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This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of
morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical
applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great
contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification,
statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell
analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation,
morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports
are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and
future research trends are also addressed.

1. Introduction

Cell morphology has become a standard theory for com-
puterized cell image processing and pattern recognition.
The purpose of which is the quantitative characterization of
cell morphology, including structure and inner-components
analysis for better understanding functioning and pathogen-
esis associated with malignancy and behavior [1].

Morphological cell analysis is a key issue for abnormality
identification and classification, early cancer detection, and
dynamic changes analysis under specific environmental
stress. The quantitative results and primary, objective, and
reliable, which is beneficial to pathologists in making the
final diagnosis and providing fast observation and automated
analysis systems.

In the present study, advances in morphological cell
analysis are briefly reviewed. Overall, significant progress has
been made in several issues. Morphological cell analysis has
been integrated in new methods for biomedical applications,
such as automatic segmentation and analysis of histological

tumour sections [2–4], boundary detection of cervical cell
nuclei considering overlapping and clustering [5, 6], the
granules segmentation and spatial distribution analysis [7],
morphological characteristics analysis of specific biomedical
cells [8–10], understanding the chemotactic response and
drug influences [11–14], or identifying cell morphogenesis
in different cell cycle progression [15].

Morphological feature quantification for grading can-
cerous or precancerous cells is especially widely researched
in the literature, such as nuclei segmentation based on
marker-controlled watershed transform and snake model
for hepatocellular carcinoma feature extraction and classi-
fication, which is important for prognosis and treatment
planning [16], nuclei feature quantification for cancer cell
cycle analysis [17], and using feature extraction including
image morphological analysis, wavelet analysis, and texture
analysis for automated classification of renal cell [18].

Computerized/automated early cancer or abnormalities
detection provides a basis for reducing deaths and morbidity,
especially for cervical cancer, which is reported to be
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the most preventable disease through early detection [19],
provision of prompt advice, and opportunities for follow-
up treatments. As an example, [20] presents a prototype
expert system for automated segmentation and effective
cervical cancer detection, providing primary, objective, and
reliable diagnostic results to gynaecologists in making the
final diagnosis. These advances will contribute to realize
computer-assisted, interactive, or automated processing,
quantification, statistic analysis, and diagnosis systems for
biomedical applications.

The scope of this paper is restricted to morphological
cell analysis by image processing in the field of biomedical
research. Although this topic has attracted researchers as
since early as the 1980s [21–23], this survey concentrates
on the contributions of the last 5 years. No review of this
nature can possibly cite each and every paper that has been
published. Therefore, we include only what we believe to be
representative samples of important works and broad trends
from recent years. In many cases, references were provided
to better summarize and draw distinctions among key ideas
and approaches.

The paper has five more sections. Section 2 briefly
provides an overview of related contributions. Section 3
introduces the typical formulation of cell morphology.
Section 4 lists the relevant tasks, problems, and applications
of cell morphology. Section 5 concentrates typical solutions
and methods. Section 6 is a discussion of our impressions on
current and future trends. Section 7 is the conclusion.

2. Overview of Contributions

2.1. Summary. From 1980s to 2010, about 1000 research
papers with topics on or closely related to morphological
cell analysis for robot vision were published. Figure 1 shows
the yearly distribution of these published papers. The plot
shows that the topic of morphological cell analysis steadily
developed in the past 20 years.

2.2. Representatives. Morphological cell analysis has many
applications in biomedical engineering. Their most signifi-
cant roles are summarized as follows.

(1) Malignant cell identification and cancer detection
[20, 24, 25].

(2) Morphological changes during a cell cycle as division,
proliferation, transition, and apoptosis [26–28] or to
follow cell culture development [29].

(3) Morphological differences to elucidate the physio-
logical mechanisms [30] or classify a set of cell
populations with different functions such as neurons
[31, 32].

(4) Dynamic characteristics investigation under specific
environmental stress for personalized therapy [33–
36] or for the selection of new drugs [37].

(5) Morphometrical study such as subcellular structures
(DNA, chromosome) analysis [38] for higher animals
or plants based on 3D reconstruction [39, 40].
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Figure 1: Yearly published records from 1990 to 2010.

Table 1: Representative contributions.

Processing Method Representative

Segmentation

Active contour model (ACM) [5]—2011

Reconstruct the approximate
location of cellular
membranes

[51]—2011

A marker-controlled
watershed transform and a
snake model

[16]—2010

Segmentation combing
features

[51]—2011

Classification
K-means and support vector
machines (SVM)

[6]—2011

Bayesian classifier [18]—2009

The commonly researched topics for solving morphological
problems are listed below.

(1) Mathematical morphology theory used in binary,
gray, and color images for preprocessing or features
analysis [41–48].

(2) Location determination: objects located and analysis
of distribution [7, 49, 50].

(3) Meaningful areas segmentation: based on the features
of pixel, edge, region, and model [2–4].

(4) Characteristics quantification: based on cytopathol-
ogy and the experience of physicians [51–58].

(5) Recognition, classification automated analysis, and
diagnosis [6, 16, 24, 51, 59].

Morphological analysis has become a powerful math-
ematical tool for analyzing and solving cell informatics.
Automatic features quantification is undoubtedly the most
widely used estimation technique in this topic. Among
the variety of developed methods, the main differences
and remarkable features can be summarized briefly: shape,
geometrical, intensity, and texture. A few representative
types of segmentation and classification are selected for easy
appreciation of state-of-the-art as shown in Table 1.
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Figure 2: The general procedure of cell image analysis.

3. The Problem and Fundamental Principle

The fundamental principle of morphological cell analysis
is dependent on cell biology, cytopathology, and the diag-
nostic experience of pathologists. To study cell character-
istics, detect abnormalities, and determine the malignant
degree, the pathologists examine biopsy material under a
microscope, which is subjective, laborious, and time con-
suming. Therefore quantitative cell morphology is studied
and computer-assisted systems are presented for diagnostic
process at the same time. The general procedure of such
applications can be described in Figure 2.

4. Tasks and Problems

4.1. Morphological Operation. Mathematical morphology is
the basic theory for many image processing algorithms,
which can also extract image shape features by operating with
various shape-structuring elements [60]. This processing
technique has proved to be a powerful tool for many
computer-vision tasks in binary and gray scale images, such
as edge detection, noise suppression, image enhancement,
skeletonization, and pattern recognition, [45]. This tech-
nique is consisted of two parts: binary morphology and gray-
scale morphology, and the commonly used operations as
morphological dilation and erosion are defined as follows,
respectively:

(
f ⊕ k

)(
x, y

) = max
{
f
(
x −m, y − n

)
+ k(m,n)

}
,

(
fΘk

)(
x, y

) = max
{
f
(
x −m, y − n

)− k(m,n)
}

,
(1)

where f is the original image (gray scale or binary), which
is operated by the corresponding structuring element k, and
(x, y) is the pixel of image f , (m, n) is the size of element

k. After morphological operation, image shape features such
as edges, fillets, holes, corners, wedges, and cracks can be
extracted.

Mathematical morphology can also be used in color
images avoiding the loss of information of traditional binary
techniques [45]. The new operations are based on the order
in multivariate data processing.

4.2. Cell Localization. Determination of the orientation of
a cell, termed localization, is of paramount importance
in achieving reliable and robust morphological analysis.
Achieving high-level tasks such as segmentation and shape
description is possible if the initial position is known. From
the early literature, primary methods were used in sample
images, such as [61] using a sequence of morphological
image operations to identify the cell nuclei and [29] using
conditional dilation techniques to estimate unbiasedly cell
density and obtain precisely cell contours. The results were
acceptable only in single images without any complex factors.

Even when membranes are partially or completely not
visible in the image (Figure 3(a)), the approximate locations
of cells can be detected by reconstructing cellular membranes
[51]. This method is effective for lung cells location in
immunohistochemistry tissue images. Cell nuclei that are in
cell clusters detecting are the key point for eliminating the
positions of cervical cells in conventional Pap smear images
(Figure 3(b)). To deal with this problem, Plissiti et al. present
a fully automated method [6]. It takes the advantage of color
information to obtain the candidate nuclei centroids in the
images and eliminate the undesirable artifacts by applying
a distance-dependent rule on the resulted centroids and
classification algorithms (fuzzy C-means and support vector
machines). The experiments shows that even in the case of
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(a) Lung cells (b) Cervical cells

Figure 3: Biomedical cell images.

images with high degree of cell overlapping, the results are
very promising.

For automatic detection of granules in different cell
groups and statistical analysis of their spatial locations, the
existing image analysis methods, such as single threshold,
edge detection, and morphological operation, cannot be
used. Thus, the empirical cumulative distribution function
of the distances and the density of granules can be considered
[7]. Jiang et al. propose a machine learning method [62],
which is based on Haar feature (which is the combination
of the intensity, shape, and scale information of the objects),
to detect the particle’s position.

4.3. Segmentation. Segmentation is one of the most impor-
tant points for automated image analysis and better cell
information understanding. The algorithms that have been
presented can be divided into edge-based, region-based, and
model-based modules. Region-based approaches attempt to
segment an image into regions according to regional image
data similarity (or dissimilarity), such as scale-space filtering,
watershed clustering [63], gray-level threshold [26], and
region growing [64]. For clear stained images, multilevel
thresholds are the most simply and commonly applied
methods for low-level segmentation to remove noise and
obtain the interest region (nucleus, cytoplasm, or the whole
cell), which are defined as follows:

g
(
x, y

) =
⎧
⎨

⎩

Ii, Ti−1 ≤ f (m,n) ≤ Ti,

0, others,
(2)

where i is the number of regions need to be divided, Ti

is the threshold and the extension ranges from Ti−1 to Ti

corresponding to the region i.
Nevertheless numerous algorithms have been developed,

overlapping and connected cluster is still the key problem in
cell image segmentation. The methods presented available
to solve specific images with clear stained situation, semi-
automated algorithms based on preknowledge for adequate
segmentation of cell images under complex situation, are
always more efficient than totally automated methods.

4.4. Quantitative Measurement of Meaningful Parameters.
The quantitative measurement of cell features is meaningful
for both image segmentation and abnormalities detection.
Fast, reproducible, accurate, and objective measurement
of cell morphology is beneficial to avoid subjective and
interobserver variations, which result in diagnostic shifts and
consequently disagreement between different interpreters
[20]. The quantitative characteristics of cell or nuclear struc-
ture alterations extracted after robust image processing algo-
rithms and 3D reconstruction is also called morphological
biosignatures, which learn about cellular level features and
nuclear structure including inner-components analysis, such
as the quantitative evaluation of the approximate number of
mRNA varying during cell cycle, developing, aging, and in
different pathologies and treatment with drugs by extracting
morphological parameters (cytoplasm and nucleus areas)
[28]. Accurate quantification of these parameters could
be beneficial for developing robust biosignatures for early
cancer detection [1]. Multivariate statistical analyses of
morphological data to suggest that quantitative cytology may
be a useful adjunct to conventional tests for the selection of
new drugs with differentiating potential [37].

The extracting features as cell area, perimeter, centroid,
and the length of major and minor axes for calculating more
meaningful parameters such as displacement, protrusiveness,
and ellipticity, are used to analyze the dynamic changes of
human cancerous glioma cells [35], which can also be used
to identify different classed of neurons and relate neural
structure (such as total dendritic length and dendritic field
area) to function [31].

The most meaningful parameters are obtained in dis-
criminating different patterns, such as cell size, shape
distribution, and nuclear-to-cytoplasmic ratio for normal
and precancerous cervical squamous epithelium determi-
nation [44], and texture quantification as a measurement
to interchromosome coarseness to study cell proliferation
[38]. Local gray level differences and cell density combining
with other morphological parameters are possible to follow
cell culture development under various experimental condi-
tions [29]. Hitherto, the relationship between malignancy-
associated morphological features in single tumour cells and
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Figure 4: Geometrical features quantification.

the expression of markers indicating functional properties of
these cells remained widely unknown [65].

4.5. Statistical Analysis. Multivariate statistic analysis is
applied to compare multivariate data and establish the
quantitative changes and differences between groups under
investigation on their characteristics. The kernel approach is
to find a high correlation feature set without redundancy.
Principal components analysis (PCA) displays the original
variables in a bidimensional space, thus reducing the dimen-
sionality of the data and allowing the visualization of a large
number of variables into a two-dimensional plot [11, 49,
66].

5. Methods and Solutions

5.1. Formulation in Morphological Analysis. Morphological
analysis is often studied as the shape appearances of objects
and the surfaces of the images, with intensity seen as height
and texture appearing as relief. Formulization of morpho-
logical features is of benefit to computerized calculation and
more efficient than manual morphological quantification,
which is still laborious and subjective. The morphology
characteristics can be described by shape, geometrical,
intensity, and texture analysis.

The geometrical features of regions can be described
by area, radii, perimeter, the major and the minor axis
length, and so forth. The area of the object is calculated
as the number of pixels of the region (Figure 4, the area
defined by the closed curve). Radii are calculated based
on projected cell area supposing that each cell is circular.
The major and the minor axis length are the maximal
and minimum numbers of pixels of the axis, respectively.
Take Figure 4 as an example, the perimeter is calculated as
follows:

P = N1 + N2 +
√

2N3, (3)

where, N1, N2, N3 are the numbers of the horizontal, vertical
bevel lines on the boundary, respectively.

Circularity, rectangle, eccentricity, and irregularity are
used to describe the shape features. Circularity (C) and
rectangle (R) represent the rotundity-like and rectangle-like
degree, defined as follows:

C = P2

4πA
,

R = Area
H ∗W

.

(4)

Eccentricity is defined as follows:

E = The minor axis length
The major axis length

. (5)

Texture is an important visual cue and widely exists in
images. Texture feature extraction is the most basic problem
for texture analysis including classification and segmenta-
tion. Dimension, discrimination, stability, and calculation
are considered in practical application and studied for more
than fifty years. Based on the statistical theory, structure,
model, and signal processing, many effective methods were
presented for different applications. Among which, gray level
co-occurrence matrix (GLCM) has become one of the best
known and most widely used statistic method for texture
feature extraction [26], especially in cell image texture feature
analyzing. The interrelationship of textural primitives which
define morphological texture can be estimated by quite
different descriptors, the discriminant value of which varies
considerably [67]. The descriptors based on GLCM are
summarized in Table 2.

The intensity feature is characterized by the average of
the intensity value of all the pixels of the region. For RGB
color images, it is calculated independently from the red,
green, and blue component of the original image. Histogram
is an efficient way to show intensity features. Kruk et al.
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Table 2: Texture features.

Energy: ASM =∑k
i=1(gi − g)−2p(gi)

Uniformity: U =∑k
i=1p

2(gi)

Entropy: ENT = −∑k
i=1p(gi)log2p(gi)

Smoothness:IDM = 1− 1/(1 + s2), where s =
√∑k

i=1(gi − g)−2p(gi)

Given that gi is the gray value, k is the number of gray levels.

characterize the histograms of different color components
by applying the following parameters: the mean, standard
deviation, skewness, kurtosis, maximum value, and the span
of the histogram [59].

5.2. Deformable Models. It is known that biomedical images
are always under complex situation, which made seg-
mentation a hard task for the extraction of the interest
region. Because of the various challenges in medical image
processing, deformable models were widely investigated and
innovated, becoming a powerful tool for medical image
segmentation. Active counter model is one of the most
classical algorithms. Techniques based on active contour
models have the potential to produce better estimates of cell
morphologies.

The existing active contour models can be categorized
into two classes: edge-based models [68], and region-based
models [69]. On one hand edge-based model directly uses
intensity gradient information to attract the contour toward
the object boundaries. Therefore this kind of model has
worse performance for weak object boundaries since cell
image exhibits great fuzzy degree due to low contrast at the
location of the cell membrane. On the other hand region-
based model aims to identify each region of interest by
using a certain region descriptor. It guides the motion of
the contour, and is less sensitive to the location of initial
contours in some extents. It is much more suitable for cell
segmentation than the fore one.

Chan and Vese model [70] is one of the most popular
region-based active contour models. This model has been
successfully used for segmenting images. Chan and Vese
model proposed an active contour model that segments
an image into two sets of possibly disjoint regions, by
minimizing a simplified Mumford-Shah functional. The
basic idea is as follows. Assume that Ω ⊂ R2 is the image
domain and I : Ω → R is a given image. Mumford and Shah
consider image segmentation as a problem of seeking an
optimal contour C that divides the image domain into two
approximately piecewise-constant regions with intensities ui
and u0. Let C denote its boundary. Thus the global data
fitting term in the Chan and Vese model is defined as follows:

Ecv(c1, c2 ) =
∫

Ω
(I − c1)2dxdy +

∫

Ω
(I − c2)2dxdy, (6)

where Ω and Ω represent the regions outside and inside the
contour C, respectively, c1 and c2 are two constants that fit
the image intensities outside C and inside C.

This model considers pixels within the same region
having the most similarity, and makes up the shortcomings
of edged etector. When the contour accurately captures the
object boundary, the two fitting terms minimize the fitting
energy value. In each segmented area, the clustered pixels’
mean value approximately equals the c1 and c2, respectively.
Thus the fitting terms with respect to c1 and c2 are the driving
forces that evolve the curve motion on the principle of inner-
region homogeneity.

Since the regional difference is the guideline in image
segmentation, the interregional differences should be consid-
ered as the model’s driving force as follows:

E = −1
2

(c1 − c2)2. (7)

This kind of region-based active contour model’s energy
is characterized by the maximum dissimilarity between
regions. Minimizing the energy E in (7) is the same as maxi-
mizing the difference between different regions. Equation (7)
formulates the global instructive guidance term.

5.3. Classification. The extracted features involved the input
to classification procedure for better analysis, correct grad-
ing, and pattern recognition. From the literature, unsuper-
vised (as K-means and spectral clustering) and supervised
(as super vector machine, SVM) classification schemes and
artificial neural network (ANN) architecture were applied.
SVM clustering is a state-of-the-art method, which was
originally proposed in [71]. The decision function of a two-
class problem can be written as follows:

f (x) = ω · φ(x) + b =
N∑

i=1

αi yiK(x, xi) + b, (8)

where xi ∈ Rd is the sample and yi ∈ {±1} is the class label
of xi. A transformation φ(·) maps the data points x of the
input space Rd into a higher-dimensional feature space RD,
(D ≥ d). K(·, ·) is a kernel function, which defines an inner
product in RD. K(·, ·) is commonly defined as follows:

K(x, xi) = [(x · xi) + 1]q,

K(x, xi) = exp

{

−|x − xi|2
σ2

}

,

K(x, xi) = tanh(v(x · xi) + c).

(9)

The parameters αi ≥ 0 are optimized by finding the
hyperplane in feature space with maximum distance to the
closest image φ(xi) from the training set. For multilevel
classification based on SVM, a decision-tree classification
scheme discriminated between different grades is showed in
Figure 5.

Although SVM is one of the most famous methods for
classification and has achieved a great success in pattern
recognition, problems still exist, such as the neglect of
different data distributions within classes. Recently, struc-
tural super vector machine (SSVM) is proposed accordingly,
which firstly exploits the intrinsic structures of samples
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Input feature
space

SVM classification

Grade I Grade II-III

SVM classification

Grade II Grade III

Figure 5: A decision-tree SVM classification scheme.

within classes by some unsupervised clustering methods
and directly embedding the structural information into the
SVM objective function [72]. SSVM is theoretically and
empirically a better generalization than SVM algorithm.

5.4. D Morphology. Three-dimensional morphology using
3D reconstruction and image processing techniques is
applied for quantitative morphometric analysis of cellular
and subcellular structures, which is much more powerful
than its 2D counterpart, but still largely based on the
processing of separate 2D slices.

The approach to 3D morphological analysis consists of
digital micrographs acquisition, reconstruction, and 3D-
based feature extraction. The acquired images are serialy
taken by CT instrument at uniform angular intervals during
a full 360◦ rotation [1], from the electron imaging film taken
by photo products [73], or by electron microscopy [40].
Computer programs such as MATLAB or Visual Studio soft-
ware can be used for automated 3D image reconstruction.

Based on the reconstructed models, features such as
three-dimensional shape of the cells can be extracted, which
are correlated with the assembly state of myofibrils in differ-
ent stages [74] and ultrastructure such as the arrangement of
compact chromatin of GO lymphocytes can be studied [23].

6. Existing Problems and Future Trends

Although morphological cell analysis has been developed
in many applications as mature approaches for estimation
and diagnosis, some problems still exist in its applications
in biomedical engineering. Researchers are exerting efforts
not only in simple localization and segmentation, but also
in improving the methods mainly in the following aspects.

6.1. Real-Time Application and Computational Complexity.
Morphological cell analysis has been applied in almost all
hospitals, which are key means in automatic microscopic

analysis. However, because of its high computational com-
plexity, it has strict limits on the number and stability
of feature points. The traditional method selects a few
features, which limits the application scope of morphological
analysis. The computational complexity greatly affects real-
time application systems [50, 75].

6.2. Reliability. Reliability is a great concern in practical
applications [55, 76]. Morphological analysis relies on
tuning of many parameters. Related techniques rely on
existing noise statistics, initial positions, and sufficiently
good approximation of measurement functions. Deviations
from such assumptions usually lead to degraded estimations
during automatic analysis. Stochastic stability is established
in terms of the conditions of the initial errors, bound on
observation noise covariance, observation nonlinearity, and
modeling error. Features have to be effectively and efficiently
treated by their removal from or addition to the system. New
methods should be explored to discard outliers and improve
the matching rate. These will help stabilize algorithms and
allow more accurate localizations or parametric estimations.

6.3. With a Priori Knowledge. Constraints introduced in
morphological cell parameters may help in some occasions.
For example, morphological cell analysis is commonly used
to estimate the cell shapes and activities, which incorporate
a priori information in a consistent manner. However, the
known model or information are often either ignored or
heuristically dealt with [6].

6.4. Accuracy. Accuracy is always the most important factor
in biomedical engineering. The accuracy of the calculated
cells strongly depends on the computational potential and
the statistical possibilities. For example, automated method
provides accurate segmentation of the cellular membranes in
the stained tracts and reconstructs the approximate location
of the unstained tracts using nuclear membranes as a spatial



8 Computational and Mathematical Methods in Medicine

reference. Accurate cell-by-cell membrane segmentation
allows per-cell morphological analysis and quantification of
the target membrane [16, 51, 77].

6.5. Artificial Intelligence. The integration of the morpho-
logical cell analysis with some artificial intelligence methods
may yield a better performance. Fuzzy logic, neural network,
genetic algorithm, and so forth can be combined to wholly
resolve the complex task.

7. Conclusion

This paper summarizes recent advances in morphological
cell analysis for biomedical engineering applications. Typical
contributions are addressed for initialization, localization,
segmentation, estimation, modeling, shape analysis, cell
parameters, and so forth. Representative works are listed
for readers to have a general overview of state-of-the art. A
number of methods for solving morphological problems are
investigated. Many methods developed for morphological
cell analysis, extended morphological cell segmentation, are
introduced. In the 20-year history of morphological cell
analysis, they gained entry into the field of biomedical
engineering as a critical role. The largest volume of published
reports in this literature belongs to the last ten years.
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I. Popov, “Cell image area as a tool for neuronal classification,”
Journal of Neuroscience Methods, vol. 182, no. 2, pp. 272–278,
2009.



Submit your manuscripts at
http://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


