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A content-based image retrieval (CBIR) system is proposed for the retrieval of T1-weighted contrast-enhanced MRI (CE-MRI)
images of brain tumors. In this CBIR system, spatial information in the bag-of-visual-words model and domain knowledge on
the brain tumor images are considered for the representation of brain tumor images. A similarity metric is learned through a
distance metric learning algorithm to reduce the gap between the visual features and the semantic concepts in an image. The
learned similarity metric is then used to measure the similarity between two images and then retrieve the most similar images in
the dataset when a query image is submitted to the CBIR system. The retrieval performance of the proposed method is evaluated
on a brain CE-MRI dataset with three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor). The experimental
results demonstrate that the mean average precision values of the proposed method range from 90.4% to 91.5% for different views
(transverse, coronal, and sagittal) with an average value of 91.0%.

1. Introduction

Digital images in the medical field, such as visible, ultra-
sound, X-ray, CT, MRI, and nuclear images help radiologists
to make a diagnosis. However, searching for images with the
same anatomic regions or similar-appearing lesions accord-
ing to their visual image features in a huge image dataset
is a challenging task. To address this problem, possible and
promising solution to indexing images with minimal human
intervention is presented, the content-based image retrieval
(CBIR) system [1]. In the medical field, the CBIR system
commonly contains two types of application: retrieval of
the same anatomical regions [2–4] and retrieval of similar
lesions [5–8]. This study concentrates on the retrieval of
similar brain tumors in MRI images although the proposed
methods can be applicable to other organs with lesions. MRI
is usually selected to delineate soft tissue, especially when
attempting to diagnose brain tumors [9]. Hence, the brain
MRI image of a patient with a tumor can help radiologists
to obtain useful information on the tumor category. In this

study, we focus on three types of brain tumors in T1-
weighted contrast-enhanced MRI (CE-MRI) images, namely,
meningiomas, gliomas, and pituitary tumors, because these
three have higher incidence rates than other brain tumors in
clinics. The goal of the proposed CBIR system is to assist
radiologists in making a diagnostic decision by sending a
query image (tumor) to a retrieval system. The most relevant
images (tumors), which are visually similar and fall into the
same pathological category as the query image (tumor), are
then returned as diagnostic aids.

Generally, the category retrieval for brain tumors is a
difficult task due to the complex appearances of tumors. For
example, same-type brain tumors in different patients may
present different appearances, or different-type brain tumors
may show visual similarity (Figure 1). Therefore, additional
distinctive features integrating domain knowledge need to be
presented to construct the CBIR system. One contribution
of this current work is to introduce the region-specific bag-
of-visual-words (BoW) model, which can incorporate spatial
information into the BoW model and integrate domain
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Figure 1: Two examples of brain tumors with varying appearances in T1-weighted CE-MRI images. The red arrows in each image are used
to indicate the tumors. (a) Two gliomas in different patients have dissimilar appearances. (b) A meningioma (left) and a pituitary tumor
(right) in different patients have similar appearances.

knowledge to improve the performance of the proposed
CBIR system.

Another challenge in the development of the CBIR sys-
tem is how to define the relevance between images. If
the visual features are directly used to compute the image
relevance, the performance of the CBIR system may decrease
because the low-level image features cannot always capture
the semantic concepts in the images. Hence, the distance
metric learning algorithms are used to learn an optimal
similarity metric to overcome the gap between the high-level
semantic concepts and the low-level visual features in images.
As of this writing, numerous distance metric learning algo-
rithms have been introduced to learn an optimal similarity
metric [10–12]. Among these algorithms, close-form metric
learning (CFML) can be solved in a closed form instead of an
iterative process, which simplifies computations. Therefore,
CFML is used in this paper.

The rest of the paper is organized as follows. Section 2
provides a brief review of related work. Section 3 presents
the details of the proposed CBIR system. Section 4 gives the
experimental studies. Section 5 discusses the results and the
ideas for future work.

2. Related Work

2.1. CBIR Systems for Brain Tumors. Numerous studies have
focused on constructing a CBIR system for brain tumors
in MRI images [13–15]. In [14], regions of interests are
generated as queries to retrieve the relevant brain MRI
images of pediatric patients. Moreover, Dube et al. [15]
proposed a method for the image retrieval of glioblastoma
multiforme (GBM) and non-GBM tumors on MRI images.
In the proposed method, regions containing lesions were
also manually segmented. Using the same operation as that
used in these studies, brain tumors in the MRI images are
manually outlined to form the dataset of the CBIR system in
this paper. However, the category retrieval of brain tumors
is performed on the T1-weighted CE-MRI images from
different patients and different views (transverse, coronal,
and sagittal), as opposed to other MRI modalities used in the
previous studies.

2.2. Feature Extraction for Image Representation. To compare
the relevance between the query image and the images in
the dataset, feature extraction for image representation is
conducted in the CBIR system. The comparison comes
down to comparing the features of the images. Thus, feature
extraction for image representation is a crucial factor in
developing a CBIR system. To date, the formulation of a
proper image representation remains a common problem in
classification and retrieval system design. In previous stud-
ies, researchers introduced shape [16, 17], intensity, and
texture information [18–23] to extract informative features
for image representation. Geometric cues such as edges,
contours, and joints extracted from an image can be used
to extract powerful shape descriptors when objects in the
image can be clearly separated from the background or
surroundings. Unfortunately, in brain tumor images, the
tumors boundaries are usually unclear. Hence, shape infor-
mation cannot offer a satisfactory delineation of the tumor
regions. In the medical domain, ascertaining the intensity
and texture features is becoming increasingly important,
because these can implicitly reflect the tissue categories and
the fine details contained within the tissues in an image.
Several methods are commonly used to describe the intensity
and texture features of brain MRI images, including gray
level cooccurrence matrix (GLCM) [19, 23], discrete wavelet
transformation (DWT) [18, 20, 22], and Gabor filters [21].
GLCM can capture the spatial correlation among adjacent
pixels. However, the optimal interpixel distance in a specific
situation is an inherent problem to be addressed using the
GLCM method. DWT can achieve simultaneous feature
localization in time and frequency domains, and its per-
formance is highly dependent on the wavelet basis and the
number of decomposition levels. Gabor filters with various
scales and rotations can be used to form a filter bank, which
is appropriate for texture representation and discrimination
[21, 24]. However, Gaussian smoothing in the filter bank
can result in blurring, meaning that fine local details in the
images can be lost.

Unlike the commonly used texture extraction methods
mentioned, a BoW model [25–27] can be successfully
applied to image classification and CBIR systems. The BoW
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Figure 2: Different views of gliomas in a patient.

model first learns a vocabulary of visual words with a number
of image patches. Then, an image representation is built
to capture the signature distribution of these words. The
BoW method can also provide a way to design task-specific
image representation. Hence, it can be adopted to build a
suitable image representation for tumor retrieval in brain
MRI images. However, the basic BoW model ignores all
information about the spatial layout of the patches, which
is extremely important in image representation. In response
to this problem, researchers added spatial information to the
BoW model for general scene and object recognition tasks.
For instance, Savarese et al. [28] proposed shape information
to model the spatial correlations with visual words. In
addition, Lazebnik et al. [29] introduced a spatial pyramid
method by partitioning the image into increasingly finer
spatial subregions, and combining all the BoW histograms
in each subregion as the final image representation to
incorporate global and local information. In spite of the
power of these kinds of approaches, they are not all suitable
for medical images due to the complex and different intensity
distributions in medical images. Therefore, the importance
of the BoW model with spatial information is gradually
emerging in medical tasks. In [30], spatial coordinates were
added to the feature vector to obtain spatial information for
X-ray image retrieval. Moreover, the spatial geometry was
constructed using the co-occurrence matrix to deal with the
visual words that differentiate neoplastic from benign tissues
in endomicroscopic images [31]. The approaches proposed
in these studies have achieved effective performance for med-
ical image classification and retrieval. However, the retrieval
of brain tumors in MRI images remains a challenging task
due to varieties associated with tumor location, shape, and
size properties (Figure 1). Thus, for the characteristics of
brain tumors in MRI images, a novel extension of the
orderless BoW model, called the region-specific BoW, is
presented in this paper.

3. Materials and Methods

3.1. Image Data. In this paper, the proposed CBIR system
is based on two-dimensional (2D) slices because in Chinese
clinical practice; the acquired and available brain CE-MRI

Table 1: Number of different brain tumors in different views.

View Tumor type Number of patients Total

Transverse
Meningiomas 58

190Gliomas 72

Pituitary tumors 60

Coronal
Meningiomas 57

190Gliomas 72

Pituitary tumors 61

Sagittal
Meningiomas 77

215Gliomas 76

Pituitary tumors 62

images are 2-D slices with a large slice gap. Therefore, the
construction of a CBIR system based on 2-D slices for clinical
applications is practical.

The T1-weighted brain CE-MRI dataset used in this
study was acquired at Nanfang Hospital, Guangzhou, China,
and General Hospital, Tianjin Medical University, China,
from 2005 to 2010 using spin-echo-weighted images with
a 512 × 512 matrix. The dataset contains the information
of 233 patients with brain tumors, wherein three types of
brain tumors are apparent, namely, meningiomas, gliomas,
and pituitary tumors. For each patient, the radiologists first
consulted the patient pathology report to obtain the pathol-
ogy type and then labeled the images. Next, the radiologists
selected one to fourteen slices that best represented the
pathology from each patient’s full set of image volume. Thus,
all tumor images with different views (transverse, coronal,
and sagittal) were also presented in the dataset. Considering
different views individually in the experiments is practical
because the appearance of a tumor in a patient varies
depending on the different views (Figure 2). For each view in
different patients, one slice was randomly chosen to comprise
the dataset of the view. Table 1 lists the details of image data
used in the experiments. In addition, to extract the region-
specific features, all tumors in the images were manually
outlined by three experienced radiologists who dealt with
all of the images independently. Afterward, the radiologists
discussed together and reached a consensus regarding the
segmentation of every tumor in each image.
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Figure 3: Flowchart of the proposed CBIR system.

3.2. Overview of the CBIR System. In this paper, the con-
struction of the CBIR system for brain tumors in CE-MRI
images is finalized through the following steps: intensity
standardization of brain CE-MRI images, feature extraction
of manually outlined brain tumors in the normalized CE-
MRI images, acquisition of the optimized similarity metric
using the distance metric learning algorithm, and finally,
retrieval of the relevant images for the query image. The
flowchart of the proposed CBIR system is illustrated in
Figure 3. The techniques employed to perform these process-
ing steps are also explained in detail below.

3.3. Image Intensity Standardization. MRI is a useful tool
to describe the brain tissue. However, its main limitation is
that the intensity values for the same tissue in different MRI
images fall into a wide range, which can significantly affect
the performance of numerous image-processing techniques
in MRI images. Thus, an intensity normalization method
that standardizes the intensity values in MRI images is
presented in this paper for subsequent feature extraction and
brain tumor retrieval. Nyul et al. [32] proposed a two-step
method consisting of a training step and a transformation
step. With this processing, intensities in the transformed
images have consistent tissue meanings. Therefore, the two-
step normalization method is employed as the preprocessing
method for the MRI images in this paper. For simplicity, the
intensity standardization method that uses three histogram
landmarks [32] is chosen. The three landmarks are intensities
corresponding to the lower, 50th, and upper percentiles of
the foreground of the scene [32].

3.4. Region-Specific BoW Representation. After the intensity
standardization, features are extracted from the normalized
MRI images by using the proposed region-specific BoW
method. In this paper, the basic BoW model is first described.

Afterwards, the region-specific BoW model that incorpo-
rates spatial information into the original BoW model is
presented.

3.4.1. BoW Model. The BoW model is summarized in four
steps. First, patches represented by local descriptors are
sampled in each image of the given image dataset. Second,
a visual vocabulary is constructed by a clustering algorithm,
and each of the cluster centers is a visual word. Third, the
visual vocabulary obtained ahead can be used to quantize the
local descriptors of a new image. Finally, a BoW histogram is
constructed to represent an image by recording the frequency
of each visual word in the image.

In the BoW model, the choices of the patch sampling
method and the local descriptor are two basic tasks that affect
the type of visual words generated. Common patch sampling
methods include the densely sampling scheme, random
selection, or the interested point detector. The patches
are also simultaneously represented using local descriptors.
Two local descriptors are often used: scale-invariant feature
transform (SIFT) descriptor [33] and raw patch [34].

The next step of the BoW model is to cluster a
subset of the patches to build a visual vocabulary. The k-
means clustering algorithm, which attempts to minimize the
distance between k clusters and the training data, is applied to
locate visual words because of its simplicity and effectiveness.

To represent an image, a set of the patches sampled from
every pixel in the image is mapped to a new feature vector of k
features, where k is the number of k-means centroids. In this
paper, hard-assignment coding is utilized as the encoder for
feature mapping. Given the visual words w in a vocabulary,
an image representation in the BoW model is defined as
follows:

x(wi) = 1
n

n∑

c=1

⎧
⎪⎨
⎪⎩

1 if i = arg min
j

∥∥∥wj − pc
∥∥∥

2

0 otherwise,
(1)
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Figure 4: Dividing a tumor image in different modes. To ensure impartiality in the comparison between these two modes, we implement
the partition in the tumor region instead of in the whole image as in [29]. (a) The partition mode used in [29]. There are 21 regions in
this mode. (b) The partition mode used in our paper. There are six regions: the tumor region, the tumor-surrounding region, and the four
subregions.

where n is the number of patches in an image and pc is the
patch c. Then, an image representation in the BoW model is
built and treated as a “bag” filled with visual words.

As mentioned in Section 2, the BoW model loses spatial
information among patches due to the orderless collection
of visual words into a “bag.” Therefore, we mainly focus on a
novel extension of the orderless BoW model, which indicates
the location of patch extraction and adds spatial information
to the BoW model.

3.4.2. Construction of the Region-Specific BoW Model. The
proposed BoW model with spatial information was inspired
by the idea of region partition [29]. In [29], a spatial pyramid
BoW method was introduced by dividing the image into
increasingly finer spatial subregions and combining all the
BoW histograms in each subregion as the final image
representation. The region partition mode on a tumor with
three levels in [29] is shown in Figure 4(a). However, the
previously mentioned partition method [29] may be not the
best choice for the brain tumor images due to the complex
and different intensity distributions in brain tumor images.
Therefore, domain knowledge about the brain tumor images
is considered in this paper.

Brain tumors commonly do not have a fixed shape
or size, even for the same tumor category. However, the
intensity values of the same tumor category may fall
into a narrow range in normalized brain tumor images.
Additionally, contrast enhancement in brain tumor CE-
MRI images makes the intensities more discriminative in
identifying different tumor categories. On the other hand,
the same tumor category is often located in similar places
in the abnormal human brain. For instance, meningiomas
are usually next to the skull, gray matter, and cerebrospinal
fluid. Pituitary tumors are adjacent to sphenoidal sinus, optic
chiasma, and internal carotid arteries. Gliomas typically
involve white matter and are surrounded by edema. Thus,
intensities in the brain tumor and category information of
the tumor-surrounding tissues are two important clues in
identifying different tumor categories in brain images. Based
on this idea, a brain tumor in an MRI image is separated into
two major regions: tumor region and tumor-surrounding
region (level 0 and level 1 in Figure 4(b), resp.).

The region-specific BoW model based on these two sep-
arated tumor regions in the brain images is then presented.

First, intensity profiles are employed to capture the inten-
sity variation of the tumor-surrounding region. Each inten-
sity profile is a vector of image intensity values, including
the intensities of some pixels along the tumor boundary
normal. These pixels are sampled from within the tumor
to outside of the tumor (see Figure 5(b)). The extraction of
the intensity profile is given below. The Gaussian kernel is
used to smoothen the points on the tumor boundary and
to prevent the points on the tumor boundary from being
disturbed by the noise, which can change the direction of
the boundary normal. The Gaussian kernel is defined in one
dimensionality as

G1D(X ; σ) = 1√
2πσ

e−X
2/2σ2

, (2)

where σ is the standard deviation. Here, the first derivative of
G1D(X ; σ) is used to convolve with the points on the tumor
boundary. Let b(x, y) be the coordinate of all points on the
tumor boundary in an image. The coordinate of points after
convolution is given by

B
(
x′, y′

) = b
(
x, y

)∗G1D(X ; σ)′. (3)

The angles of the boundary normal are computed using

θ = arctan
(
y′

x′

)
. (4)

With the angle θi, the coordinates of all the points corre-
sponding to an intensity profile i are denoted by

Xi = xi + l × cos θi,

Yi = yi + l × sin θi,
(5)

where l is the distance between the points along the tumor
boundary normal and the point on the boundary. However,
the coordinates (Xi,Yi) may not exactly be in a pixel on the
image. Thus, linear interpolation is adopted to locate the cor-
responding pixels in the image. Finally, the intensity values
associated with the pixels are extracted to form the intensity
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Figure 5: Flow diagram of the intensity profile and the margin region extraction. (a) An outlined tumor. (b) The extraction of the intensity
profile in the tumor. In this figure, there are five sampling pixels on each intensity profile. (c) The margin region and its four subregions of
the tumor.

profile. Using the extraction of all intensity profiles around a
tumor, a rectangle called the margin region is constructed.
In this margin region, the length of the intensity profile
refers to the width, and the number of points on the tumor
boundary is its length. The extractions of the intensity profile
and the margin region are shown in Figures 5(b) and 5(c),
respectively.

The choices of the patch sampling method and the local
descriptor are two basic tasks in constructing the BoW
model. Therefore, these two factors must be considered
first. The interest point detector [35] is a popular sampling
method. However, unlike natural scene images, brain MRI
images have less meaningful interest points. Hence, the
sparse distinctive points cannot adequately represent an MRI
image. For this reason, all information in the region of
interest (tumor region or margin region) is used by densely
sampling the patches. On the other hand, raw patch is used
as the local descriptor because intensity is an important clue
in the application of image retrieval for brain MRI. In this
paper, a raw patch is a rectangular patch of fixed size around
a pixel with the corresponding intensities in an image.
Each raw patch is then transformed to a one-dimensional
feature vector to simplify the subsequent computation. A
popular alternative descriptor to the raw patch is the SIFT
descriptor, which is invariant to the scale and rotation.
Several studies also show that SIFT is advantageous in
the scenery images [25, 36]. The retrieval performance on
different local descriptors is given in the experiments to
define the system parameter set.

Before constructing the visual vocabulary, a preprocess-
ing stage is applied to the sampled raw patches. Normaliza-
tion and whitening [37, 38] are two common methods for
data preprocessing. Given a vector-represented patch p, p is
normalized by P = (p − u)/σ , where u and σ are the mean
and the standard deviations of the p vector, respectively. The
normalized vector P is then linearly transformed to a new
vector P̃, which is white. In other words, the components in
vector P̃ are uncorrelated, and their variances equal unity. In
detail, let C be the covariance matrix of P; thus, C can be
defined by

C = E
{
PPT

}
. (6)

Here, the eigenvalue decomposition of the covariance matrix
C is used for whitening as follows:

C = VDVT , (7)

where V and D are the orthogonal matrix of eigenvectors
and the corresponding eigenvalues of C, respectively. Now,
the whitening transformation of vector P can be conducted
by

P̃ = VD−1/2VTP. (8)

The preprocessing method used in this study can enhance
the local contrast and augment the information in the patch
data.

Subsequently, two visual vocabularies are built using
the corresponding preprocessed patches sampled within the
tumor region and the tumor margin region, respectively.
The difference between the current proposed scheme and
the basic BoW model mentioned is that only the vector-
represented patches densely sampled from the tumor region
and the margin region, respectively, are used rather than
every pixel in an image to create the vocabularies. This
process makes the created vocabularies more region-specific.
In other words, given the same vocabulary size, image
representation constructed by region-specific vocabulary is
more representative than that constructed by a universal
vocabulary using all of the information in the image.
An example of the region-specific vocabulary is shown in
Figure 6.

A given image can now be represented by mapping the
preprocessed patches to the corresponding generated vocab-
ularies of words. However, to add more spatial information
for the patch extraction, the margin region is separated
into four finer subregions based on the four directions of
a tumor (i.e., top left, top right, down right, and down
left), as seen in Figures 4(b) and 5(c). Therefore, total of six
regions in three levels are presented in the proposed method
(see Figure 4(b)). To build the image representation in the
margin region, the patches sampled in the margin region
and the four subregions are mapped to the vocabulary in the
margin region, respectively. Then, the BoW histograms for
each region are combined as the margin region BoW repre-
sentation. If the number of words is k1 in the margin region
vocabulary, then the margin region BoW representation is
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(a) (b)

Figure 6: Visual vocabularies constructed in the margin region with a patch size of 7 × 7 and a vocabulary size of 200. (a) Patches with
normalization and whitening. (b) Patches without normalization and whitening.

a vector with 5 ∗ k1 dimensionalities. Thus, the image is
now represented by two BoW histograms; one is the tumor
region BoW representation, and the other one is the tumor
margin region BoW representation. Finally, these two BoW
histograms are concatenated to form the proposed region-
specific BoW representation as the image representation for
the tumor on a brain image. The construction of the region-
specific BoW representation is shown in Figure 7.

The proposed feature extraction scheme offers some
advantages. First, the preprocessing method for patches can
make the components uncorrelated and enhance local
contrast within a patch data. This attribute can bring dis-
criminative information to the BoW model. Second, the
intensity profile introduced in this paper implicitly suggests
the category information of the tumor-surrounding tissues.
Moreover, the sampling locations of pixels on a profile give
weak spatial distribution information on the tumors in the
brain. Treating all intensity profiles around a tumor as a rect-
angle, which is inherently rotation-invariant to the tumor,
can also ignore the directions of patch extraction. Third, the
proposed region-specific BoW model can incorporate spatial
information into the BoW model and capture important
characteristics associated with the brain tumors in MRI
images.

3.5. Distance Metric Learning. In the image retrieval phase,
the similarity between the feature vectors of the query image
and the images in the dataset is measured. However, the
extracted features may not be directly linked to the tumor
category. In other words, a gap exists between the high-
level semantic concepts and the low-level visual features in
images. If we use common distance metrics such as the
Euclidean distance or χ2 distance to measure the similarity of
the features, the CBIR system cannot perform well. As these
distance metrics ignore the labeled data in the training set,
they may bring statistical regularity to improve the retrieval

performance. To tackle this problem, a distance metric
learning algorithm for automatically learning a distance
metric with labeled data in the image dataset is presented.
Moreover, well-designed distance metrics can perform better
than the Euclidean distance on the CBIR system [39, 40].
Thus, the distance metric learning algorithm is used to
embed semantic information to the region-specific BoW
representation in this paper.

Let xi and xj be the D-dimensional feature vectors of two
different images. The squared Mahalanobis distance between
feature vectors xi and xj is

dM
(
xi, xj

)
=
∥∥∥L
(
xi − xj

)∥∥∥
2

2

=
(
xi − xj

)T
LTL

(
xi − xj

)

=
(
xi − xj

)T
M
(
xi − xj

)
,

(9)

where L is a transformation matrix with d × D, M = LTL,
and M is a positive semidefinite matrix. Distance metric
learning aims to find a linear transformation matrix L to
project the image features to a new feature space, making the
squared Mahalanobis distance between data with the same
labels closer and that with different labels farther.

Numerous researchers have proposed distance metric
learning algorithms to find an optimal projection L or a
metric M for minimizing an objective function. Among the
various kinds of distance metric learning algorithms, CFML
is a simple and effective algorithm that can achieve a closed-
form solution. In the dataset, the pathological categories of
tumors are known. Tumors in the same category share the
same label and vice versa. The feature vectors of images with
the same label are defined as similar, whereas those with
different labels are defined as dissimilar. Let S and D be the
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Figure 7: Flow diagram of the region-specific BoW representation construction. (a) The construction of tumor region and margin region
vocabularies. (b) The construction of the region-specific BoW representation in a given image. The patches in (b) are obtained via the same
procedures as shown in (a).

set of similar pairs and the set of dissimilar pairs, respectively,
defined by

S :
(
xi, xj

)
∈ S if xi, xj are similar,

D :
(
xi, xj

)
∈ D if xi, xj are dissimilar.

(10)

The optimal transformation matrix L∗ of CFML is defined
as follows:

f (L∗) = arg min
L

tr
(
LT(MS −MD)L

)
, (11)

s.t. LTMSL = I , (12)

where tr(·) denotes the matrix trace and

MS = 1
|S|

∑

(xi,xj∈S)

(
xi − xj

)(
xi − xj

)T
,

MD = 1
|D|

∑

(xi,xj∈D)

(
xi − xj

)(
xi − xj

)T
.

(13)

The solution of the optimal transformation matrix L∗ is
given by the matrix of eigenvectors associated to the largest
eigenvalues of the matrix M−1

S MD. With the optimal tran-
sformation matrix, the squared Mahalanobis distance
between two feature vectors in two different images can be
computed. Here, CFML tries to minimize the squared

Mahalanobis distance between similar pairs while simultane-
ously maximizing the squared Mahalanobis distance between
dissimilar pairs.

In this paper, the number of samples is small while the
number of features is large. In other words, there is a small-
sample large-feature problem even when MS is nonsingular.
To overcome this problem, a regularization form of CFML
is introduced by replacing LTMSL = I with LT(MS + λI)L=
I , where λ (λ > 0) is a regularization parameter. The regu-
larization parameter λ is experimentally tuned on a cross-
validation set (see Section 4).

3.6. Retrieval Evaluation Measures. In this section, the
retrieval evaluation measures for the proposed CBIR system
are presented. First, let N be the number of images in the
dataset and let Rj be the relevance of an image j for a given
query image, wherein Rj ∈ {0, 1} (1 for relevant if j and
the query image belong to the same class, and 0 otherwise).
Second, when a query image is presented to the CBIR system,
the system ranks the images in the dataset by the increasing
order of the squared Mahalanobis distance, that is, from the
most similar to the least similar. Then, for a given number
of samples retrieved, the precision PK and recall RK are
computed:

Precision =
∑K

j=1 Rj

K
, Recall =

∑K
j=1 Rj

∑N
j=1 Rj

, (14)
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where K = 1, . . . ,N is the number of samples retrieved.
Simultaneously, the precision-recall pairs for varying num-
bers of retrieved samples are usually plotted in a precision-
recall curve to evaluate the retrieval system. Third, precision
at the top K retrieved samples (Prec@K in short), which only
considers the topmost results returned by the system. This
measure is denoted by

Prec@K = 1
K

N∑

j=1

Rj1
{
π
(
xj
)
≤ K

}
, (15)

where π(xj) represents the position or rank of the retrieved
image xj in the ranked sequence, and 1{·} is the indicator
function. Fourth, average precision (AP) is defined by

AP = 1
∑N

j=1 Rj

N∑

j=1

Rj × Prec@ j. (16)

Finally, the mean of AP over all the queries is called the
mean average precision (mAP), which is mainly used in our
experiments to evaluate the overall retrieval performance.

4. Experiments and Results

The tuning of the system parameters is a fundamental com-
ponent in using the BoW model in a retrieval task. Therefore,
we use the T1-weighted brain CE-MRI dataset to tune several
parameters of the proposed CBIR system: the choice of local
descriptors, the size of patches and vocabularies, and the
parameters of CFML. Then, we show comparative results
of the category retrieval of brain tumors with different
feature extraction methods in the T1-weighted brain CE-
MRI dataset.

4.1. Experimental Settings. In the following experiments, cat-
egory retrievals of brain tumors in different views were con-
ducted individually, and fivefold cross-validation was used
to evaluate the retrieval performance. All experiments were
repeated five times, and the final results were reported as
the mean and standard deviations of the results from the
individual runs. For each run, 152 images were used for
training and 38 images were used for testing in the transverse
view. The separation scheme in the coronal view was similar
in the transverse view due to the use of the same number of
images in the two views (see Table 1). In the sagittal view,
172 images were used for training and 43 images were used
for testing. At the same time, there was no joint set between
the training and test datasets in all of the experiments. For
the given training and test datasets, each image in the test
dataset was adopted as a query to retrieve the training dataset
to report performance.

The pixels on each intensity profile were extracted from
inside the tumor to outside the tumor to form the margin
region, with each side including 15 pixels. Thus, the length
of an intensity profile was 31 pixels, with one pixel added on
the tumor boundary. In addition, each patch was a rectangle
with size w × w in the following experiments, as described
in Section 3.4.2. The spacing between sampled patches was
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Figure 8: Retrieval performance of the region-specific BoW model
with different local descriptors in different views. The bars in the
figure show the means and standard deviations of mAP.

both set to 1 pixel in the visual vocabularies construction and
in the BoW histograms extraction.

4.2. Optimization of System Parameters

4.2.1. Different Local Descriptors. In this section, we exam-
ined three local descriptors: raw patches, raw patches with
normalization and whitening, and SIFT descriptors. We used
a 128-dimensional SIFT descriptor implemented by [41] in
this task. Moreover, the SIFT descriptors were densely sam-
pled in the tumor region and the margin region, respectively,
and followed the flow of the region-specific BoW model
construction. Figure 8 shows the retrieval performance for
the region-specific BoW model with different local descrip-
tors in different views. From Figure 8, the mAP of patches
with normalization and whitening is higher than that of
patches without preprocessing. This result is due to the local
contrast enhancement in the preprocessed patch data. Using
the patches with normalization and whitening also proved
preferable to the SIFT descriptors in the proposed CBIR
system.

4.2.2. Different Patch Sizes and Vocabulary Sizes. In this task,
we assessed the impact of patch size and vocabulary size
on the retrieval performance. First, we used three different
patch sizes: 5 × 5, 7 × 7, and 9 × 9. Figure 9(a) depicts
the retrieval performance on different patch sizes for the
preprocessed patches in the region-specific BoW model, with
the distance metric learned by CFML. The bars in Figure 9
show the means and standard deviations of mAP. It can be
seen that patch size with 7 × 7 is slightly higher retrieval
ability than the other patch sizes. This is because small-sized
patches cannot identify objects well, whereas large-sized
patches encounter difficulty in finding similar visual words
in the vocabulary. Therefore, medium-sized patches can lead
to better retrieval performance. Subsequently, to compare
the effect of different vocabulary sizes on the retrieval
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Figure 9: (a) Retrieval performance of the region-specific BoW model with different patch sizes in different views. (b) Retrieval performance
of the region-specific BoW model with different vocabulary sizes in different views.

performance, the patch size for preprocessed patches was
fixed to 7 × 7 (w = 7), and the feature vectors were
measured with the distance metric learned by CFML. In
Figure 9(b), 5 ∗ k represents the dimensionality of the
margin region BoW representation, wherein k (k = 100,
200, 300, and 400) is the vocabulary size in the margin
region BoW model. As shown in Figure 9(b), when the
vocabulary sizes are 1000 and 300 in the tumor region BoW
and margin region BoW, respectively, the mAP achieve the
highest scores in different views. Moreover, adding additional
visual words after the points mentioned above increases
computational time with no significant improvement in the
retrieval performance for the region-specific BoW model.
Thus, in the following experiments, we used these vocabulary
sizes for the region-specific BoW model in different views to
balance the computational cost and the performance.

4.2.3. Different Parameters in CFML. In this task, two param-
eters in CFML were tuned to obtain the optimal values: the
regularization parameter λ and the reduced dimensionality
of transformation matrix L. The optimal local descriptor,
patch size and vocabulary sizes were used consistently
across all experiments. As described in Section 3.4, the
regularization parameter λ was used in the training stage
to achieve the optimal transformation matrix L of CFML.
Therefore, we adopted a fivefold cross-validation in each

training dataset and ranged λ from 10−10 to 10−3 in this
experiment. As depicted in Figure 10(a), varying the value
of λ until 10−6 does not have a significant impact on
the performance. Moreover, using a higher value gradually
decreases the performance. For this reason, we set the value
of λ to 10−6 in the following experiments. On the other hand,
the dimensionality of the transformation matrix L can be
reduced in the distance metric learned by CFML. The low-
dimensional distance metrics can reduce the computational
cost and filter noise. Figure 10(b) shows how varying the
projection dimension affects the reliability of the image
retrieval. We found that the mAP always gets the highest
value with two dimensions in different BoW models and
different views. This result is meaningful for the CBIR tasks
of speeding up retrieval and reducing storage.

4.3. Region-Specific BoW Representation. In this experiment,
we first used the optimal local descriptor, patch size, and
vocabulary sizes in the region-specific BoW model described
to construct the level 1 BoW representation, level 2 BoW
representation, margin region BoW representation, tumor
region BoW representation, and the region-specific BoW
representation, respectively. The level 1 BoW representation
represents only the single level without incorporating the
four subregions in the margin region for constructing
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Figure 10: (a) Retrieval performance of the region-specific BoW model with varying regularization parameters in CFML in different views.
(b) Retrieval performance of different projection dimensions of the transformation matrix in CFML in different views. The bars in the figure
show the means and standard deviations of mAP.

BoW representation. The level 2 BoW representation rep-
resents only the four subregions without adding the whole
margin region for constructing BoW representation (see
Figure 4(b)). We then compare the retrieval performance
of different BoW representations. As shown in Figure 11,
the retrieval performance improved from the level 1 BoW
representation to the level 2 BoW representation, which
contains finer spatial information. Additionally, levels 1 and
2 together (margin region BoW representation) confers a
more significant benefit. Here, we only used two levels to
divide the margin region because individual bins yield too
few matches when a region is too finely subdivided [29].
Moreover, when the vocabulary size of the margin region
is fixed, more subregions emerge which leads to higher
dimensionalities of BoW representation. A higher cost is then
needed in the following computation of similarity metric.
Hence, we make a tradeoff between discriminating power
and computational cost in the selection of level numbers
in the margin region. Besides, the mAP of the region-
specific BoW representation achieves the highest values
among different BoW representations in different views.
For instance, in the transverse view, the region-specific
BoW representation outperforms the tumor region BoW
representation and the margin region BoW representation
with t-test P values of 0.0043 and 0.0124, respectively. The
gain can be attributed to the additional spatial information
achieved in this step.
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Figure 11: mAP of different BoW representations in different views.
The bars in the figure show the means and standard deviations of
mAP.

4.4. Retrieval Results with Different Feature Extraction Meth-
ods. In this section, we show the comparative results of
the category retrieval of brain tumors with different feature
extraction methods in the T1-weighted brain CE-MRI
dataset. During our experiments, we carefully considered
the parameter settings of different methods to achieve fair
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Figure 12: (a) mAP of different texture feature extraction methods in different views. The bars in the figure show the means and standard
deviations of mAP. (b) Precision-recall curves of different texture feature extraction methods in the transverse view.

comparisons. In the rest of this paper, the proposed region-
specific BoW representation is based on the optimization
procedure mentioned above, and the parameters in CFML
are set to the optimal values for retrieval in different
methods.

First, comparisons are made between the region-specific
BoW model and several traditional texture feature extraction
methods, including DWT, GLCM, and Gabor filters. The
filter coefficients adopted for computing DWT are the
Daubechies wavelets. To calculate DWT, the tumor region
on each image was first decomposed into three levels (1 +
3 ∗ 3 = 10 subbands) with the wavelet transform. The
mean and the variance of the absolute values of the wavelet
coefficients in the tumor region corresponding to each sub-
band were used to construct a (10 ∗ 2 = 20) feature vector.
To calculate GLCM, the intensity values in the tumor region
were quantized to 32 levels. The interpixel distance was fixed
to 1 pixel, and the orientations were set to 0, 45, 90, and
135 degrees to form the GLCMs. Hence, there were four
GLCMs with respect to four orientations. Based on the four
GLCMs, six statistical parameters (energy, entropy, contrast,
variance, correlation, and inverse difference moment) of each
GLCM were computed. The mean and the variance of the
four values in each of the six parameters were used as the
final features (6 ∗ 2 = 12). To calculate the Gabor filters,
the Gabor wavelet features proposed by Manjunath and
Ma [24] were implemented. The number of scales was set
to four, and the number of orientations was set to six. The
mean and the standard deviations of the magnitude of the
transform coefficients in the tumor region were computed as

the features, and the feature vector was 48-dimensional (4∗
6∗2 = 48). Figure 12(a) shows a performance comparison in
the T1-weighted brain CE-MRI dataset for different texture
feature extraction methods. As depicted in Figure 12(a), the
mAP of the region-specific BoW model is significantly higher
than that of the other texture feature extraction methods
in different views (t-test P value was less than 0.0001).
Moreover, Figure 12(b) shows the precision-recall curves of
different texture feature extraction methods in the transverse
view. The precision-recall curve of the region-specific BoW
model is clearly superior to the other methods, which is
matching to the highest mAP in Figure 12(a).

Next, to validate the performance of the region-specific
BoW model, it was compared with two other state-of-the-
art approaches, which also added spatial information to the
BoW model. First, a spatial pyramid method introduced
by [29] was used. For this method, the default param-
eters suggested by the authors were adopted. The visual
vocabulary size was fixed to 200, the pyramid level was set
to 3, and the final representation was 4200-dimensional.
Second, the method proposed in [30] was applied for
this comparison. In this method, patch center coordinates
were added to the vector-represented patches to indicate
the spatial dependency between patches. For this method,
the visual vocabulary sizes in different views were set to
3000. Therefore, the BoW representation of this method
was 3000-dimensional, the same value as in the region-
specific BoW representation. In addition, the coordinate
weight was changed from 1 to 20 and achieved the highest
scores with values of 4, 8, and 10 in the transverse, coronal,
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Table 2: Retrieval performance of the region-specific BoW model for the different categories in different views.

View Tumor category mAP Prec@10 Prec@20

Transverse
Meningioma 92.0 ± 5.8 89.6 ± 7.5 89.2 ± 7.6

Glioma 95.0 ± 3.3 93.1 ± 4.7 93.1 ± 4.7

Pituitary tumor 87.6 ± 4.6 82.5 ± 6.6 82.7 ± 6.8

Coronal
Meningioma 87.6 ± 5.0 84.0 ± 8.3 83.7 ± 8.8

Glioma 95.3 ± 2.9 93.3 ± 4.4 93.3 ± 4.4

Pituitary tumor 89.5 ± 2.5 86.8 ± 2.3 86.8 ± 2.9

Sagittal
Meningioma 91.2 ± 4.0 87.8 ± 8.0 87.7 ± 8.0

Glioma 95.6 ± 2.9 93.7 ± 4.0 93.7 ± 4.0

Pituitary tumor 82.1 ± 1.0 76.7 ± 1.3 76.6 ± 1.3
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Figure 13: (a) mAP of different spatial BoW methods in different views. The bars in the figure show the means and standard deviations of
mAP. (b) Precision-recall curves of different spatial BoW methods in the transverse view.

and sagittal views, respectively. In these two methods, patches
with normalization and whitening were densely sampled
inside the tumor region as in our proposed method, and
the patch size was set to 7 × 7. Figure 13(a) shows the
retrieval performance of different spatial BoW methods in
different views. From Figure 13(a), the mAP of the patch
combining coordinates method is not significantly higher
than that of the spatial pyramid method with t-test P values
of 0.3598, 0.1431, and 0.3792 in the transverse, coronal,
and sagittal views, respectively. This result may be due
to the difficulty of catching statistical information when
the locations of the tumors belonging to the same type
significantly vary in different brain images. Therefore, the
patch combining coordinates method is less discriminative
when the aforementioned case happens. On the other hand,
our region-specific BoW model achieves the highest values

among the three spatial BoW methods in different views (t-
test P value was less than 0.0484). As shown in Figure 13(b),
the precision of the region-specific BoW model is superior
to the other two methods until the recall reaches the value of
0.9.

4.5. Retrieval Examples. Retrieval performance of the region-
specific BoW model for the different categories of brain
tumors was evaluated. The results are listed in Table 2. In
Table 2, the values represent the mean and the standard
deviation of mAP, Prec@10, and Prec@20, respectively, for
five runs. From Table 2, mAP, Prec@10, and Prec@20 for
glioma are higher than those for the other two tumor types,
supporting that the region-specific BoW representations
contain discriminative information to distinguish gliomas
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Figure 14: A query of meningioma and its top 10 retrieved results. The irrelevant tumor in this figure is a pituitary tumor.

Query

Figure 15: A query of glioma and its top 10 retrieved results.

from other tumor types (t-test P value was less than 0.0269).
At the same time, the retrieval performance of meningiomas
and pituitary tumors is similar (t-test P value was more
than 0.093). The inferior performance of meningiomas and
pituitary tumors is likely due to their similar appearance and
the unbalanced distribution of samples in the dataset.

Three examples of retrieval performance for the different
categories of brain tumors with the region-specific BoW
representation in the transverse view are shown in Figures
14, 15, and 16, respectively. Among these figures, the leftmost
is a query image. The blue frame indicates that the images
are relevant to the query image; conversely, the red frame
indicates that the images are irrelevant to the query image.
There is an irrelevant image among the top 10 retrieved
images in Figures 14 and 16, respectively. All the top 10
images for the query of glioma are relevant in Figure 15.
These results conform to the lower Prec@10 of meningiomas
and pituitary tumors and to higher Prec@10 of gliomas in
Table 2.

5. Discussion and Conclusion

In this paper, we presented a region-specific BoW method
for the retrieval of medical images with lesions. The region-
specific BoW model, which adds spatial information to

the BoW model, was proposed to capture the statistical
information of the intensity values in the lesion region and
the intensity variation of the lesion-surrounding region.
In addition, we provided a comprehensive overview of the
methodology and its retrieval application to brain tumors
in a T1-weighted CE-MRI dataset. We also investigated the
effects of various parameters on the overall retrieval and
tuned the system to achieve a high score in the retrieval of
brain tumors in a T1-weighted CE-MRI dataset.

Two key characteristics that were evaluated throughout
this paper are the patches with preprocessing and the use
of spatial information as part of the BoW representation. As
shown in Figure 8, the retrieval performance of patches with
normalization and whitening is better than the performance
of those without preprocessing due to the uncorrelated
components and the local contrast enhancement within
a preprocessed patch data. On the other hand, an obvi-
ous advantage of using preprocessed patches over SIFT
descriptors for the brain tumor CE-MRI dataset is shown
in Figure 8. Since SIFT descriptors can well describe the
variety of the structure and the tissues in brain tumors lack
structural information, these descriptors are insufficient to
extract the distinctive information of the brain tumors in
MRI images. Moreover, these results lend further credence
to our earlier suggestion that intensity value is a powerful
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Query

Figure 16: A query of pituitary tumor and its top 10 retrieved results. The irrelevant tumor in this figure is a meningioma.

tool in the retrieval application for brain tumors in MRI
images. As it incorporates the spatial information and
domain knowledge to the BoW model, the region-specific
BoW representation is advantageous in most scenarios. A
significant improvement was shown in Figure 11, when
the tumor region BoW and the margin region BoW were
combined for the retrieval performance. As mentioned in
Section 2, the BoW model is useful in the application of
the CBIR system. Indeed, in our experiments, the proposed
region-specific BoW model achieved a mean mAP of 91.0%
in different views, which was significantly higher than the
other commonly used texture feature extraction methods
(Figure 12). This result also supports the suitability of the
BoW framework in learning the task-specific and subtle
representation in MRI images. The region-specific BoW
representation was also compared with two spatial BoW
methods, and a better performance was achieved as shown
in Figure 13.

The preliminary results demonstrate that the region-
specific BoW model can achieve the mAP of 91.0%, 91.5%,
and 90.4% in the transverse, coronal, and sagittal views,
respectively. In addition, among the three tumor types,
the retrieval of glioma performs best and achieves 95.3%,
93.4%, and 93.4% for the mean of mAP, Prec@10, and
Prec@20 in different views, respectively. Overall, these results
suggest that it is feasible to separate the tumor images into
tumor regions and margin regions and combine this spatial
information with the BoW model to retrieve similar lesions
in the brain CE-MRI images.

In the developed retrieval system, the brain tumors
in MRI images are outlined manually, which is not time
efficient and convenient. An optional solution is to adopt an
automatic or interactive segmentation of brain tumors. The
accuracy of this method may be lower than that of the man-
ual segmentation by experts. However, the margin region
used in this paper can compensate for this drawback. The
intensity profiles are extracted along the tumor boundary
normal that contains pixels inside and outside the tumor
boundary. As long as the contour of the segmentation is
near the real tumor boundary, the intensity variety around
the tumor can still be caught by the margin region. Another

competitive and practical solution for this problem is to
develop an automatic detection method for tumor regions,
a solution we intend to focus on in our future work.
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