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When evaluating causal influence from one time series to another in a multivariate data set it is necessary to take into account
the conditioning effect of the other variables. In the presence of many variables and possibly of a reduced number of samples, full
conditioning can lead to computational and numerical problems. In this paper, we address the problem of partial conditioning to
a limited subset of variables, in the framework of information theory. The proposed approach is tested on simulated data sets and
on an example of intracranial EEG recording from an epileptic subject. We show that, in many instances, conditioning on a small
number of variables, chosen as the most informative ones for the driver node, leads to results very close to those obtained with
a fully multivariate analysis and even better in the presence of a small number of samples. This is particularly relevant when the
pattern of causalities is sparse.

1. Introduction

Determining how the brain is connected is a crucial point
in neuroscience. To gain better understanding of which
neurophysiological processes are linked to which brain
mechanisms, structural connectivity in the brain can be
complemented by the investigation of statistical dependen-
cies between distant brain regions (functional connectivity)
or of models aimed to elucidate drive-response relationships
(effective connectivity). Advances in imaging techniques
guarantee an immediate improvement in our knowledge of
structural connectivity. A constant computational and mod-
elling effort has to be done in order to optimize and adapt
functional and effective connectivity to the qualitative and
quantitative changes in data and physiological applications.
The paths of information flow throughout the brain can
shed light on its functionality in health and pathology. Every
time that we record brain activity we can imagine that we
are monitoring the activity at the nodes of a network. This
activity is dynamical and sometimes chaotic. Dynamical net-
works [1] model physical and biological behaviour in many

applications; also, synchronization in dynamical network is
influenced by the topology of the network itself [2]. A great
need exists for the development of effective methods of
inferring network structure from time series data; a dynamic
version of the Bayesian networks has been proposed in [3].
A method for detecting the topology of dynamical networks,
based on chaotic synchronization, has been proposed in [4].

Granger causality has become the method of choice to
determine whether and how two time series exert causal in-
fluences on each other [5, 6]. This approach is based on
prediction: if the prediction error of the first time series is
reduced by including measurements from the second one in
the linear regression model, then the second time series is
said to have a causal influence on the first one. This frame has
been used in many fields of science, including neural systems
[7–10], reochaos [11], and cardiovascular variability [12].

From the beginning [13, 14], it has been known that if
two signals are influenced by third one that is not included in
the regressions, this leads to spurious causalities, so an ex-
tension to the multivariate case is in order. The condi-
tional Granger causality analysis (CGCA) [15] is based on
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a straightforward expansion of the autoregressive model to
a general multivariate case including all measured variables.
CGCA has been proposed to correctly estimate coupling
in multivariate data sets [16–19]. Sometimes though, a fully
multivariate approach can entrain problems that can be
purely computational or even conceptual: in the presence of
redundant variables the application of the standard analysis
leads to underestimation of causalities [20].

Several approaches have been proposed in order to
reduce dimensionality in multivariate sets, relying on gener-
alized variance [16], principal components analysis [19], or
the Granger causality itself [21].

In this paper we will address the problem of partial
conditioning to a limited subset of variables, in the frame-
work of information theory. Intuitively, one may expect
that conditioning on a small number of variables should be
sufficient to remove indirect interactions if the connectivity
pattern is sparse. We will show that this subgroup of variables
might be chosen as the most informative for the driver
variable and describe the application to simulated examples
and a real data set.

2. Materials and Methods

We start by describing the connection between the Granger
causality and information-theoretic approaches like the
transfer entropy in [22]. Let {ξn}n=1,...,N+m be a time series
that may be approximated by a stationary Markov process
of order m, that is, p(ξn | ξn−1, . . . , ξn−m) = p(ξn |
ξn−1, . . . , ξn−m−1). We will use the shorthand notation Xi =
(ξi, . . . , ξi+m−1)� and xi = ξi+m, for i = 1, . . . ,N , and treat
these quantities as N realizations of the stochastic variables
X and x. The minimizer of the risk functional

R
[
f
] =

∫

dX dx
(
x − f (X)

)2
p(X , x) (1)

represents the best estimate of x, given X, and corresponds
[23] to the regression function f ∗(X) = ∫ dxp(x | X)x. Now,
let {ηn}n=1,...,N+m be another time series of simultaneously
acquired quantities, and denote Yi = (ηi, . . . ,ηi+m−1)�. The
best estimate of x, given X and Y , is now g∗(X ,Y) =∫
dxp(x | X ,Y)x. If the generalized Markov property holds,

that is,

p(x | X ,Y) = p(x | X), (2)

then f ∗(X) = g∗(X ,Y) and the knowledge of Y does not
improve the prediction of x. Transfer entropy [22] is a mea-
sure of the violation of 2: it follows that the Granger causality
implies nonzero transfer entropy [24]. Under the Gaussian
assumption it can be shown that the Granger causality and
transfer entropy are entirely equivalent and just differ for a
factor two [25]. The generalization of the Granger causality
to a multivariate fashion, described in the following, allows
the analysis of dynamical networks [26] and to discern bet-
ween direct and indirect interactions.

Let us consider n time series {xα(t)}α=1,...,n; the state vec-
tors are denoted:

Xα(t) = (xα(t −m), . . . , xα(t − 1)), (3)

1

10 11 12 13

14 15 16

2

5 6 7 8 9

3 4

Figure 1: A directed rooted tree of 16 nodes.
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Figure 2: The sensitivity (a) and the specificity (b) are plotted ver-
sus nd , the number of variables selected for conditioning, for the
first example, the rooted tree. The number of samples N is 100, and
the order is m = 2; similar results are obtained varying m. The
results are averaged over 100 realizations of the linear dynamical
system described in the text. The empty square, in correspondence
to nd = 0, is the result from the bivariate analysis. The horizontal
line is the outcome from multivariate analysis, where all variables
are used for conditioning.

m being the window length (the choice of m can be done
using the standard cross-validation scheme). Let ε(xα | X) be
the mean squared error prediction of xα on the basis of all the
vectors X (corresponding to linear regression or nonlinear
regression by the kernel approach described in [24]). The
multivariate Granger causality index c(β → α) is defined
as follows: consider the prediction of xα on the basis of all
the variables but Xβ and the prediction of xα using all the
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Figure 3: The directed network of 34 nodes obtained assigning randomly a direction to links of the Zachary network.
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Figure 4: Sensitivity and specificity are plotted versus nd , the number of variables selected for conditioning, for two values of the number
of samples N , 500 (left) and 1000 (right). The order is m = 2, similar results are obtained varying m. The results are averaged over 100
realizations of the linear dynamical system described in the text. The empty square, in correspondence to nd = 0, is the result from the
bivariate analysis. The horizontal line is the outcome from multivariate analysis, where all variables are used for conditioning.

variables, then the causality measures the variation of the
error in the two conditions, that is,

c
(
β −→ α

) = log
ε
(
xα | X \ Xβ

)

ε(xα | X)
. (4)

Note that in [24] a different definition of causality has been
used,

δ
(
β −→ α

) =
ε
(
xα | X \ Xβ

)
− ε(xα | X)

ε
(
xα | X \ Xβ

) . (5)
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Figure 5: The mutual information gain, when the (nd +1)th variable is included, is plotted versus nd for two values of the number of samples
N , 500 (a) and 1000 (b). The order is m = 2. The information gain is averaged over all the variables.
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Figure 6: The causality analysis of the preictal period. The causality c(i → j) corresponds to the row i and the column j. The order is chosen
as m = 6 according to the AIC criterion. (a) Bivariate analysis. (b) Our approach with nd = 5 conditioning variables. (c) Our approach with
nd = 20 conditioning variables. (d) The multivariate analysis.

The two definitions are clearly related by a monotonic trans-
formation:

c
(
β −→ α

) = − log
[
1− δ

(
β −→ α

)]
. (6)

Here, we first evaluate the causality δ(β → α) using the selec-
tion of significative eigenvalues described in [26] to address
the problem of overfitting in (5); then we use (6) and express
our results in terms of c(β → α) because it is with this def-
inition that causality is twice the transfer entropy, equal to
I{xα;Xβ | X \ Xβ}, in the Gaussian case [25].

Turning now to the central point of this paper, we address
the problem of coping with a large number of variables, when
the application of the multivariate Granger causality may

be questionable or even unfeasible, whilst bivariate causality
would detect also indirect causalities. Here, we show that
conditioning on a small number of variables, chosen as the
most informative for the candidate driver variable, is suf-
ficient to remove indirect interactions for sparse connectivity
patterns. Conditioning on a large number of variables re-
quires a high number of samples in order to get reliable
results. Reducing the number of variables, that one has to
condition over, would thus provide better results for small
data sets. In the general formulation of the Granger causality,
one has no way to choose this reduced set of variables; on
the other hand, in the framework of information theory,
it is possible to individuate the most informative variables
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Figure 7: Concerning the preictal period, the sum of all causalities is plotted versus the number of conditioning variables.
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Figure 8: The sum of outgoing causality from each electrode in the EEG application, ictal period. (a) Bivariate analysis. (b) Our approach
with nd = 5 conditioning variables. (c) Our approach with nd = 20 conditioning variables. (d) The multivariate analysis.

one by one. Once that it has been demonstrated [25] that
the Granger causality is equivalent to the information flow
between the Gaussian variables, partial conditioning be-
comes possible for the Granger causality estimation; to our
knowledge this is the first time that such approach is pro-
posed.

Concretely, let us consider the causality β → α; we fix the
number of variables, to be used for conditioning, equal to nd.
We denote by Z = (Xi1 , . . . ,Xind

) the set of the nd variables, in

X\Xβ, most informative for Xβ. In other words, Z maximizes
the mutual information I{Xβ; Z} among all the subsets Z of
nd variables. Then, we evaluate the causality

c
(
β −→ α

) = log
ε(xα | Z)

ε
(
xα | Z∪ Xβ

) . (7)

Under the Gaussian assumption, the mutual information
I{Xβ; Z} can be easily evaluated, see [25]. Moreover, instead
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Figure 9: The sum of outgoing causality from each electrode in the EEG application, preictal period. (a) Bivariate analysis. (b) Our approach
with nd = 5 conditioning variables. (c) Our approach with nd = 20 conditioning variables. (d) The multivariate analysis.

of searching among all the subsets of nd variables, we adopt
the following approximate strategy. Firstly, the mutual infor-
mation of the driver variable, and each of the other variables,
is estimated, in order to choose the first variable of the subset.
The second variable of the subsets is selected among the
remaining ones as those that, jointly with the previously
chosen variable, maximize the mutual information with the
driver variable. Then, one keeps adding the rest of the vari-
ables by iterating this procedure. Calling Zk−1 the selected
set of k − 1 variables, the set Zk is obtained adding, to
Zk−1, the variable, among the remaining ones, with the great-
est information gain. This is repeated until nd variables are
selected. This greedy algorithm, for the selection of rele-
vant variables, is expected to give good results under the as-
sumption of sparseness of the connectivity.

3. Results and Discussion

3.1. Simulated Data. Let us consider linear dynamical sys-
tems on a lattice of n nodes, with equations, for i = 1, . . . ,n

xi,t =
n∑

j=1

ai jx j,t−1 + sτi,t, (8)

where a’s are the couplings, s is the strength of the noise, and
τ’s are unit variance i.i.d. Gaussian noise terms. The level of
noise determines the minimal amount of samples needed to
assess that the structures recovered by the proposed approach
are genuine and are not due to randomness as it happens
for the standard Granger causality (see discussions in [24,
26]); in particular noise should not be too high to obscure
deterministic effects. Firstly we consider a directed tree of 16
nodes depicted in Figure 1; we set ai j equal to 0.9 for each
directed link of the graph thus obtained and zero otherwise.
We set s = 0.1. In Figure 2 we show the application of the
proposed methodology to data sets generated by (8), 100
samples long, in terms of quality of the retrieved network,
expressed in terms of sensitivity (the percentage of existing
links that are detected) and specificity (the percentage of
missing links that are correctly recognized as nonexisting).
The bivariate analysis provides 100% sensitivity and 92%
specificity. However, conditioning on a few variables is suffi-
cient to put in evidence just the direct causalities while still
obtaining high values of sensitivity. The full multivariate
analysis (obtained as nd tends to 16) gives here a rather low
sensitivity due to the low number of samples. This is a
clear example where conditioning on a small number of
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Figure 10: The causality analysis of the ictal period. The causality c(i → j) corresponds to the row i and the column j. The order is chosen
as m = 6 according to the AIC criterion. (a) Bivariate analysis. (b) Our approach with nd = 5 conditioning variables. (c) Our approach with
nd = 20 conditioning variables. (d) The multivariate analysis.

variables is better than conditioning on all the variables at
hand.

As another example, we now fix n = 34 and construct
couplings in terms of the well-known Zachary data set [27],
an undirected network of 34 nodes. We assign a direction to
each link, with equal probability, and set ai j equal to 0.015,
for each link of the directed graph thus obtained, and zero
otherwise. The noise level is set as s = 0.5. The network
is displayed in Figure 3: the goal is again to estimate this
direct-ed network from the measurements of time series on
nodes.

In Figure 4 we show the application of the proposed
methodology to data sets generated by (8), in terms of sen-
sitivity and specificity, for different numbers of samples. The
bivariate analysis detects several false interactions; however,
conditioning on a few variables is sufficient to put in evidence
just the direct causalities. Due to the sparseness of the un-
derlying graph, we get a result that is very close to the one by
the full multivariate analysis; the multivariate analysis here
recovers the true network, and indeed the number of samples
is sufficiently high. In Figure 5, concerning the stage of selec-
tion of variables upon which conditioning is performed, we
plot the mutual information gain as a function of the number
of variables included nd: it decreases as nd increases.

3.2. EEG Epilepsy Data. We consider now a real data set from
an 8×8-electrode grid that was implanted in the cortical sur-
face of the brain of a patient with epilepsy [28]. We consider
two 10-second intervals prior to and immediately after the
onset of a seizure, called, respectively, the preictal period and
the ictal period. In Figure 6 we show the application of our
approach to the preictal period; we used the linear causality.
The bivariate approach detects many causalities between the
electrodes; most of them, however, are indirect. According
to the multivariate analysis there is just one electrode that
is observed to influence the others, even in the multivariate
analysis: this electrode corresponds to a localized source of
information and could indicate a putative epileptic focus. In
Figure 6 it is shown that conditioning on nd = 5 or nd =
20 variables provides the same pattern corresponding to the
multivariate analysis, which thus appears to be robust. These
results suggest that the effective connectivity is sparse in the
preictal period. As a further confirmation, in Figure 7 we plot
the sum of all causalities detected as a function of the number
of conditioning variables, for the preictal period; a plateau is
reached already for small values of nd.

In Figure 8 the same analysis is shown w.r.t. the ictal
period: in this case conditioning on nd = 5 or nd = 20
variables does not reproduce the pattern obtained with the
multivariate approach. The lack of robustness of the causality
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pattern w.r.t. nd seems to suggest that the effective connectiv-
ity pattern, during the crisis, is not sparse. In Figures 9 and
10 we show, for each electrode and for the preictal and ictal
periods, respectively, the total outgoing causality (obtained
as the sum of the causalities on all the other variables). These
pictures confirm the discussion above: looking at how the
causality changes with nd may provide information about the
sparseness of the effective connectivity.

4. Conclusions

We have addressed the problem of partial conditioning to a
limited subset of variables while estimating causal connec-
tivity, as an alternative to full conditioning, which can lead
to computational and numerical problems. Analyzing sim-
ulated examples and a real data set, we have shown that
conditioning on a small number of variables, chosen as the
most informative ones for the driver node, leads to results
very close to those obtained with a fully multivariate analysis
and even better in the presence of a small number of sam-
ples, especially when the pattern of causalities is sparse.
Moreover, looking at how causality changes with the number
of conditioning variables provides information about the
sparseness of the connectivity.
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