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Noninvasive electrocardiographic imaging, such as the reconstruction of myocardial transmembrane potentials (TMPs)
distribution, can provide more detailed and complicated electrophysiological information than the body surface potentials (BSPs).
However, the noninvasive reconstruction of the TMPs from BSPs is a typical inverse problem. In this study, this inverse ECG
problem is treated as a regression problem with multi-inputs (BSPs) and multioutputs (TMPs), which will be solved by the
Maximum Margin Clustering- (MMC-) Support Vector Regression (SVR) method. First, the MMC approach is adopted to cluster
the training samples (a series of time instant BSPs), and the individual SVR model for each cluster is then constructed. For each
testing sample, we find its matched cluster and then use the corresponding SVR model to reconstruct the TMPs. Using testing
samples, it is found that the reconstructed TMPs results with the MMC-SVR method are more accurate than those of the single
SVR method. In addition to the improved accuracy in solving the inverse ECG problem, the MMC-SVR method divides the
training samples into clusters of small sample sizes, which can enhance the computation efficiency of training the SVR model.

1. Introduction

The technique of noninvasive imaging of the heart’s electrical
activity from the body surface potentials (BSPs) constitutes
one form of the inverse problem of ECG [1, 2]. Approaches to
solving the inverse ECG problem have been usually based on
either an activation-based model or a potential-based model,
which includes epicardial, endocardial, or transmembrane
potentials. Activation-based models are used to investigate
the arrival time of the propagation wavefront within the
myocardium [3, 4]. The potential-based models are used to
evaluate the potential values on the cardiac surface [5–7] or
within the myocardium [8] at certain time instants. In this
study, we explore a new solution for ECG inverse problem
using the potential-based approach.

Due to its inherent ill-posed property, the inverse ECG
problem is usually solved by “regularization” techniques.
In the last decades, numerous regularization methods have
been proposed to solve this ill-posed problem, including
truncated total least squares (TTLS) [9], GMRes [10],
and the LSQR [11, 12]. Most of them are essentially L2-
norm based regularization schemes, which inherently lead to
considerable smoothness of the inverse solutions. L1-norm
regularization method can overcome this drawback of L2-
norm regularization method, which has been applied for
epicardial potential reconstruction [13–15]. Although the
above-mentioned regularization methods can more or less
deal with the geometry and measurement noises for the
ECG inverse problems, which depends on the regularization
parameters, the robustness of the inverse solution is not
always guaranteed. In this paper, without seeking assistance
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Figure 1: The framework of the proposed MCC-SVR method.

from the regularization techniques, we explore an alternative,
more robust approach to solve the inverse ECG problem.
The method is called Support Vector Regression (SVR)
[16]. To find the solution for the inverse ECG problem, a
regression model will be set up with multi-inputs (BSPs)
and multioutputs (transmembrane potentials, TMPs). This
statistic method based solution will be assessed with the
quality of the inversely predicated TMPs from the measured
BSPs. Compared with conventional regularization methods
(e.g., zero order Tikhonov and LSQR), the SVR method can
produce more accurate results in terms of reconstruction
of the transmembrane potential distributions on epi- and
endocardial surface. In addition, when the PCA and KPCA
are adopted to extract useful features from the original inputs
for building the SVR model, the SVR method with feature
extraction (PCA-SVR and KPCA-SVR) outperforms that
without the extract feature extraction (single SVR) in terms
of the reconstruction of the TMPs [17].

Compared with using single SVR model, the hybrid
models by integrating difference methods show better per-
formance. The self-organizing map (SOM) is an unsuper-
vised and competitive learning algorithm, which can be
viewed as clustering techniques [18]. Combining the SOM
with SVR or LS-SVM, the proposed hybrid method has
the potential to find better inverse solutions than using
a single SVR model [19, 20]. Xu et al. [21] proposed
the Maximum Margin Clustering (MMC) method, which
performs clustering by simultaneously finding the large
margin separating hyperplane between clusters. The MMC

method has been successfully applied to many clustering
problems [22]. However, its efficiency is an issue of concern.
Recently, Zhang et al. proposed [23, 24] an efficient approach
for solving the MMC via an alternative optimization proce-
dure, which was implemented by using the SVR method with
the Laplacian loss in the inner optimization subproblem.
The modified MMC algorithm is more accurate, much faster
and therefore more practical for solving engineering inverse
problems. In this paper, the hybrid model of modified MMC
method and SVR is proposed to solve the inverse ECG
problem, which is referred to as an MCC-SVR method.
The conference version of this submission has appeared in
CINC 2011 [25]. This submission has undergone substantial
revisions and offers extended experiment results.

The main purpose of this study is to use an MCC-SVR
model to investigate the reconstruction capability of TMPs.
In this study, based on our previously developed realistic
heart-torso model, the equivalent double layer (EDL) source
model method was applied to generate the data set for
training and testing the SVR model. The proposed algorithm
was also compared with a single SVR model for noninvasive
ECG imaging.

2. Theory and Methodology

The framework of the proposed MCC-SVR method is shown
in Figure 1. The MCC method is used to classify the input
data; the SVR is then applied to construct the regression
model of each cluster.
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(1) Initialize the labels y by using the k-means;
(2) Fix y, and perform SVR with Laplacian loss;
(3) Compute ω from the Karush-Kuhn-Tucker (KKT) conditions;
(4) Compute the bias b as described above;
(5) Assign the labels as yi = sign(ωTϕ(xi) + b);
(6) Repeat steps 2–5 until convergence.

Algorithm 1: Iterative SVR procedure for MCC method.

2.1. Maximum Margin Clustering (MMC) Method [23, 24].
The clustering principle is to find a labeling to identify
dominant structures in the data and to group similar
instances together, so the margin obtained would be maximal
over all possible labelings, that is, given a training set
{(xi, yi)}ni=1, where xi ∈ χ is the input and yi ∈ {±1} is the
output. The SVM finds a large margin hyperplane to separate
patterns of opposite classes by the classify function f (x) [26]:

f (x) = ωTϕ(x) + b, (1)

where ϕ(x) denotes the high-dimensional feature space,
which is nonlinearly mapped from the input space x by the
kernel function k, ω is the normal vector of the hyperplane,
and b is the offset of the hyperplane. Computationally, this
leads to the following optimization problem [24, 26]:

min
ω,b,ξ

‖ω‖2 + 2CξTe

subject to

{
yi
(
ωϕ(xi) + b

) ≥ 1− ξi
ξi ≥ 0, i = 1, . . . ,n,

(2)

where ξ = [ξ1, . . . , ξn]T is the vector of a slack variable for
the errors, and C > 0 is the trade-off parameter between
the smoothness ‖ω‖2 and the fitness (ξTe) of the decision
function f (x).

MMC attempts to extend large margin methods to
allocate the input data points to different classes, leading
to large separation between the different classes. Here, the
case with two clusters is considered in this work. Since one
could simply assign all the data points to the same class and
obtain an unbounded margin, a proper constraint on the
class balance needs to be imposed. Xu et al. [21] introduced
a class constraint that requires y to satisfy

−� ≤ eT y ≤ �, (3)

where � ≥ 0 is a user-defined constant controlling the class
imbalance. Then the margin is maximized with respect to
both unknown y and unknown SVM parameter (ω, b) as
follows:

min
y

min
ω,b,ξ

‖ω‖2 + 2CξTe

subject to

⎧⎪⎪⎨
⎪⎪⎩
yi
(
ωϕ(xi) + b

) ≥ 1− ξi
ξi ≥ 0, yi ∈ {±1}, i = 1, . . . ,n

−� ≤ eT y ≤ �.

(4)

The origin nonconvex MMC problem in (4) can be formu-
lated as a sequence of QPs which can be solved by some
efficient QP solvers. However, it suffers from a premature
convergence and easily gets stuck in poor local optima.
Zhang et al. [23, 24] proposed to replace the SVM by
SVR with Laplacian loss, which can lead to a significant
improvement in the clustering performance compared to
that of iterative SVM procedure. The primal problem of SVR
with Laplacian loss can be formulated as

min
ω,b,ξi,ξ∗i

‖ω‖2 + 2C
n∑
i=1

(
ξi + ξ∗i

)

subject to

⎧⎪⎪⎨
⎪⎪⎩
yi −

(
ωTϕ(xi) + b

) ≤ ξi(
ωTϕ(xi) + b

)− yi ≤ ξ∗i for i = 1, . . . ,n,

ξi ≥ 0, ξ∗i ≥ 0,
(5)

where ξi and ξ∗i are slack variables. With the obtained labels,
the MMC problem based on the iterative SVR with the
Laplacian loss becomes

min
ω,b,ξi,ξ∗i

‖ω‖2 + 2C
n∑
i=1

(
ξi + ξ∗i

)

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi −
(
ωTϕ(xi) + b

) ≤ ξi(
ωTϕ(xi) + b

)− yi ≤ ξ∗i
ξi ≥ 0, ξ∗i ≥ 0 for i = 1, . . . ,n

yi ∈ {±1}
−� ≤ eT y ≤ �.

(6)

After ω is obtained from the optimization of SVR, the
problem in (6) is reduced to the form

min
y,b

n∑
i=1

∣∣∣(ωTϕ(xi) + b
)
− yi

∣∣∣

subject to

{
yi ∈ {±1}, i = 1, . . . ,n

−� ≤ eT y ≤ �.

(7)

According to Zhang’s proposition [24], for a fixed b, the
optimal strategy to determine the yi’s in (7) is to assign all
yi’s as −1 for those with ωTϕ(xi) + b < 0 and assign yi’s
as 1 for those with ωTϕ(xi) + b > 0. The bias b can be
determined as follows. (i) we sort the ωTϕ(xi)’s and use the
set of midpoints between any two consecutive sorted values
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as the candidates of b; (ii) from these sorted b’s, the first
and the last (n − �)/2 of them can be dropped, and the
middle � can be remained; (iii) for each remaining candidate,
we determine the yi’s according to the above proposition
and compute the corresponding objective value in (7); (iv)
finally, we choose the b that has the smallest objective. The
complete iterative SVR procedure for MCC method is shown
in Algorithm 1.

2.2. Support Vector Regression (SVR) Model. The SVR algo-
rithm [26] is only briefly described here; for details, see
[16, 26]. As a linear regression model, the SVR algorithm
relies on an estimation of a linear regression function:

f (x) = 〈ω, x〉 + b, (ω, x ∈ 	), (8)

whereω and b are the slope and offset of the regression linear,
and 〈·, ·〉 denotes the dot product in	. The above regression
problem can be written as a convex optimization problem:

min
1
2
‖ω‖2

subject to

{
yi − 〈ω, xi〉 − b ≤ ε

〈ω, xi〉 + b− yi ≤ ε.

(9)

In (9), an implicit assumption is that a function f essentially
approximates all pairs (xi, yi) with ε precision, but sometimes
this may not be the case. Therefore, one can introduce
two additional positive slack variables ξi, ξ∗i to refine the
estimation of variables ω and b. Now (9) can be reformulated
[16] as

min
1
2
‖ω‖2 + C

n∑
i=1

(
ξi + ξ∗i

)

subject to

⎧⎪⎪⎨
⎪⎪⎩
yi − 〈ω, xi〉 − b ≤ ε + ξi
〈ω, xi〉 + b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0,

(10)

where the constant C is a trade-off parameter and n denotes
the number of samples; ξi represents the upper training error,
and ξ∗i is the lower training error subject to ε intensive
tube. According to the strategy outlined by Vapnik [26],
using Lagrange multipliers, the constrained optimization
problem shown in (3) can be further restated as the following
equation:

f
(
x,αi,α∗i

) = n∑
i=1

(
αi − α∗i

)
K(xi, x) + b

subject to
n∑
i=1

(
αi − α∗i

) = 0, 0 ≤ αi, α∗i ≤ C,

(11)

where αi and α∗i are the Lagrange multipliers. The term
K(xi, xj) in (11) is defined as the kernel function, whose
values are the inner product of two vectors xi and xj in the

feature space ϕ(xi) and ϕ(xj). And bias b can be computed as
follows:

b =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yi −

n∑
j=1

(
αi − α∗i

)
K
(
xj , xi

)
− ε for αi ∈ (0,C)

yi −
n∑
j=1

(
αi − α∗i

)
K
(
xj , xi

)
+ ε for α∗i ∈ (0,C).

(12)

The kernel function handles any dimension feature space
with no explicit calculation of ϕ(x). In this study, the
Gaussian kernel function is chosen as the SVR’s application
mapping in this study:

K
(
xi, xj

)
= exp

⎛
⎜⎝−

∥∥∥xi − xj
∥∥∥2

2σ2

⎞
⎟⎠, (13)

where xi and xj are input vector spaces; σ2 is the bandwidth
of the kernel function.

In this study, an accurate and fast approach based on
the GA and the simplex search techniques is presented to
determine the optimal hyperparameters of the SVR model
[17], as shown in Figure 2. The GA algorithm used here
is based on a GA toolbox developed by Chipperfield et al.
[27], and the simplex optimization method is implemented
using the MATLAB optimization toolbox. The developed
SVR model was trained and validated with the software
LIBSVM [28].

2.3. Simulation Protocol and Data Set. The SVR model is
tested with our previously developed realistic heart-torso
model [6, 17]. In this study, an equivalent double layer (EDL)
source model is adopted to simulate the cardiac equivalent
source, which represents the cardiac electrical activity by
means of double layer source on the closed surface (including
the endo- and epicardial surface of ventricle). For the ECG
inverse problem studies, the ventricular surface TMPs and
body surface potentials (BSPs) are evaluated based on the
EDL source model. The transfer matrix A between TMPs and
BSPs is evaluated by the boundary element method (BEM),
and it has the dimension of 412 × 478 and its condition
number (the ratio of largest and smallest singular values) is
5.6 × 1012. As shown in Figure 3, the EDL source method
is used to obtain the BSPs ϕB and the TMPs ϕm. For the
construction of the training and testing data set Different
Action Potentials (APs) for various myocardial cells and
the normal Ventricular Excitation Sequence (VES) are used
to calculate the TMPs (ϕm) at different times; from the
calculated TMPs, the corresponding BSPs are deduced with
the transfer matrix A.

In this study, a normal ventricular excitation data set is
prepared for the setup of the SVR model. The considered
ventricular excitation period from the first breakthrough
to the end is 357 ms and the time step is 1 ms, and,
thus, 358 BSPs ϕB and TMPs ϕm temporal data sets are
numerically recorded; in addition, the 30 dB simulated
Gaussian white noise is added into the BSPs ϕB representing
the measurement noises. 60 datasets at times of 3 ms, 9 ms,
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Figure 2: GA-Simplex optimization procedure for the parameter selection in the MCC-SVR model.

15 ms, . . ., and 357 ms after the first ventricular breakthrough
are used as testing samples to evaluate the generalization
capacity of the proposed SVR model. The rest 298 in 358
data sets are employed as the training samples for building
the SVR model. With the consideration of a wide numerical
range of the ϕB values, for each time, the ϕB values can be
scaled to the range (0, 1):

ϕBtN = ϕBt − ϕBtmin

ϕBtmax − ϕBtmin
, (14)

where ϕBt are the body surface potentials at time instant t,
ϕBtmax is the maximum value of BSPs at the time t, and ϕBtmin

is the minimum value of BSPs at the time t.
As the TMPs are known in advance in the simulation

study, the accuracy of reconstructed TMPs at the testing time
t can be evaluated by either relative errors (REs):

RE =
∥∥ϕc

t − ϕe
t

∥∥∥∥ϕe
t

∥∥ , (15)

or the correlation coefficient (CC), given by

CC =
∑n

i=1

[(
ϕc
t

)
i − ϕc

t

][(
ϕe
t

)
i − ϕe

t

]
∥∥∥ϕc

t − ϕc
t

∥∥∥∥∥∥ϕe
t − ϕe

t

∥∥∥ , (16)

where n is the number of nodes on the ventricular surface.
ϕe
t denotes the simulated TMPs distribution at time t, and

ϕc
t are inversely computed. The quantities ϕc

t and ϕe
t are the

mean value of ϕc
t and ϕe

t over the whole ventricular surface
nodes at time t.

3. Results

According to the MCC method, the above 298 training
samples are classified four clusters as shown in Figure 4(a),
and the numbers of the four clusters is 80, 74, 70, and 74,
respectively. Then the individual SVR model is trained for
each cluster, and the hyperparameters are determined using
the GA-Simplex method. For 60 testing samples, the MCC
method is used to find their corresponding clusters, as shown
in Figure 4(b).

To illustrate the performances of the reconstructed
TMPs, four sequential testing time points (3, 15, 27, and
39 ms after ventricle excitation) are presented. The inverse
ECG solutions are shown in Figure 5; in contrast to the
conventional regularization methods, such as zero order
Tikhonov regularization method and LSQR regularization
method, the single SVR method can yield rather better results
with lower RE and higher CC. Moreover, it can be seen
that the MCC-SVR method offers superior performances
than the single SVR method, as its solution is more close to
the simulated TMPs distributions. The time courses of the
simulated TMPs and reconstructions for one representative
source point on the heart surface are depicted in Figure 6.
It can be found that, in reconstructing the TMPs for one
representative source point over all the testing times, the
MCC-SVR method offers better solution compared with
single SVR method.
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the 60 testing samples, the MCC method is used to find their corresponding clusters.
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The RE and CC of the reconstructed TMPs with different
methods can be found in Figure 7. In contrast to the single
SVR method, the MCC-SVR method can yield improved
results with a lower RE and a higher CC over the 60 testing
samples.

By dividing the training samples into smaller clusters, the
training time for each cluster can be reduced. The training
times for each cluster by using the MCC-SVR method are
6715.9 seconds, 6821.1 seconds, 4550.6 seconds, and 5162.4
seconds, respectively, and the total time of the four clusters is
23250 seconds. When using the single SVR model to train the
model of the all training samples, it takes 35233.4 seconds.

4. Discussion and Conclusion

In this study, MCC-SVR method is proposed to solve
the noninvasive ECG imaging problem. Here, the MMC
approach is adopted to cluster the training samples firstly,
and then SVR method is applied to construct the model
for each cluster. After building different cluster models, for
the testing sample, we can find its matched cluster and then
use the corresponding SVR model to reconstruct the TMPs.
From the reconstructed TMPs as shown in Figures 5 and
6, it can be seen that the MCC-SVR methods offer better
solution compared with single SVR method. According to
the evaluation indices RE and CC, the performances of the
reconstructed TMPs by using the MCC-SVR can constantly
converge to a smaller RE and a higher CC on the testing
samples than those of the single SVR method, as shown
in Figure 7. In terms of the computation efficiency of the
training SVR model, for the given training samples, the
MCC-SVR method can save about 34% time than the single
SVR method. With the increasing of the training samplings,
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Figure 7: The performances of the reconstructed TMPs over 60 sampling times by using SVR and MCC-SVR, respectively. (a) The REs of
the reconstructed TMPs; (b) the CCs of the reconstructed TMPs.

the MCC-SVR method lessens more training time than the
single SVR method. Moreover, the training process for each
cluster can be implemented simultaneously using parallel
computing, therefore further enhance the training efficiency.

In summary, this paper proposed the MCC-SVR method
for the inverse solutions of the ECG problem. The new
algorithm was tested and compared with single SVR schemes
using a realistic heart-torso model. The experimental results
show that the MCC-SVR can improve the generalization
performance of the single SVR in reconstructing the TMPs,
leading to a more accurate reconstruction of the TMPs.
In our future work, we plan to improve the MCC-SVR
method for solving various nonlinear regression problems in
noninvasive ECG imaging.
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