one block consisting of arterial blood pressures and one
of heart rate and pulse; oxygen saturation builds an own
block, meaning that the multivariate madore.filter algo-
rithm applies the univariate adore.filter to this block.

We found that both filters are able to suppress around
a quarter to a third of all false alarms while providing at
least 95% sensitivity. Using a larger minimum window width,
a greater FARR can be obtained at the cost of a lower SE.
For instance, merely demanding at least 90% SE, an aoRM
or aoTRM-LS alarm system can reduce 31 to 38% of all
threshold alarms.

The need for an improvement of the actual situation
on intensive care units is obvious. Preprocessing the raw
monitoring data by the aoRM or aoTRM-LS filter is a good
possibility to achieve this aim. The proposed filters could
be implemented into the monitoring systems. Then, the
practical performance of a filtering based alarm system can
be compared to that of the “old” system in a test phase.
However, one has to keep in mind the lower sensitivity of
filtering based alarm systems. Therefore, the physician must
have access to both the filtered and the raw measurements at
the bedside.

The potential of the aoRM and aoTRM-LS signal filters
is not restricted to false alarm suppression. For instance,
they can also be used to ease patient monitoring since
smooth signal extractions are easier to interpret than noisy
and outlier contaminated measurements. The aoRM and
aoTRM-LS signal extraction can also be beneficial in other
fields, for example, for high-frequency measurements from
industry or finance.

Furthermore, the aoRM and aoTRM-LS can be enhanced
or used as a basis for other filters. For instance, there might be
improved principles for the window width adaption, possibly
based on methods for the detection of structural breaks; for
the aoTRM-LS, an automatic and time-dependent choice
of the correlation blocks (see Section 2.2) would be an
improvement, especially for multivariate time series with an
unknown and possibly changing dependence structure.
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