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This paper presents an alternative method, called as parallel factor analysis (PARAFAC) with a continuous wavelet transform, to
analyze of brain activity in patients with chronic pain in the time-frequency-channel domain and quantifies differences between
chronic pain patients and controls in these domains. The event related multiple EEG recordings of the chronic pain patients
and non-pain controls with somatosensory stimuli (pain, random pain, touch, random touch) are analyzed. Multiple linear
regression (MLR) is applied to describe the effects of aging on the frequency response differences between patients and controls.
The results show that the somatosensory cortical responses occurred around 250 ms in both groups. In the frequency domain,
the neural response frequency in the pain group (around 4 Hz) was less than that in the control group (around 5.5 Hz) under
the somatosensory stimuli. In the channel domain, cortical activation was predominant in the frontal region for the chronic pain
group and in the central region for controls. The indices of active ratios were statistical significant between the two groups in
the frontal and central regions. These findings demonstrate that the PARAFAC is an interesting method to understanding the
pathophysiological characteristics of chronic pain.

1. Introduction

Chronic pain is a complex disease characterized by pain
persisting after damage or pathology has healed. Effective
treatment of chronic pain is hampered by an incomplete un-
derstanding of the pathophysiological changes that occur in
the nervous system of chronic pain sufferers. The electroen-
cephalogram (EEG) records the electrical activity from the
scalp produced by the firing of neurons within the cerebral
cortex [1] and has been widely used to analyze neural activity
in chronic pain subjects [2, 3].

To investigate the physiological basis of chronic pain,
event-related potentials (ERPs) have been used to explore
pain-related modulation of the latency, location, amplitude,
and frequency of evoked EEG responses to sensory stim-
ulation [4–6]. Previous studies have shown that frequency
and time domain characteristics of EEG recordings from cer-
tain brain regions are altered with chronic pain [7–9].

Traditionally, the ERP components are analyzed at specific
cortical locations, that is, the vertex and frontotemporal
region (e.g., [10, 11]). With this approach, however, the in-
formation provided is limited to the particular region under
investigation and neglects the importance of wider cortical
regions in information processing [12].

Multiple EEG recordings can be used to characterise
the electrical activity across the whole cortex. Traditional
methods of PCA and ICA analysis process the multiple EEG
signals in two-way domains such as time channel and fre-
quency channel [13]. To effectively characterise multiple EEG
signals, development of an analysis method that captures
time-frequency-channel information is required.

In this study, we have investigated differences in mul-
tiple ERPs between chronic pain patients and pain-free
individuals. To characterise the EEG signals in the time-
frequency-channel domain, a parallel factor analysis (PARA-
FAC) method with wavelet transforms was developed to
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decompose the multiple EEG recordings. The PARAFAC
method has been successfully employed to detect abnormal
EEG activity in neurological diseases such as epilepsy and
Alzheimer’s disease [14]. Herein, this novel method is em-
ployed to analyze the EEG in chronic pain subjects. The
results show differences in cortical evoked activity between
chronic pain and pain-free individuals and indicate that the
PARAFAC is an effective method for extracting the character-
istics of multiple EEG recordings in the time-frequency-
channel domain.

2. Materials and Methods

2.1. Subjects. Subjects were 13 chronic pain patients re-
cruited through the Waikato Hospital Pain Clinic and 13
pain-free volunteers. A range of conditions were represented
in the patient group, including chronic lower back pain, neck
pain, abdominal pain, and throat pain. None of the subjects
in either group had a history of other neurological disease or
head injury. Ethical approval was obtained from the Waikato
Ethics Committee, and all subjects signed written informed
consent.

2.2. Sensory Stimulations. The stimuli consisted of brief
(10 ms), repetitive (at least 120) electrical shocks delivered to
the dominant index finger. The electrodes were positioned on
the dorsal aspect of the distal interphalangeal joint and a fine
wire with a soldered tip, applied to the pulp of the fingertip.
The stimulus intensity was recorded as the percent maxi-
mum voltage and rated by each subject on a 1–10 analogue
scale. Two intensities of electric shock were tailored to each
subject, one that was easily felt but not painful (from here
on referred to as the “touch” stimulus) and one that was
rated as “moderately painful” (the “pain” stimulus). The pain
stimulus was felt as a sharp pricking sensation, predomi-
nantly under the wire electrode on the finger pulp. The
shocks were given in three sequences at a constant frequency
of 1 every 1.5 s as follows: (1) 120 sequential touch shocks
(“touch”); (2) 120 sequential painful shocks (“pain”); (3)
a random sequence of 300 touch and painful shocks at a
4 : 1 ratio. For the randomized protocol, the touch and pain
stimuli were analyzed separately (“random touch” and “ran-
dom pain”, resp.). Stimulus intensity and delivery were con-
trolled by MatLab software (Matlab 6.0 Mathworks, Natick,
MA, USA) running on a laptop computer that interfaced
directly with the stimulus generator.

2.3. EEG Recording and Experimental Protocol. The subjects
were comfortably seated, and the stimulating and EEG
recording electrodes were attached. The latter consisted of a
28-channel bipolar montage configured in accordance with
the international 10 : 20 system. The electrodes were Ag/AgCl
sintered ring electrodes (Falk Minow, Herrsching, Germany)
(1 cm outer diameter) that fastened securely to plastic loops
imbedded in a prefabricated scalp cap (Easycap, Falk Minow,
Herrsching, Germany). One of two cap sizes was chosen to
give the correct positioning of the electrodes on the head
relative to the nasion and inion, in accordance with the

international 10 : 20 system. The centres of the electrodes
were filled with an electrolyte gel, and attention was given
to ensure the gel made contact with the scalp. Two reference
electrodes were positioned behind each ear. The EEG elec-
trodes were connected to two 16-channel biosignal amplifiers
(Guger Technologies, Herbersteinstrasse, Austria) and
digitised (Gdaqsys, Guger Technologies, Herbersteinstrasse,
Austria) to computer at 100 Hz for continuous display and
later offline analysis. The amplifiers were powered using
mains-charged battery packs. One of the spare channels on
the amplifier was used as an event marker from the elec-
trical stimulus generator. Application of the electrodes took
approximately 1 hour. The quality of the EEG was assessed
by visual inspection and corrective measures taken to im-
prove the quality of “noisy” channels. This usually involved
checking the contact of the electrolyte gel between the elec-
trode and the scalp. Time restraints, particularly with the re-
quirement for patients to be seated for up to two hours to
complete the study, meant it was not practicable to check
and monitor individual channel impedances.

During delivery of the stimulation sequences, the sub-
jects were instructed to keep their eyes closed, refrain from
talking, and relax as much as possible. The subjects were
not specifically instructed to either attend to or ignore the
stimuli. The subjects could stop the stimulation at any time
by pressing a button. The three sequences took approxi-
mately 30 minutes to complete.

2.4. Data Analysis

2.4.1. Preprocessing. The EEG was preprocessed by a band-
pass filter and further analyzed using EEGLAB [15] software
in MatLab. The raw EEG was 1 to 50 Hz band-pass filtered.
Each trace was visually inspected, and data predominated by
electrical noise was discarded.

2.4.2. Wavelet Transforms. Wavelet transform was used to
transform a single-channel EEG signal into a time-frequency
map. In this study, the continuous wavelet transform (CWT)
was applied, and the Morlet wavelet was employed [16], and
it is

ψ0(t) = π−1/4eiwte−1/2t2 , (1)

where w is the wavelet central angle frequency, often w ≥
6, which is an optimal value to adjust the time-frequency
resolution [17]. In this study, w = 6 was applied. Then, a
family of wavelets can be generated: ψs(t) = (1/

√
2)ψ0(t/s),

s ∈ (0, +∞), and s is called a scale. The CWT at scale s and
time t of a signal x(t) is defined as

W(s, τ) = 1√
s

∫
x(t)ψs ∗

(
t − τ
s

)
dt, (2)

where ψs is a parent wavelet function, and∗ denotes complex
conjugation. By adjusting the scale s and the translation
τ, a series of different frequency resolutions in the signal
can be projected on the two-dimension space (scale s and
translation τ). The factor

√
s normalizes energy across the

different scales.
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2.4.3. PARAFAC. After wavelet transformation of all EEG
channels, a three-way tensor X(t, f , c) (time-frequency-
channel), giving the energy at time t, frequency f , and chan-
nel c, was obtained. To decompose the three-way tensor into
time, frequency, and channel modes, the PARAFAC method
was applied, and a linear combination of the three-way
tensor was obtained by means of the alternating least squares
(ALS) algorithm [14, 18]. The PARAFAC model is defined as

XT×F×C =
N∑
n=1

an ◦ bn ◦ cn + E, (3)

where N is the number of signal factors of XT×F×C , and an,
bn, and cn indicate the nth column of the loading matrices
A ∈ RT×N , B ∈ RF×N , and C ∈ RC×N , respectively. A, B,
and C represent the time, frequency, and channel modes
and provide information on the interactions between
modes. E ∈ RT×F×C is the residual information in the
decomposition. The operator ◦ represents the outer product
of two vectors. Illustration of a 2-factor PARAFAC model on
a three-way dataset is shown in Figure 1(A).

In the PARAFAC method, determination of the number
of factors is a key issue. There are several methods to deter-
mine the number of factors, including the visual appearance
of loadings, the residual analysis, the core consistency, and
the number of iterations of the algorithm [19]. In this
study, the core consistency method was employed. The core
consistency represents the resemblance between the Tucker3
core and the PARAFAC core [14]. A Tucker3 model is similar
to the PARAFAC model, and both of them are an extension
of bilinear factor analysis to tensors [20]. The principle of
the core consistency is as follows: (1) the PARAFAC model
is available when the core consistency value is greater than
90%; (2) the PARAFAC model is not available when the
core consistency value is less than 50%; (3) the PARAFAC
model is probably available when the core consistency value
is between 50 and 90%. The core consistency is defined as
follows:

Core-Consistency

=
⎛
⎜⎝1−

∑R
t=1

∑R
j=1

∑R
k=1

(
gi jk − ti jk

)2

R

⎞
⎟⎠× 100,

(4)

where gi jk and ti jk are the Tucker3 core and the PARAFAC
core, respectively; R is the factor number. In the PARAFAC
core, ti jk = 1 if i = j = k, otherwise ti jk = 0, and in
the Tucker3 core, gi jk can be nonzero for all i, j, and k.
This method for determining the factor number has been
successfully applied to multiple neural data [13, 21].

2.4.4. Statistics. Data were analysed in the time, frequency,
and channel domains for all subjects. For the channel
domain, the average energy for each stimulus was calculated
for all channels and compared between the two groups, with
outlier detection based on the generalized extreme studen-
tized deviate (GESD) [22]. The average energy distribution
for each group was obtained by averaging across all subjects.

Cortical locations were grouped into 5 zones (frontal (FPz,
FP1, FP2, Fz, F3, F4, F7, F8), central (Fz, Cz, FC3, FC4, C3,
C4, CP3, CP4), occipital (Pz, CP3, CP4, P3, P4, P7, P8, O1,
O2), left temporal (F7, F3, Fz, FT7, FC3, T7, C3, TP7, CP3,
P7), and right temporal (F8, F4, Fz, FT8, FC4, T8, C4, TP8,
CP4, P8)), as shown in Figure 1(C). The active ratios (average
energy of one zone/the sum of energy across all zones) were
assessed using the t-test. In time and frequency domains, the
differences between pain and control groups were evaluated
by t-test.

The mean age of the chronic pain group (49 ± 11 years,
n = 13) was significantly greater than the pain-free group
(39 ± 11 years, n = 13) (P < 0.05, t-test). Multiple
linear regression (MLR) was used to investigate the effect
of age on the frequency domain parameter. The pain-free
subjects and chronic pain subjects were represented by 0 and
1, respectively, and the effect of age and subject grouping
differentiated by MLR as shown in Figure 4. In the MLR
analysis, frequency was the dependent variable, while the age
and subject grouping were independent variables. The effect
of MLR was evaluated by the F-test.

3. Results

An example showing the epoch decomposition process using
the PARAFAC method is illustrated in Figure 1(B). Wavelet
decomposition was employed on the raw EEG recordings,
generating time-frequency information corresponding to
each channel. The frequency range for the wavelet decom-
position was 1–50 Hz with an interval of 0.5 Hz. The factors
were then extracted by the PARAFAC model from each epoch
for every subject. Every factor was decomposed into three-
way information at the time-frequency-channel domain. In
the case shown (Figure 1(B) a, b, and c), the three-way infor-
mation for one factor revealed a neural response frequency
in the frontal region of 4 Hz and response time of 220 ms
after the stimulus. Three-way information for each subject
was obtained by averaging the results across all epochs. Com-
parisons between groups of the spatial topography, frequen-
cy, and time responses are shown in Figure 2.

3.1. Comparison in Frequency Domain. As shown in Figure 2
(middle), the frequency response in the chronic pain group
(around 4 Hz) was lower than that in control group (around
5.5 Hz) and was statistically significant for the pain stimulus
(chronic pain group: 3.456±1.716 Hz; control group: 5.608±
2.315 Hz; P < 0.05, t-test).

3.2. Comparison in Time Domain. As shown in Figure 2
(right), the response time was around 250 ms in both groups
and showed no significant difference for any of the stimuli.

3.3. Comparison in Location. As shown in Figure 2 (left),
the topographical analysis indicated that the active zone was
mainly in the frontal region in pain group and in the central
region in the control group. These differences were quanti-
fied by comparing the active ratios in the 5 cortical regions
(see Figure 1(C)). The results are shown in Figure 3(a);
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Figure 1: The PARAFAC model and factors extracted by the PARAFAC model from one case. (A) PARAFAC modeling of a three-way tensor.
Each component (R = 2) is the outer product of a, b, and c of rank-1, and E is a residual tensor. (B) Flowchart describing the procedure of
the epoch decomposition process by the PARAFAC method. (C) Whole brain cortex is clustered into 5 zones (1 = frontal, 2 = central, 3 =
occipital, 4 = left temporal, and 5 = right temporal).
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Figure 2: Results at the level of group corresponding to the four different stimuli. Left: the average energy distribution (pain, random pain,
random touch, and touch, resp.). Middle: the statistical results in the frequency domain. Right: the statistical results in the time domain.
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(a)

(b)

Figure 3: (a) Statistical results of the active ratio between the two groups corresponding to 5 zones under the four different stimuli. (b)
Within-group comparison of the active ratio between the frontal and the central zones in the chronic pain group (left) and the corresponding
result in the control group (right).
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Figure 4: Influence of age and pain status on the frequency responses of subjects by MLR during the four different stimuli.

in the frontal region, the active ratio of neural response
in the chronic pain group was significantly higher than
that in the control group for all 4 tests stimuli (chronic
pain group: 0.03551 ± 0.00085, control group: 0.03459 ±
0.00080, pain: P < 0.01; chronic pain group: 0.03557 ±
0.00088, control group: 0.03469±0.00076, random pain: P <
0.01; chronic pain group: 0.03551 ± 0.00077, control group:
0.03482 ± 0.00074, random touch: P < 0.05; chronic pain
group: 0.03545± 0.00061, control group: 0.03485± 0.00073,
touch: P < 0.05, t-test). In comparison, in the central region,
the active ratio of neural response in the chronic pain group
was lower than that in the control group and was statistical-
ly significant for all but the touch stimulus (chronic pain
group: 0.03555± 0.00043, control group: 0.03624± 0.00051,
pain: P < 0.001; chronic pain group: 0.03557±0.00077, con-

trol group: 0.03608± 0.00050, random pain: P < 0.05; chro-
nic pain group: 0.0356 ± 0.0006, control group: 0.03621 ±
0.00043, random touch: P < 0.01; chronic pain group:
0.0355 ± 0.00042, control group: 0.03591 ± 0.00065,
touch: P = 0.0526, t-test). In other regions, there were no
significant differences between the two groups.

Furthermore, we were interested in the differences in
active ratio between the frontal and central regions within
each group. As shown in Figure 3(b), in the pain group, the
active ratios were not significantly different, whereas in the
control group, the active ratios in the central region were
significantly higher than in the frontal region for all stim-
uli (frontal: 0.03459 ± 0.00080, central: 0.03624 ± 0.00051,
pain: P < 0.0001; frontal: 0.03469 ± 0.00076, central:
0.03608 ± 0.00050, random pain: P < 0.0001; frontal:
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0.03482 ± 0.00074, central: 0.03621 ± 0.00043, random
touch: P < 0.0001; frontal: 0.03485 ± 0.00073, central:
0.03591± 0.00065, touch: P < 0.001, t-test).

3.4. Effects of the Age on the Time Frequency and Active Ratio.
The mean age of the subjects in the pain group was signifi-
cantly greater than in the control group. This study consid-
ered the effects of the age on the time, frequency, and active
ratio parameters. Firstly, linear regression analysis was car-
ried out on age versus response time, frequency, and active
ratio; the only significant correlation was observed between
age and response frequency. MLR was used to determine
whether the difference in the frequency domain between two
groups could be attributed to an age effect and is shown in
Figure 4. The line marked by “∗” was the vertical mapping
of the line of control group to the same plane with the line
of the chronic pain group. From the comparisons of these
lines, it is clear that the frequencies of the chronic pain group
were significantly lower than those of the control group at
the same age for the pain (R2 = 0.4124, F = 24.131, P =
0.0017), random pain (R2 = 0.3398, F = 6.177, P = 0.0069),
random touch (R2 = 0.4064, F = 8.2145, P = 0.0019), and
touch (R2 = 0.2156, F = 3.2985, P = 0.0542) stimuli. The
differences in the frequency domain between the two groups
therefore cannot be attributed entirely to the difference in age
between groups.

4. Discussion

4.1. PARAFAC as an Effective Method for EEG Decomposition.
In this study, the PARAFAC method was applied to somato-
sensory evoked potential recordings to analyze EEG time-fre-
quency-channel domain [23] characteristics in chronic pain
subjects. The advantage of this method is that it can extract
more information in comparison with the two-way models
(PCA and ICA) but also takes into account the frequency
content of the signals in specific time periods across different
channels [20]. The PARAFAC method has been successfully
used to characterise the structure of epileptic seizure [14,
24, 25]. Analyzing the EEG signals in the time-frequency-
channel domain, we found that the response latency was
about 250 ms for all stimuli in both groups, while the fre-
quency responses of the chronic pain group were lower than
those of the control group. Furthermore, topographical anal-
ysis showed that the chronic pain group exhibited predo–
minantly frontal cortical activity, compared to central activa-
tion in the control group. These findings are in accordance
with previous results showing a response latency of about
250 ms [26], an increased size and reduction in popula-
tion spike frequency [27], and restriction of some ERP com-
ponents to frontal-central regions in patients with fibromyal-
gia syndrome [28]. Our findings indicate that the PARAFAC
method is an effective technique for extracting the charac-
teristics of multiple EEG recordings in the time-frequency-
channel domain.

4.2. Activity Regions Involved in Chronic Pain. Previous
studies have shown that the scale distribution of laser-
evoked potentials (LEPs) around the chronic pain ERP

components extends into vertex and frontocentral leads
in fibromyalgia syndrome (FS) patients, indicating more
widespread nociceptive activation outside the cortical hand
area [28]. One question addressed in this study is whether
the active ratio of frontal or central regions versus the whole
cortex is different between the two groups. In this study, the
active ratio was used to assess the activity within different
regions of the cortex. The statistical results showed that the
active ratios of the chronic pain group were significantly
higher than those of the control group in the frontal region.
The active ratios calculated from the other cortical regions
showed no differences between the two groups. These results
imply that evoked EEG activity in the frontal and central
cortical regions may help discriminate between chronic pain
and pain-free subjects. These findings are in agreement with
the previous studies showing that some ERP components
are more restricted to frontocentral regions in patients with
fibromyalgia syndrome [28].

In keeping with the above findings, the active ratio in the
central region was significantly higher than that in the frontal
region in the control group, and vice versa for the chronic
pain group. These results further indicate that the frontal
cortical regions are involved in somatosensory processing
in the chronic pain condition compared to central regions
for pain-free subjects, in accordance with [29–32]. These
findings suggest that passive functions (emotion, attention,
etc.) are presented more frontally [33], and pain beliefs
influence patients behavioral and psychological functioning
because of their persistent pain experience [34].

4.3. Relationship between Frequency and Chronic Pain. In
this study, we found that the cortical neural responses to
somatosensory stimuli occurred around 250 ms in both of
the groups and that the response frequency in the chronic
pain group was lower than in the control group. In particular,
the dominant activity was in the delta frequency range
(around 4 Hz) for the chronic pain patients, compared to the
theta frequency range (around 5.5 Hz) in the controls. Taken
together, these results indicate that frontal cortical activation
and a lower response frequency are characteristics of evoked
EEG responses in chronic pain subjects.

In imaging studies, the functional connectivity between
cortical structures receiving input arising from nociceptors
has documented that experimental pain is processed in
multiple pain-related areas, often characterized as a “pain
network” [35, 36]. This “pain network” is not fixed but
changes as a function of the pain-related task [37]. More-
over, in the study of cortical pathophysiology, pain-related
neural networks are larger in patients with sympathetically
mediated chronic pain (SMP) compared to acute pain states
[32]. Therefore, the pain-related network of chronic pain
patients is more extensive than that of the controls. This may
be partly due to the effects of the patients’ persistent pain
experience, resulting in processing experimental pain accom-
panied with subjective experience. The larger pain-related
network is accompanied with a lower frequency rhythm,
which is consistent with data from isolated hippocampal
slice experiments showing a reduction in the frequency of
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population spikes with increasing size of the participating
neuronal population [27].

Theta activity is associated with alertness, attention, and
the efficient processing of cognitive and perceptual tasks
[38], while delta band activity is associated with pathological
conditions associated with impairment of brain networks
such as amnesic mild cognitive impairment (MCI) and
Alzheimer’s disease (AD) [39]. Chronic pain is also found
to be frequently associated with psychiatric disorders [40].
Thus, the delta rhythm of chronic pain patients is suggestive
of impairment to pain-related brain network processing.

4.4. Influence of Age on the Response Frequency. In this study,
the mean age of the chronic pain group was significantly
greater than that of the control group. MRL was applied to
analyze the influences of age and pain status on the frequency
responses of subjects. Our results showed that the frequency
responses of the chronic pain group were significantly lower
than those of the control group across all ages. Thus, the
differences in the frequency domain between the two groups
cannot be attributed entirely to the difference in age between
groups.

In summary, the PARAFAC method with a continuous
wavelet was used to extract time-frequency-channel domain
information from somatosensory-evoked EEG recordings
from chronic pain and pain-free subjects. We found that
the response latency was about 250 ms, the chronic pain
group had lower response frequency, and the central and
frontal regions were the crucial regions of cortical activation.
Further analysis indicated that the frontal regions were
more involved in the chronic pain condition than the
control condition. Application of MLR to the analysis of
the relationship between frequency and age showed that the
lower frequency response in the chronic pain group was not
attributable to the difference in subject age. The conclusion
from these findings is that the PARAFAC method is an
effective tool for characterising multiple EEG recordings in
the time-frequency-channel domain.
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