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Texture analysis is viewed as a method to enhance the diagnosis power of classical B-mode ultrasound image. The present paper
aims to evaluate and eliminate the dependence between the human expert and the performance of such a texture analysis system
in predicting the cirrhosis in chronic hepatitis C patients. 125 consecutive chronic hepatitis C patients were included in this study.
Ultrasound images were acquired from each patient and four human experts established regions of interest. Textural analysis tool
was evaluated. The performance of this approach depends highly on the human expert that establishes the regions of interest
(P < 0.05). The novel algorithm that automatically establishes regions of interest can be compared with a trained radiologist. In
classical form met in the literature, the noninvasive diagnosis through texture analysis has limited utility in clinical practice. The
automatic ROI establishment tool is very useful in eliminating the expert-dependent variability.

1. Introduction

Noninvasive detection and staging of liver fibrosis have
received more and more attention in scientific literature. One
approach involves simple B-mode ultrasound in conjunction
with textural analysis. The main assumption of the textural
analysis approach is that fibrosis alterations at liver lobule
level can induce significant changes in the speckle pattern
of the ultrasound image [1]. Even if these alterations are
not visible with the naked eye, a texture analysis system can
detect and learn these alterations. Textural analysis is viewed
as a method to enhance the diagnosis power of B-mode
ultrasound by providing the physician with new information.
This data can be otherwise inferred only by invasive methods.

The methodology presented in most of the papers [1–
9] approaching textural analysis on B-mode ultrasound
follows four general steps. First, a physician acquires a liver
ultrasound image. Then, on the ultrasound image, another
physician (or the same) establishes a rectangular region of
interest (ROI). In the third step several textural algorithms

produce a feature vector. This vector is labeled according
to biopsy findings. The fourth step implies the training of
a classification schema. The resulting classifier can be used
to predict fibrosis stages to unknown ultrasound images. In
the first two steps there is a human expert that introduces an
operator-dependent variability.

This paper addresses the user variability introduced by
the second step, the establishment of the ROI. We also
evaluate here a novel tool that automatically establishes the
regions of interest. This tool was developed by our group
and it was successfully applied in eliminating the expert-
dependence in noninvasive steatosis quantification [10].

To our knowledge, the expert dependent variability in
textural analysis for fibrosis detection was not addressed
before. We included almost all the textural algorithms
proposed in the literature as means of detecting liver fibrosis
stages.

Present study aims to evaluate the dependence between
the human expert and the performance of the texture analysis
system in predicting cirrhosis in chronic hepatitis C patients.
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2. Material and Methods

2.1. Patients. The local Ethical Committee of the University
of Medicine and Pharmacy Cluj-Napoca approved this study.
The patients provided written informed consent before the
beginning of the study, in accordance to the principles of
the Declaration of Helsinki (revision of Edinburgh, 2000).
We prospectively included in this study 125 patients with
hepatitis C infection having fibrosis stage 0 or 4 according
to Metavir scoring system. Liver biopsy determined the
fibrosis stages. This lot was selected from 1200 patients
and was prospectively examined in Third Medical Clinic,
Cluj-Napoca, Romania, between May 2007 and August
2009. All patients had positive HCV-RNA and underwent
percutaneous liver biopsy (LB), in order to stage and grade
their condition.

The exclusion criteria were presence of ascites at clinical
or ultrasound examination, coinfection with HBV and/or
HIV, other active infectious diseases, and pregnancy.

Alongside the epidemiological data, certain biological
parameters were determined on a blood sample taken
12 hours after overnight fasting: alanine aminotransferase
(ALT), aspartate aminotransferase (AST), gamma-glutamyl
transferase (GGT), total cholesterol, triglycerides, total
bilirubin, and glycemia (Konelab 20i—Thermo Electron
Corp., Finland).

2.2. Histopathological Analysis. A liver biopsy specimen
was acquired using the TruCut technique with an 1.8 mm
(14 G) diameter automatic needle device—Biopty Gun (Bard
GMBH, Karlsruhe, Germany). The LB specimens were fixed
in formalin and embedded in paraffin. The slides were
evaluated by a single expert pathologist unaware of the
clinical data. Only biopsy specimens with more than 6
intact portal tracts were eligible for evaluation [11]. The
liver fibrosis and necroinflammatory activity were evaluated
semiquantitatively according to the Metavir scoring system
[12].

Fibrosis was staged on a 0–4 scale as follows: F0—no
fibrosis; F1—portal fibrosis without septa; F2—portal fibro-
sis and few septa; F3—numerous septa without cirrhosis;
F4—cirrhosis. The necroinflammatory activity was graded as
A0—none; A1—mild; A2—moderate; A3—severe.

In present study, only patients having fibrosis stage 0 or 4
were included.

2.3. Ultrasound Examination. Each patient included in this
study underwent an ultrasound examination using a GE
Logiq 7 ultrasound machine (General Electric Company,
Fairfield, England) with a 5.5 MHz convex phased array
probe one day prior to liver biopsy. From each patient there
were acquired right lobe ultrasound images with liver tissue
without blood vessels or other artifacts with a depth setting
of 16 cm using the same preestablished machine protocol.
The acquisition protocol was established in such a way
that we obtained a maximum amount of information from
underlying tissue and in the same time keeping the noise
level down. All postprocessing settings were set to minimum.

Figure 1: Right lobe ultrasound image. White square represents the
region of interest.

The frame rate was kept as high as possible in order to
avoid movement artifacts. The time gain compensation curve
was set to neutral position. Once the device settings were
established they were used to examine all the patients.
Captured images were saved in DICOM format on the
equipment’s local hard drive. They were later transferred and
processed on a personal computer.

2.4. Regions of Interest for Textural Analysis. The region
of interest (ROI) establishment procedures followed the
guidelines presented in the literature [1, 13]. The experts
were instructed to choose one region of interest for each
patient. The ROI had to be placed as close as possible to the
vertical axis of the ultrasound image and at 1 cm below the
liver capsule. The ROI had to avoid artifacts and anatomical
features like blood vessels, liver capsule, shadowing, and
so forth. The dimensions of the ROI were 64 × 64 pixels
representing an area of 2.62 × 2.62 cm. Figure 1 shows an
ultrasound image with an ROI. The physician acquired the
image from the right live lobe.

In order to evaluate the user variability of the textural
system, on the saved images, four experts with different
skill level established the ROIs. The first two experts
are trained radiologists with experience in gastrointestinal
ultrasound investigation. First expert has more than 20 years
in ultrasound investigation and the second more than 10
years. The third expert is a radiology intern with 2 years
of experience. The fourth expert is a general practitioner
trained in ultrasound examination. In addition to these
experts, we employed an automated tool for establishing
the region of interest. This tool establishes the ROI in a
fixed position relative to the geometry of the image. Artifacts
are detected using the method proposed in [10, 14]. After
the artifacts are detected, we randomly choose a region of
interest that has no artifacts. If such a region cannot be set
in any of the patient’s images, for the respective patient there
will be no region of interest established.

The order of the patients and the order of the images for a
patient were randomized. With this step we tried to avoid the
influence of the image order over the performance detection.
Algorithm 1 was used to ensure independent samples, it is
graphically depicted in Figure 2.
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Input: patients—a set with patients and ultrasound images
Output: DS—a list with 25 sets DSij with regions of interest
For i = 1 to 5

Di = Perform a randomization on patients
For j = 1 to 5

Sequentially present to expert j dataset Di

DSi j = established ROIs

Algorithm 1: ROI establishment.

We computed the center of each region of interest in
terms of Cartesian and polar coordinates. For the Cartesian
system, the origin is the top left corner and for the polar
system, the origin was considered the virtual source of ultra-
sound waves. Figure 3 sketches these coordinate systems.

2.5. Textural Analysis. In texture analysis there are two main
steps [15]. The first step is the computation of several
textural attributes that numerically describe the texture
(using dedicated algorithms). The second step involves the
training and evaluation of a classifier using the previously
computed textural features.

Each texture description algorithm has a certain number
of parameters that control the feature extraction process. For
each algorithm implemented in the present study we used
the same proposed set of parameters found in corresponding
fibrosis detection papers. These algorithms are first-order
statistics [4, 16], gray tone difference matrix [15], gray
level co-occurrence matrix [1, 4, 16, 17], multiresolution
fractal dimension [1], differential box counting [6, 18],
morphological fractal dimension estimators [19], Fourier
power spectrum [1, 13], Gabor filters [20], Law’s energy
measures [1], texture edge co-occurrence matrix [6], phase
congruency-based edge detection [21], and texture feature
coding matrix [22].

These 12 algorithms processed the entire ROI and
computed 234 features per patient. Each feature vector was
labeled with the corresponding histopathological finding as
healthy or cirrhotic. From 25 sets of regions of interest
we generated 25 sets of instances, each set containing one
instance per patient.

The classification schema employed here was a logistic
model [23–25]. The feature values were normalized in [0, 1]
interval prior to classification. Care was taken that the test
subset was normalized with the same coefficients as the train
set.

Before entering the classification schema, a feature
selection process was applied. The relevant features were
identified and selected using correlation-based feature selec-
tion (CFS) algorithm [26]. To avoid overfitting phenomena
and to ensure that the feature selection step is independent
of the underlying data, the following algorithm was applied.

(1) From each of the 25 sets we selected k instances.
These instances were randomly selected in such a way
that each class has k/2 instances.

(2) The selected instances were moved into another
dataset.

For each expert,
from 1 to 5

Repeat 5 times

Randomize the patients and
the images

Establish at most one region of

Display in sequence all the patients

Repeat

Repeat

Collect 25 sets of
ROIs

For each patient, display all the
images

interest for each patient

Figure 2: Algorithm for establishing the regions of interest. Each of
5 experts established 5 sets of ROIs. The automatic establishment
algorithm was treated as a regular expert.

(3) After 25 iterations we extracted 25× k instances.

(4) On this 25× k dataset we applied the CFS algorithm.
We noted the selected features and we processed the
original datasets by keeping only relevant features.

(5) The whole process was iterated 20 times.

For this paper, k was set to 10. The feature selection
process is depicted in Figure 4.

The classifier performance estimation was determined
using 10-fold stratified CV technique. The performance
criterion was area under the curve (AUROC) computed
on the collected predictions using Mann-Whitney-Wilcoxon
U statistic [27]. In order to better estimate the average
performance, the 10-fold CV procedure was iterated 10 times
with random fold splitting [28].

The texture analysis system was validated using a set of
known textures from Brodatz [29] library. Each image was
divided into 100 nonoverlapping regions of interest. Each
region has 64 × 64 pixels area. The textural analysis system
was trained to predict the original image from where the
region originated. The images were chosen following the
guidelines in [15].

2.6. Statistical Analysis. Two-way ANOVA test was used to
evaluate the performance variability. The dependent variable
was set to be the average AUROC and the independent
variables were the expert that established ROIs and the
feature set obtained after the feature selection step. Tukey
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Figure 3: Cartesian system, Oxy (green lines) and polar system
O′x′y′ (blue lines). An ROI center (A) has the A(x, y) Cartesian
coordinates and A(ρ, θ) polar coordinates. The green area repre-
sents the position of piezoelectric crystals in the probe and the red
lines show the imaging aperture of the convex probe. The depth of
the imaging system was set to 16 cm.

post hoc analysis was used to identify the source of variation
when the ANOVA test was statistically relevant.

When the assumption of normal distribution with equal
variances could not be met we used Kruskal-Wallis one way
analysis of variance. The significance threshold was set to
P = 0.01. In addition to the expert quality we investigated
the impact of the ROI position relative to the geometry of
the image. We computed the Pearson correlation coefficient
between the ROI position and the detection performance for
each expert and iteration.

Textural algorithms were implemented in a custom-made
software system developed at Technical University of Cluj
Napoca, Romania. Classification schema used the LibSVM
implementation [30] (public domain, ver. 2.89) integrated
in weka framework [23] (public domain, ver. 3.7). Statistical
analysis was performed in R (public domain, ver. 2.10).

3. Results

The texture analysis system was validated using three sets
of images. First dataset contained regions from D77, D84,
D55, D53, and D24 Brodatz [29] textures. Second dataset
consisted of D4 and D84 textures. The third set had regions
from D5 and D92. The classification accuracy was 98.9 for
the first set, 98.4 for the second set, and 97.9 for the third set.

Clinical and biochemical characteristics of the study
patients are summarized in Table 1. The median length of the
LB samples was 11.38 mm, and the mean number of portal
spaces was 11.6. The fibrosis stage distribution in our patients
was as follows: F0—51 (40.8%) and F4—74 (59.2%).

Each expert was instructed to select one region of interest
for each patient. The process was iterated five times. Expert 1
established in average 121.6 regions (min = 121, max = 122),
expert 2—120.8 (115–123), expert 3—122 (122-122), and

25 datasets

Repeat 20 times

instances from each class

Eliminate the selected instances
from the original datasets

Build a new set with selected
instances

For each dataset

Repeat

A new set of 25 datasets, each

instances less

Determine the
feature

set

Reduce each of the
25 sets by keeping
only the relevantrelevant

features

25 sets on which we
applied the feature

selection process

Repeat

instances

Randomly select k instances, k/2

25∗k instances
set having with k

25× 20 sets of

Figure 4: Relevant feature selection. To ensure that the selection
process is not data dependent, a small number of instances were
extracted from each dataset.

expert 4—113 (112–115). The automatic ROI establishment
algorithm (expert 5) established 83 images (83-83). There
were three patients that had poor quality images and no
physician was able to establish an ROI. Two were healthy
patients and one was cirrhotic.

We recorded the mean and standard deviation AUROC
for each of the experts: expert 1—0.618 ± 0.059, expert 2—
0.611 ± 0.085, expert 3—0.537 ± 0.062, expert 4—0.528 ±
0.075, and expert 5—0.611± 0.074.

We investigated the role of feature selection and the user
expertise in the performance of the system using two way
ANOVA. The only relevant factor was the human expert
(P < 0.0001) as shown in Figure 5. The other factor, feature
selection, was not relevant (P = 0.8). In Figure 6 are shown
the corresponding box plots.

Post hoc analysis using Tukey method revealed that the
differences between experts are significant (P < 0.001) with
several exceptions, the difference between the expert 1 and
2 and the difference between expert 1 and 5. Note that the
expert 5 is the automatic ROI establishment algorithm.
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Table 1: Characteristics of the study group.

Characteristics of patients Entire lot Patients with fibrosis stage 0 Patients with cirrhosis

Mean ± SD (interval or %)

Number 125 (100%) 51 (40.8%) 74 (59.2%)

Sex (male) 50 (40%) 16 (31.4%) 34 (45.9%)

Age (years) 47.45± 12.13 (22–77) 53.39± 8.93 (33–77) 38.82± 10.97 (22–66)

BMI (kg/m2) 26.41± 5.15 (18.56–46.48) 28.29± 5.33 (18.83–46.48) 23.9± 3.65 (18.56–33.87)

AST (U/I) 58.54± 47.67 (12–387) 82± 49.57 (23–387) 25.79± 13.47 (12–71)

ALT (U/I) 75.68± 55.66 (8–270) 102.25± 53.94 (21–270) 38.58± 31.87 (8–163)

GGT (U/I) 77.83± 107.77 (13–993) 105.47± 133.33 (27–993) 39.83± 28.13 (13–130)

Total bilirubin (mg/dL) 0.88± 0.64 (0.27–4.27) 1.09± 0.73 (0.4–4.27) 0.59± 0.28 (0.27–1.72)

Alkaline phosphatase (U/I) 263.13± 188.34 (127–1781) 286.98± 215.81 (127–1781) 201.5± 45.61 (142–307)

Glucose (mg/dL) 106.73± 27.75 (72–266) 113.81± 32.78 (72–266) 96.86± 13.72 (72–129)

Cholesterol (mg/dL) 195.29± 45.8 (97–331) 174.22± 36.31 (97–299) 223.83± 41.92 (149–331)

Triglycerides (mg/dL) 124.11± 57.67 (51–349) 123.85± 50.08 (53–316) 124.46± 67.16 (51–349)

Platelet count (109/L) 166.06± 70.32 (42–373) 142.81± 65.35 (42–373) 226.52± 40.94 (151–314)

INR 1.12± 0.2 (0.83–1.84) 1.17± 0.2 (0.89–1.84) 0.99± 0.12 (0.83–1.3)

Right lobe images per patient 12.97± 6.06 (2–33) 13.02± 5.03 (3–24) 12.94± 6.69 (2–33)

Abbreviations: body mass index (BMI), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl-transpeptidase (GGT), and
international normalized ratio (INR).
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Figure 5: Box plot representing the dependency between the
estimated performance and the expert that established the regions
of interest. The top and the bottom of the boxes are the first and
third quartiles, respectively. Thus, the length of the box represents
the interquartile range within which 50% of the values were located.
The line through the middle of each box represents the median.

In practice, a classifier is trained with data gathered from
an expert but it can be used by other physicians. We identified
two cases. First case, the expert that trained the classifier uses
it in the current practice. In this scenario, the same expert
that first established the ROIs establishes the ROIs for the
new, unknown images. In the second scenario the expert that
establishes the ROIs on the new images is different from the
initial expert.
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Figure 6: Box plot representing the dependency between the
estimated performance and the feature selection process. Each
label on the horizontal axis represents a separate feature selection
step. The top and the bottom of the boxes are the first and third
quartiles, respectively. Thus, the length of the box thus represents
the interquartile range within which 50% of the values were located.
The line through the middle of each box represents the median.

The first scenario was simulated here by training a clas-
sifier with each dataset from each expert. Resulting classifier
was evaluated using the other datasets from the same expert
obtained at different ROI establishment step. Kruskal-Wallis
test revealed that there is a significant variation due to the
human expert (P < 0.001), as seen in Figure 7.

Again, most experienced experts provided best perfor-
mance. During this test we ignored the results from expert 5.
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Figure 7: Box plot representing the estimated performance
obtained when the same expert trains and uses the texture analysis
tool in clinical practice. The top and the bottom of the boxes are
the first and third quartiles, respectively. Thus, the length of the
box thus represents the interquartile range within which 50% of
the values were located. The line through the middle of each box
represents the median.

Because this expert establishes the regions in the same
position, deciding only to accept or reject an image, we noted
that there is a significant subset of images that are always
selected by this algorithm in all 5 iterations. This subset
positively biases the performance evaluation in the case of
expert 5, because one will find identical samples in the train
and test set. The same analysis applied on the human experts
revealed that few images were common between the ROI
establishment iterations.

In the second scenario, the expert who uses the non-
invasive tool is different from the expert that provided the
training data for the system. We trained the classifier with
the data collected from one expert and then test it with the
data collected from the other experts. Kruskal-Wallis analysis
revealed an interesting fact; there is no significant variance
due to experts (P = 0.0506) as shown in Figure 8. In both
scenarios the analysis did not revealed significant variance
due to the feature selection step.

In the following we investigated the impact of the
ROI position relative to the image geometry. The center
coordinates of the ROIs were converted to polar space. The
center of the polar space was set to be the virtual source
of ultrasounds. For each ROI the angle θ and the vector
length, ρ, were computed. For each expert and iteration we
computed the mean angle and length. A linear regression
was performed between these coordinates and the mean
performance of the expert i during iteration j. We computed
the Pearson correlation coefficient and its relevance. In
Figures 9 and 10 are the shown the results.

The correlation coefficients were −0.44 (between ρ
and AUROC) and −0.48 (between θ and AUROC). This
correlation is not statistically significant for the chosen
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Figure 8: Box plot representing the estimated performance
obtained when the texture analysis system is trained with datasets
provided by one expert and used with ROIs established by a
different expert. The top and the bottom of the boxes are the first
and third quartiles, respectively. Thus, the length of the box thus
represents the interquartile range within which 50% of the values
were located. The line through the middle of each box represents
the median.
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Figure 9: The dependence of the estimated performance in relation
to the θ coordinate of the ROI’s center.

threshold. However, it is possible that a link exists between
the ROI position and the classification performance because
the results became relevant for a higher threshold (P < 0.05).

We also compared the mean positions of the ROIs when
expressed in simple Cartesian coordinates. For each ROI
the center coordinates were computed relative to the top
left corner of the image. One-way ANOVA showed that the
Ox (horizontal) coordinate is not relevant but for the Oy
(vertical) coordinate, higher performances were obtained for
the regions that were established closer to the upper part of
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Figure 10: The dependence of the estimated performance in
relation to the ρ coordinate of the ROI’s center.

the image. Figure 11 shows the BOXPLOT graph. Again the
expert 5 was ignored because the automatic algorithm always
established the regions in the same position.

4. Discussions

Liver biopsy is an imperfect golden standard in fibrosis
staging. It is an invasive procedure and even if the method
allows direct examination of the liver tissue there is a certain
variability due to the reduced tissue volume and due to the
fact that a human expert qualitatively evaluates the biopsy
[31–33].

There are numerous research directions involving non-
invasive fibrosis staging and noninvasive diagnosis of liver
diseases in general [34, 35]. Papers [8, 21, 22, 36, 37] studying
texture analysis as a noninvasive staging tool reported
high performances in cirrhosis detection [36] and even in
fibrosis staging [8]. In these papers there are variations
in terms of studied pathology and classification evaluation
methodology. We believe that these factors might have
positively biased the results reported by other authors.

Present study aims to evaluate the dependence between
the human expert and the performance of such a texture
analysis system in predicting the cirrhosis in chronic hepatitis
C patients. In the same time the present paper brings the
following contributions to the noninvasive fibrosis detection
field: it includes only patients with chronic hepatitis C,
excluding other pathologies; it integrates almost all textural
algorithms met in fibrosis detection and it proposes a more
rigorous performance evaluation methodology that gives
results closer to the real performance of a classifier.

In present study we included only patients with chronic
hepatitis C etiology. Other papers that address the noninva-
sive detection of cirrhosis include patients having different
pathologies like fatty infiltration [16]. Another important
highlight of this paper is the volume of patients. There are
few papers that study more than 100 patients but not all the
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Figure 11: Box plot representing the Oy coordinate distribution.
The top and the bottom of the boxes are the first and third
quartiles, respectively. Thus, the length of the box thus represents
the interquartile range within which 50% of the values were located.
The line through the middle of each box represents the median.

patients included in these studies have chronic hepatitis C, or
the etiology for cirrhosis is not specified [4, 16, 38].

Performance estimation algorithm proposed in this
paper ensures that each time the classifier is tested the test
data are new and unseen at the training or feature selection
phase. The metaparameter sets are evaluated on unseen
data to ensure that we do not select a classificator instance
that overfits the training data. The cross-validation loop
ensures that even this search procedure does not overfit the
data. The 10-time repetition of the evaluation phase ensures
a better estimation of the mean performance. No other
papers employed repeated performance estimation on their
classification schemas. When performing one iteration the
data might get partitioned in such a way that by accident the
performance estimation is very high. For example, in some
iterations the performance reached levels as high as 0.79.
Of course, the mean performance estimated over 10 runs is
smaller. The same phenomenon of increased variance can be
noted when the performance measure is computed on each
test fold and not on the entire prediction vector. In 2-fold
CV a “lucky” splitting might give a very high performance
reading.

In present paper, the CV predictions are collected and
the performance is measured on a vector that has the same
dimensions as the initial dataset.

Textural feature selection is performed on an indepen-
dent dataset. This dataset is obtained by randomly sampling
the original datasets. It is important to note that each
instance that is included in the feature selection dataset is
excluded from the original dataset. As a result, the feature
selection process has less chances of overfitting.

The particular set of features does not influence the
detection rates. The subset of features selected at each step
has a high variability. High ranking features cover large
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spectra of algorithms, from statistical algorithms to mul-
tiresolution analysis. This indicates that the specific algo-
rithm used to numerically describe the texture has its
importance but there are fewer chances that new textural
algorithms will make a great impact over cirrhosis detection
and fibrosis staging.

The design of the experiment, where each expert
establishes 5 sets of ROIs ensures that the samples are
independent and normally distributed. Each set of patients
have different randomizations in order to minimize the effect
of patient/image succession over the experiment. Moreover,
for each patient the order of the images is altered. It is
important to note that the order of images is the same for
all the experts. Expert x viewed the patients and images in
the same order as the expert y when establishing ROI for the
same dataset z.

The main finding of this paper is that the performance
of the studied software diagnosis tool depends on the
expert that employs this tool. In the results section we
have shown that there is a significant performance variation
between experts. The results presented here showed that
more experienced experts tend to capture the same aspects
of the ultrasound image, aspects that are consistent with the
histological findings. If this tool is trained and employed
by an experienced physician it might give some extra
information about the underlying pathology.

The results from the second scenario, when the expert
that uses the texture analysis tool is different from the
expert that provided the data for training, revealed the fact
that there is little use for texture analysis tool in screening
processes.

The classical methodology has a severe drawback. It
requires a human expert to establish a representative area
where the texture will be analyzed. Replacing the human
expert with a computerized solution improves the usefulness
of such a software analysis tool. The results shows that such
a tool can have a performance similar to a highly trained
expert. This result is another important contribution of this
paper to the noninvasive diagnosis field.

5. Conclusions

Texture analysis can enhance the diagnosis power of the B-
mode ultrasound image. The performance of this approach
depends highly on the human expert that establishes the
regions of interest. In classical form met in the literature
noninvasive diagnosis through texture analysis has limited
utility in clinical practice. Further work in this domain has
to be focused in finding another noninvasive descriptors for
fibrosis.
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