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Within the learning framework of maximum weighted likelihood (MWL) proposed by Cheung, 2004 and 2005, this paper will
develop a batch Rival Penalized Expectation-Maximization (RPEM) algorithm for density mixture clustering provided that all
observations are available before the learning process. Compared to the adaptive RPEM algorithm in Cheung, 2004 and 2005,
this batch RPEM need not assign the learning rate analogous to the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977), but still preserves the capability of automatic model selection. Further, the convergence speed of this batch RPEM is faster
than the EM and the adaptive RPEM in general. The experiments show the superior performance of the proposed algorithm on
the synthetic data and color image segmentation.

1. Introduction

As a typical statistical technique, clustering analysis has been
widely applied to a variety of scientific areas such as data
mining [1], vector quantization [2, 3], image processing [4–
7], and so forth. In particular, clustering analysis provides a
useful tool to solve the several computer vision problems, for
example, multithresholding of gray level images, analysis of
the Hough space, and range image segmentation, formulated
in the feature space paradigm [8]. In general, one kind of
clustering analysis can be formulated as a density mixture
modeling, in which each mixture component represents the
density distribution of a data cluster. Subsequently, the task
of clustering analysis is to identify the dense regions of the
input (also called observation interchangeably) densities in a
mixture. Such a clustering is therefore called a density mix-
ture clustering.

In general, the Expectation-Maximum (EM) algorithm
[9, 10] has provided a general solution for the parameter
estimation of a density mixture model. Nevertheless, it needs
to preassign an appropriate number of density components,
that is, the number of clusters. Roughly, the mixture may
overfit the data if too many components are utilized, whereas

a mixture with too few components may not be flexible
enough to approximate the true underlying model. Subse-
quently, the EM almost always leads to a poor estimate result
if the number of components is misspecified. Unfortunately,
from the practical viewpoint, it is hard or even impossible to
know the exact cluster number in advance. In the literature,
one promising way is to develop a clustering algorithm that
is able to perform a correct clustering without preassigning
the exact number of clusters. Such algorithms include the
RPCL algorithm [11] and its improved version, namely,
RPCCL [12]. More recently, Cheung [13, 14] has proposed
a general learning framework, namely, Maximum Weighted
Likelihood (MWL), through which an adaptive Rival Penal-
ized EM (RPEM) algorithm has been proposed for density
mixture clustering. The RPEM learns the density parame-
ters by making mixture component compete each other
at each time step. Not only are the associated parameters
of the winning density component updated to adapt to an
input, but also all rivals’ parameters are penalized with the
strength proportional to the corresponding posterior density
probabilities. Therefore, this intrinsic rival penalization
mechanism enables the RPEM to automatically select an
appropriate number of densities by gradually fading out the
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redundant densities from a density mixture. Furthermore, a
simplified version of RPEM has included RPCL and RPCCL
as its special cases with some new extensions.

In the papers [13, 14], the RPEM algorithm learns the
parameters via a stochastic gradient ascending method; that
is, we update the parameters immediately and adaptively
once the current observation is available. In general, the
adaptiveness of the RPEM makes it more applicable to the
environment changed over time. Nevertheless, the conver-
gence speed of the RPEM relies on the value of learning rate.
Often, by a rule of thumb, we arbitrarily set the learning rate
at a small positive constant. If the value of learning rate is
assigned too small, the algorithm will converge at a very slow
speed. On the contrary, if it is too large, the algorithm may
even oscillate. In general, it is a nontrivial task to assign an
appropriate value to the learning rate, although we can pay
extra efforts to make the learning rate dynamically change
over time, for example, see [15].

In this paper, we further study the MWL learning
framework and develop a batch RPEM algorithm accordingly
provided that all observations are available before the learn-
ing process. Compared to the adaptive RPEM, this batch one
need not assign the learning rate analogous to the EM, but
still preserves the capability of automatic model selection.
Further, the convergence speed of this batch RPEM is faster
than the EM and the adaptive RPEM in general. The exper-
iments have shown the superior performance of the pro-
posed algorithm on the synthetic data and color image seg-
mentation.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the MWL learning framework. In
Section 3, we present the batch RPEM algorithm in detail,
in which the weights involve a coefficient ε. We will therefore
further explore the assignment of ε in Section 4. Section 5
shows the detailed experiment results. Finally, we draw a
conclusion in Section 6.

2. Overview of Maximum Weighted Likelihood
(MWL) Learning Framework

Suppose that an input x ∈ �d comes from the following
density mixture model:

P(x | Θ) =
k∑

j=1

αj p
(

x | θ j

)
,

k∑

j=1

αj = 1,

αj > 0, ∀1 ≤ j ≤ k,

(1)

where Θ is the parameter set of {αj , θ j}kj=1. Furthermore, k
is the number of components, αj is the mixture proportion
of the jth component, and p(x | θ j) is a multivariate pro-
bability density function (pdf) of x parameterized by θ j . As
long as we know the value of Θ, an input x can be classified
into a certain cluster via its posterior probability:

h
(
j | x,Θ

) =
αj p

(
x | θ j

)

P(x | Θ)
(2)

using the winner-take-all rule, that is, assigning an input x
to Cluster c if c = arg max jh( j | x,Θ) or taking its soft

version which assigns x to Cluster j with the probability
h( j | x,Θ). Therefore, how to estimate the parameter set
Θ, particularly without knowing the correct value of k in
advance, is a key issue in density mixture clustering.

In the MWL learning framework [13, 14], the parameter
set Θ is learned via maximizing the following Weighted
Likelihood (WL) cost function:

l(Θ) = ω(Θ; x) + ν(Θ; x) (3)

with

ω(Θ; x) =
∫ k∑

j=1

g
(
j | x,Θ

)
ln
[
αj p

(
x | θ j

)]
dF(x),

ν(Θ; x) = −
∫ k∑

j=1

g
(
j | x,Θ

)
lnh

(
j | x,Θ

)
dF(x),

(4)

where g( j | x,Θ)’s are the designable weights satisfying the
two conditions:

(1)
∑k

j=1 g( j | x,Θ) = 1,

(2) for all j, g( j | x,Θ) = 0 if h( j | x,Θ) = 0.

Suppose that a set of N i.i.d. observations, denoted as X =
{x1, x2, . . . , xN}, comes from the density mixture model in
(1). The empirical WL function of (3), written as Q(Θ; X),
can be given as

Q(Θ; X) = ω(Θ; X) + ν(Θ; X) (5)

with

ω(Θ; X) = 1
N

N∑

t=1

k∑

j=1

g
(
j | xt ,Θ

)
ln
[
αj p

(
xt | θ j

)]
,

ν(Θ; X) = − 1
N

N∑

t=1

k∑

j=1

g
(
j | xt ,Θ

)
lnh

(
j | xt,Θ

)
.

(6)

Moreover, the weights g( j | xt ,Θ)’s have been generally
designed as [13, 14]

g
(
j | xt ,Θ

) = (1 + εt)I
(
j | xt,Θ

)− εth
(
j | xt ,Θ

)
, (7)

where εt is a coefficient varying with the time step t in
general. Please note that g( j | xt,Θ)’s in (7) can be negative
as well as positive. For simplicity, we hereinafter set εt as a
constant, denoted as ε. Moreover, I( j | xt , Θ) is an indicator
function with

I
(
j | xt,Θ

) =
⎧
⎪⎨
⎪⎩

1, if j = c = arg max
1≤ j≤k

h
(
j | xt ,Θ

)
,

0, otherwise.
(8)

Subsequently, under a specific weight design, the papers
[13, 14] have presented the adaptive RPEM to learn Θ
via maximizing the WL function of (5) using a stochastic
gradient ascent method, which is able to fade out the
redundant densities gradually from a density mixture. Con-
sequently, it can automatically select an appropriate num-
ber of density components in density mixture clustering.
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Interested readers may refer to the paper [14] for more
details. We summarize the main steps of the adaptive RPEM
in Algorithm 1. Although the experiments have shown the
superior performance of the adaptive RPEM on automatic
model selection, its convergence speed, however, relies on
the value of learning rate. Under the circumstances, we will
present a batch version without the learning rate in the next
section.

3. Batch RPEM Algorithm

To estimate the parameter set within the MWL framework,
we have to maximize the empirical WL function Q(Θ; X) in
(5). In general, we update the parameters via maximizing
the first term of (5), that is, ω(Θ; X), by fixing the second
term ν(Θ; X). Subsequently, we need to solve the following
nonlinear optimization problem:

Θ̃ = arg max
Θ
{ω(Θ; X)} (9)

subject to the constraints as shown in (1). We adopt the
Lagrange method analogous to the EM by introducing a
Lagrange multiplier λ into the Lagrange function. Subse-
quently, we have

L(Θ, λ) = ω(Θ; X) + λ

⎛
⎝

k∑

j=1

αj − 1

⎞
⎠. (10)

In this paper, we concentrate on the Gaussian mixture model
only, that is, each component p(x | θ j) in (1) is a Gaussian
density. We then have

p
(
j | xt , θ j

)

= (2π)−d/2
∣∣∣C j

∣∣∣
−1/2

exp
[
−1

2

(
xt − μ j

)T
C−1

j

(
xt − μ j

)]
,

(11)

where θ j = (μ j , C j), μ j and C j are the mean (also called seed
points interchangeably) and the covariance of the jth density,
respectively.

Through optimizing (10), we then finally obtain the
batch RPEM algorithm as shown in Algorithm 2. If a

covariance matrix C(n+1)
j is singular, then it indicates that

the corresponding jth density component is degenerated and
can be simply discarded without being learned any more in
the subsequent iterations. In this case, we have to normalize
those remaining α(n+1)

r ’s (r /= j) so that their sum is always
kept to be 1.

In the above batch RPEM, its capability of automatic
model selection is controlled by the weight functions g( j |
xt, θ)’s, which further rely on the parameter ε as shown in
(7). Subsequently, a new question is arisen: how to assign
an appropriate value of ε? The next section will answer this
question.

4. How to Assign Parameter ε?

To deal with how to assign an appropriate value of ε, we
rewrite (7) as the following form:

g
(
j | xt,Θ

)

=
{

(1 + ε)I(c | xt,Θ)− εh(c | xt ,Θ), if j = c,

−εh( j | xt
)
, otherwise

=
{
h(c | xt ,Θ) + (1 + ε)(1− h(c | xt,Θ)), if j = c,

h
(
j | xt,Θ

)− (1 + ε)h
(
j | xt ,Θ

)
, otherwise.

(12)

Intuitively, the term (1 + ε)(1− h(c | xt ,Θ)) can be regarded
as the award received by the winning density component
(i.e., the cth density with I(c | xt,Θ) = 1), and meanwhile
the term −(1 + ε)h( j | xt,Θ) is the penalty of the rival
components (i.e., those densities with I( j | xt ,Θ) = 0).
In general, it is expected that the award is positive and the
penalty is negative. That is, ε should be greater than −1.
Otherwise, as ε < −1, we will meet an awkward situation;
that is, the amount of award is negative and the penalty
one becomes positive. This implies that we will penalize the
winner and award the rivals, which evidently violates our
expectations. Furthermore, as ε = −1, both of the award
and penalty amount become zero. In this special case, the
batch RPEM is actually degenerated into the EM without
the property of automatic model selection. As a result, ε is
required to be greater than −1. In addition, ε in the batch
RPEM should be a negative value. Otherwise, the weights of
the rival components g( j | xt ,Θ) = −εh( j | xt)’s become
negative, resulting in some αj ’s to be negative finally. Hence,
an appropriate selection of ε in the batch RPEM would be a
negative value and greater than−1. That is, ε should be fallen
into the range of (−1, 0).

Furthermore, our empirical studies have found that a
smaller ε will lead the batch RPEM algorithm to a more
robust performance, especially when the value of k is large
and the data are overlapped considerably. In other words, the
algorithm has a poor capability of automatic model selection
if ε is close to zero. To illustrate this scenario, we have utilized
two synthetic data sets that are generated from the two
bivariate three-Gaussian mixtures individually as shown in
Figures 1(a) and 1(b), where each data set consists of 1, 000
observations with the true mixture proportions: α∗1 = 0.4,
α∗2 = 0.3, and α∗3 = 0.3. Also, the true μ∗j ’s and C∗j ’s of data
set 1 in Figure 1(a) are

μ∗1 =
(

1.0
1.0

)
, μ∗2 =

(
1.0
5.0

)
, μ∗3 =

(
5.0
5.0

)
,

C∗1 =
(

0.3 0.2
0.2 0.4

)
, C∗2 =

(
0.2 −0.1
−0.1 0.3

)
,

C∗3 =
(

0.30 −0.20
−0.20 0.25

)
,

(13)
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Initialization: Given a specific k (k ≥ k∗, k∗ is the true number of clusters),
initialize the parameter Θ.

Step 1: Given the current input xt and the parameter estimate, written
as Θ(n), compute h( j | xt ,Θ

(n)) ’s and g( j | xt ,Θ
(n))’s via(2)

and (7), respectively.
Step 2: Given h( j | xt ,Θ

(n))’s and g( j | xt ,Θ
(n))’s, we update Θ by

Θ(n+1) = Θ(n) + η(ωt(Θ; xt)/Θ)|Θ(n) ,
with
ωt(Θ; xt) =

∑k
j=1 g( jxt ,Θ) ln[αj p(xtθ j)],

where η is a small positive learning rate.
Step 3: Let n = n + 1, and go to Step 1 for the next iteration until Θ

is converged.

Algorithm 1: Adaptive RPEM algorithm.

Initialization: Given a specific k (k ≥ k∗, k∗ is the true number of clusters),
initialize the parameter Θ.

Step 1: Given Θ(n), we compute h( j | xt ,Θ
(n))’s and g( j | xt ,Θ

(n))’s for
all xt ’s via (2) and (7), respectively.

Step 2: Fixing h( j | xt ,Θ
(n))’s and g( j | xt ,Θ

(n))’s, we update Θ by
α(n+1)
j = φ(n)

j /
∑k

j=1 φ
(n)
j ,

μ(n+1)
j = (1/φ(n)

j )
∑N

t=1 xtg( j | xt ,Θ
(n)),

C(n+1)
j = (1/φ(n)

j )
∑N

t=1 g( j | xt ,Θ
(n))(xt − μ(n)

j )(xt − μ(n)
j )

T
,

where φ(n)
j =∑N

t=1 g( j | xt ,Θ
(n))

Step 3: Let n = n + 1, and go to Step 1 for the next iteration until Θ
is converged.

Algorithm 2: Batch RPEM algorithm.

while the true parameters of data set 2 in Figure 1(b) are

μ∗1 =
(

1.0
1.0

)
, μ∗2 =

(
1.0
2.5

)
, μ∗3 =

(
2.5
2.5

)
,

C∗1 =
(

0.3 0.1
0.1 0.4

)
, C∗2 =

(
0.3 0.0
0.0 0.3

)
,

C∗3 =
(

0.30 −0.05
−0.05 0.25

)
.

(14)

It can be seen that the clusters in data set 1 are well separated,
whereas the clusters in data set 2 are overlapped considerably.

For each data set, we conducted the three experiments
by setting k = 3, k = 8, and k = 20, respectively.
Also, all αj ’s and C j ’s were initialized at 1/k and the
identity matrix, respectively. During the learning process,
we discarded those densities whose covariance matrices C j ’s
were singular. Table 1 shows the performance of the batch
RPEM over the parameter ε. We found that, as k = 3 and
k = 8, all ε’s we have tried from −0.9 to −0.1 lead to the
good performance of the algorithm when using the data set
1. For example, as k = 8 and ε = −0.8, we randomly
initialized the eight seed points in the input space as shown in
Figure 2(a). After all the parameters were converged, 2 out of
8 density components had been discarded and the mixture
proportions of the remaining components were converged
to α1 = 0.2960, α2 = 0.0036, α3 = 0.2900, α4 = 0.0058,

α5 = 0.0136, and α6 = 0.3910. It can be seen that the
three principal mixing proportions, α1, α3, and α6, have well
estimated the true ones, while the other proportions were
inclined to zero. The corresponding three μ j ’s and C j ’s were

μ1 =
(

5.06
4.96

)
, μ3 =

(
0.98
4.98

)
, μ6 =

(
1.00
0.96

)
,

C1 =
(

0.29 −0.17
−0.17 0.22

)
, C3 =

(
0.18 −0.08
−0.08 0.25

)
,

C6 =
(

0.29 0.19
0.19 0.39

)
.

(15)

As shown in Figure 2(b), the three μ j ’s have successfully
stabilized at the corresponding cluster centers, meanwhile the
other three redundant seed points have been pushed away
and stably located at the boundary of the clusters. That is, the
redundant densities have been fade out through the learning,
thus the batch RPEM can select the model automatically as
well as the adaptive version.

Nevertheless, when k is set at a large value, for example,
say k = 20, it is found that the proposed algorithm could
not fade out the redundant density components from a
mixture if ε is close to 0. Instead, we should set ε at a
value close to −1. For example, as k∗ = 3, k = 20, and
ε = −0.9, we ran the proposed algorithm. It was found that
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Figure 1: (a) Synthetic data set 1 with the well-separated clusters, and (b) synthetic data set 2 with the clusters overlapped considerably.
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Figure 2: The performance of the batch RPEM as k∗ = 3, k = 8, and ε = −0.8: (a) initial positions of seed points; (b) converged positions
of seed points.

13 of 20 seed points were maintained by discarding those
whose covariance matrices C j ’s were singular. The mixture
proportions of the remaining components were converged
to α1 = 0.0421, α2 = 0.0169, α3 = 0.0051, α4 = 0.2349,
α5 = 0.0036, α6 = 0.0149, α7 = 0.3444, α8 = 0.0049,
α9 = 0.0210, α10 = 0.0029, α11 = 0.0057, α12 = 0.2944,
and α13 = 0.0091. The three principal mixing proportions,
α4, α7, and α12, have also well estimated the true ones while
the other proportions were tended to zero. Furthermore,
the corresponding μ j ’s were μ1 = [1.0872, 4.9986]T , μ2 =
[0.9897, 0.9640]T , and μ3 = [5.0754, 4.9552]T . As shown in
Figure 3(a), the learned μ j ’s are correctly allocated at the
center of the three clusters and the other redundant seed
points were driven away to the boundaries of clusters. Hence,
the batch algorithm performed a good model selection by
assigning ε = −0.9. In contrast, if we assign ε to some
value close to zero, the algorithm will lead to a poor model
selection. We take ε = −0.1 for instance. The mixture
proportions of the remaining 19 out of 20 components were

converged to α1 = 0.0461, α2 = 0.0121, α3 = 0.0439, α4 =
0.1404, α5 = 0.0070, α6 = 0.0258, α7 = 0.0178, α8 = 0.0348,
α9 = 0.0659, α10 = 0.0513, α11 = 0.0493, α12 = 0.0352,
α13 = 0.0362, α14 = 0.0528, α15 = 0.0587, α16 = 0.0171,
α17 = 0.1916, α18 = 0.0882, and α19 = 0.0260. It can be seen
that none of αj ’s tends to zero. As shown in Figure 3(b), all
the converged positions have a bias from the cluster centers.
In other words, the algorithm has a poor performance as ε
get close to zero. Hence, if k is large, it would be better to
choose a relative smaller value of ε between −1 and 0.

In addition, we also investigated the assignment of ε
on data set 2, where the data are considerably overlapped.
We take k∗ = 3, k = 20, and ε = −0.9 for instance.
The converged positions of the seed points are shown in
Figure 4(a), where the learned positions converged to the
cluster centers while driving the redundant seed points to
the boundaries of the clusters. That is, the proposed batch
algorithm can work quite well as ε = −0.9. Also, we let
k∗ = 3, k = 20, and ε = −0.2 to run the algorithm again
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Figure 3: The converged positions of the seed points as k∗ = 3 and k = 20: (a) ε = −0.9, (b) ε = −0.1.
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Figure 4: The converged positions of the seed points learned via the batch RPEM as k∗ = 3 and k = 20: (a) ε = −0.9; (b) ε = −0.2.

for comparison. As shown in Figure 4(b), the converged
positions of the seed points have a bias from the cluster
centers. This implies that the values of ε that are close to
zero cannot work well in this case. More examples can be
found in Table 1. It can be seen that the feasible region of
ε is shrunk over the overlap level of the data. For example,
the appropriate values of ε are in the range of [−0.9,−0.6]
only when using the date set 2 with k∗ = 3 and k = 3 or
8, respectively. In contrast, ε is feasible in the full range of
[−0.9,−0.1] where we have tried so far as data set 1 is used.
Hence, by a rule of thumb, we should choose an appropriate
value of ε close to −1. Nevertheless, we have also noted that
it is not a good choice if ε is too close to −1. In fact, the
proposed algorithm will gradually degenerate to the EM as ε
tends to −1; that is, the capability of the proposed algorithm
on model selection will be reduced as ε tends to −1. Hence,
to sum up, empirical studies have found that [−0.9,−0.8] is
an appropriate feasible region of ε. In the next section, we
therefore arbitrarily set ε at −0.8.

5. Experimental Results

To evaluate the performance of the batch RPEM algorithm,
we have conducted the following three experiments.

5.1. Experiment 1: Batch RPEM on Synthetic Data with K =
K∗. This experiment was to evaluate the convergence speed
of the batch RPEM. We utilized 1, 000 data points from a
mixture of three bivariate Gaussian densities with the true
parameters as follows:

α∗1 = 0.3, α∗2 = 0.4, α∗3 = 0.3,

μ∗1 = [1.0, 1.0]T , μ∗2 = [1.0, 2.5]T , μ∗3 = [2.5, 2.5]T ,

C∗1 =
(

0.20 0.05
0.05 0.30

)
, C∗2 =

(
0.2 0.0
0.0 0.2

)
,

C∗3 =
(

0.2 −0.1
−0.1 0.2

)
.

(16)
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Figure 5: (a) The initial positions of the three seed points and their converged positions learned by (b) EM, (c) adaptive RPEM, and (d)
batch RPEM, respectively.

Table 1: Performance of the Batch RPEM over the Parameter ε,
where “G” stands for a good model selection capability of the algo-
rithm, while “P” represents a poor model selection capability.

ε
k∗ = 3, k = 3 k∗ = 3, k = 8 k∗ = 3, k = 20

Data set
1

Data set
2

Data set
1

Data set
2

Data set
1

Data set
2

−0.9 G G G G G G

−0.8 G G G G G G

−0.7 G G G G G G

−0.6 G G G G G G

−0.5 G P G P G G

−0.4 G P G P P P

−0.3 G P G P P P

−0.2 G P G P P P

−0.1 G P G P P P

We let k = 3, which is equal to the true mixture number
k∗ = 3. The three seed points were randomly allocated in
the observation space as shown in Figure 5(a), where the
data are considerably overlapped. Moreover, all αj ’s and C j ’s

were initialized at 1/k and the identity matrix, respectively.
Figure 5(d) shows the positions of the three converged seed
points, which are all stably located at the corresponding
cluster centers. For comparison, we also implemented the
EM under the same experimental environment. Figure 5(b)
shows that the EM had successfully located the three seed
points as well as the batch RPEM.

Nevertheless, as shown in Figures 6(c) and 7, the batch
RPEM converges at 20 epochs, while the EM needs 60 epochs
as shown in Figure 6(a). That is, the convergence speed of
the batch RPEM is significantly faster than the EM. This
indicates that the intrinsic rival-penalization scheme of the
batch RPEM, analogous to the RPCL [11], RPCCL [12], and
the adaptive RPEM [14], is able to drive away the rival seed
points so that they can be more quickly towards the other
cluster centers. As a result, the batch RPEM converges much
faster than the EM. Moreover, we also compared it with the
adaptive RPEM, in which we set the learning rate η = 0.001.
Figure 5(c) shows the convergent results of the seed points. It
can be seen that the adaptive RPEM works quite well in this
case, but it needs around 70 epochs as shown in Figure 6(b).
Actually, the adaptive RPEM can be further speed up if an
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Figure 6: Learning curves of μ j ’s by (a) EM, (b) adaptive RPEM, and (c) batch RPEM, respectively.
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Figure 7: The value of the cost function Q over the epochs.
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Figure 8: The converged positions of the seed points learned by the
batch RPEM.
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Figure 9: Segmentation of the hand image: (a) original image, (b) the result given by the EM, and (c) the result given by the batch RPEM.

Figure 10: The original house image.

appropriate learning rate is adopted, which, however, is not
a trivial task.

5.2. Experiment 2: Batch RPEM on Synthetic Data with
K > K∗. This experiment will investigate the performance
of batch RPEM performance as k > k∗. We generated
1, 000 observations from a mixture of five bivariate Gaussian
density distributions with the mixing proportions:

α∗1 = 0.1, α∗2 = 0.2, α∗3 = 0.3, α∗4 = 0.2, α∗5 = 0.2
(17)

and the true cluster centers:

μ∗1 = [1.0, 1.0]T , μ∗2 = [1.0, 2.5]T , μ∗3 = [2.5, 2.5]T ,

μ∗4 = [2.5, 1.0]T , μ∗5 = [4.0, 2.0]T .
(18)

15 seed points were initialized in the input space arbitrarily.
During the learning, the three density components were
discarded because their corresponding covariances became
singular. As a result, the remaining 12 converged proportions
were α1 = 0.0065, α2 = 0.0113, α3 = 0.1929, α4 =
0.0030, α5 = 0.0068, α6 = 0.2013, α7 = 0.2084, α8 =
0.0074, α9 = 0.0083, α10 = 0.0986, α11 = 0.2531, and
α12 = 0.0022. It can be seen that the five principal values
α3, α6,α7, α10, and α11 were estimated well, while the others
were learned towards zero. A snapshot of the corresponding
μ j ’s were μ3 = [4.0348, 2.0075]T , μ6 = [0.9990, 2.4571]T ,

μ7 = [2.4725, 0.9220]T , μ10 = [0.9553, 1.0277]T , and
μ11 = [2.5189, 2.5199]T . As shown in Figure 8, these five
seed points have successfully allocated in the cluster centers,
meanwhile the batch RPEM drove the redundant seed points
to the boundaries of the clusters.

5.3. Experiment 3: Batch RPEM on Color Image Segmenta-
tion. This experiment further investigated the batch RPEM
algorithm on color image segmentation in comparison to the
EM algorithm. We implemented the image segmentation in
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Figure 11: Segmentation of the house image by (a) EM; (b) batch RPEM.

the red-green-blue (RGB) color space model that represents
each pixel in an image by a three-color vector. We conducted
color image segmentation on a 122 × 152 hand image and
a 96 × 128 house image as shown in Figures 9(a) and 10,
respectively. For the former, we initially assigned 10 seed
points randomly. After the convergence of the algorithms’
performance, a snapshot of their segmentation results is
shown in Figures 9(b) and 9(c). It can be seen that the blue
tiny swim ring-shaped region after segmentation process by
the batch RPEM is smoother than the EM. Further, the tiny
nail regions have been partitioned by the batch RPEM but
the EM is not. In other words, the batch RPEM algorithm
performs better than the EM algorithm.

For the house image, we initially assigned the seed points
to be 80. A snapshot of the converged segmentation results
of the EM and the batch RPEM is shown in Figure 11. It can
be seen that the texture on the red wall and the green lawn
has no longer maintained after the segmentation process
both by the EM and the RPEM. However, the small white
regions of windows on red wall were disappeared by the EM
as well as the triangle shadow area on the wall. In contrast,
the batch RPEM algorithm partitioned these regions well as
shown in Figure 11(b). Actually, the batch RPEM has drove
out the redundant seed points far away and maintained some
principal components correctly, which therefore leads to a
better performance in color image segmentation.

6. Conclusion
In this paper, we have developed a batch RPEM algorithm
based on MWL learning framework for Gaussian mixture
clustering. Compared to the adaptive RPEM, this new one
need not select the value of learning rate. As a result, it can
learn faster in general and still preserve the capability of
automatic model selection analogous to the adaptive one. We
have evaluated the proposed batch RPEM algorithm on both
synthetic data and color image segmentation. The numerical
results have shown the efficacy of the proposed algorithm.
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