
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 475745, 9 pages
doi:10.1155/2012/475745

Research Article

A New Particle Swarm Optimization-Based Method for
Phase Unwrapping of MRI Data

Wei He,1 Yiyuan Cheng,1 Ling Xia,1 and Feng Liu2

1 Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
2 School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane,
QLD 4072, Australia

Correspondence should be addressed to Ling Xia, xialing@zju.edu.cn

Received 31 May 2012; Accepted 30 July 2012

Academic Editor: Huafeng Liu

Copyright © 2012 Wei He et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A new method based on discrete particle swarm optimization (dPSO) algorithm is proposed to solve the branch-cut phase
unwrapping problem of MRI data. In this method, the optimal order of matching the positive residues with the negative residues is
first identified by the dPSO algorithm, then the branch cuts are placed to join each pair of the opposite polarity residues, and in the
last step phases are unwrapped by flood-fill algorithm. The performance of the proposed algorithm was tested on both simulated
phase image and MRI wrapped phase data sets. The results demonstrated that, compared with conventionally used branch-cut
phase unwrapping algorithms, the dPSO algorithm is rather robust and effective.

1. Introduction

In magnetic resonance imaging (MRI), the complex signal
contains both the magnitude and phase parts. Usually the
magnitude of the MRI signal has been mainly considered.
However, the phase of MRI signal offers very important
information on the velocity of the moving spins, and can also
be used to deduce useful information about the main B0 field
inhomogeneity and the magnetic susceptibility variations
[1]. In MRI, the phase information ψi, j is usually obtained
from a complex MRI dataset Ii, j = |Ii, j| exp(ψi, j) through
some mathematical operations, and the value always lies in
the principal interval of (−π,π], consequently producing a
wrapped phase ϕi, j . This relationship can be described by
ϕi, j = W(ψi, j) = ψi, j ± 2ki, jπ, where ki, j is an integer and
W defines a wrapping operator that forces all values of its
argument into the range (−π,π] by adding or subtracting
an integral multiple of 2π radians from its argument. Phase
unwrapping is the process of estimating the true phase ψi, j
from the wrapped phase ϕi, j . As an important tool, it can
not only be used for the three-point Dixon water and fat
separation, but also be applied to increase the dynamic range
of phase contrast MR velocity measurements [2]. If the
true phase gradients (i.e., the differences of ψi, j) between
contiguous pixels are less than π radians in magnitude

in the entire space, the true phase can be unwrapped in
a straightforward manner by just integrating the wrapped
phase gradients [3]. However, the presence of the noise,
undersampling, and/or object discontinuities often makes
this condition unavailable. Therefore, the problem of phase
unwrapping becomes complex in practice and difficult to
solve, although significant amount of research effort has
been devoted to date. In the literature, there are quite a
few existing phase unwrapping algorithms [4], which can be
grouped into two categories: path-following and minimum-
norm methods [5].

The branch-cut phase unwrapping method is one kind
of the path-following methods. Unlike the minimum-norm
methods, the branch-cut phase unwrapping technique offers
correct phase unwrapping with no solution approximations
[4]. In the operation, it locates residues, joins the residues
by branch cuts, and then unwraps all the pixels avoiding
those branch cuts. In the algorithm, residues are defined as
local inconsistencies, which mark the starting and end of 2π
discontinuities. Corresponding to formula (1), that is, the
value n is 1 or −1 in a 2 × 2 closed-loop of the wrapped
phase gradients [4], as shown in Figure 1:

4∑

i=1

Δϕ(i) = 2πn. (1)
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Figure 1: Residue calculation.

These wrapped phase gradients are computed counter-
clockwise:

Δϕ(1) =W
(
ϕi+1, j − ϕi, j

)
,

Δϕ(2) =W
(
ϕi+1, j+1 − ϕi+1, j

)
,

Δϕ(3) =W
(
ϕi, j+1 − ϕi+1, j+1

)
,

Δϕ(4) =W
(
ϕi, j − ϕi, j+1

)
.

(2)

In formula (1), when n = 1, we label it a residue with a
positive polarity. And when n = −1, the residue is labeled
with a negative polarity. Otherwise it indicates there is no
residue when n = 0. In this algorithm, the total length of
branch cuts must been minimized, resulting a decrease of the
amount of good pixels used as the branch cuts. This provides
more unwrapping paths in dense residue areas, leading to a
smoother result [5].

To achieve a minimum total length of branch cuts, vari-
ous techniques have been developed for the branch-cut phase
unwrapping method. These techniques include, for example,
the Goldstein’s algorithm [5, 6], the nearest-neighbor algo-
rithm [7], the minimum-cost matching (MCM) algorithm
[8], and the hybrid genetic algorithm (HGA) [4].

The nearest-neighbor algorithm is very efficient, but it
utilizes local heuristics, thus causing some long branch cuts
embedded in the phase image. Therefore, the distribution
of the branch cuts does not achieve the optimum, and the
resultant phase image is lack of the smoothness. The MCM
is a graph theory-based algorithm, which uses the Hungarian
algorithm to find the minimum total length of branch cuts.
Although powerful, it is computationally expensive. The
HGA employs a combination of global and local search
methods, and its solution is usually good. However, the
complexity of this algorithm tends to be a problem with the
increase of residues.

Compared with these three methods, which place the
branch cuts to connect pairs of residues of opposite polarity
(called dipoles), the Goldstein’s method joins the residues in
clumps instead of pairs [5]. The Goldstein’s algorithm is very
efficient, but often forms some isolated patches.

In this paper, we propose a new discrete particle-
swarm-optimization- (dPSO-) based branch-cut algorithm

for phase unwrapping. The new dPSO algorithm is used to
find the best way in which the negative polarity residues
match with the positive ones, so that the overall length of
the branch cuts is minimized. The performance of the new
dPSO algorithm is compared with the Goldstein’s and MCM
algorithms.

2. Phase Unwrapping Using
the Proposed Algorithm

2.1. Overview of the Basic PSO Algorithm. As an artificial
intelligent algorithm, the particle swarm optimization (PSO)
[9, 10], is easy for implementation (only few parameters to
be adjusted) and converges fast.

In the PSO algorithm, the swarm consists of several
particles, and each contains N elements. Then each particle
is viewed as a point in an N-dimensional space. The ith
particle of swam is represented as Ui = {ui1,ui2, . . . ,uiN}.
All the particles share their information and move to find
the global optima. Pi = {pi1, pi2, . . . , piN} represents that the
local best position that the ith particle has reached, and Pg =
{pg1, pg2, . . . , pgN} is the global best position. The velocity of
the ith particle is Vi = {vi1, vi2, . . . , viN}. Each particle of the
swarm updates its velocity and position using the following
formulas:

Vt+1
i = w ∗Vt

i + c1 ∗ rand()∗ (Pti −Ut
i

)

+ c2 ∗ Rand()∗
(
Ptg −Ut

i

)
,

(3)

Ut+1
i = Ut

i +Vt+1
i , (4)

where t denotes the iteration number, c1 and c2 are learning
factors (nonnegative constants), controlling (or regulating)
the influence of Pi and Pg , the function rand() and Rand()
generate a random number ([0∼1]), and w is the inertia
weight factor.

A problem-specific fitness function (symbolized by f )
is employed to measure the performance of each particle.
Thereby, for a minimization problem, Pi and Pg can be found
in current iteration as follows:

Pt+1
i =

{
Pti if f

(
Pti
) ≤ f

(
Ut
i

)

Ut
i if f

(
Pti
)
> f

(
Ut
i

)
,

(5)

Ptg = arg min
Pti

[
f
(
Pti
)]
. (6)

To date the PSO technique has been well developed for
the continuous problem, but not in discrete domain.

2.2. The dPSO Algorithm for Phase Unwrapping

2.2.1. Particle and Swarm Initialization. Any problem adopt-
ing the PSO algorithm has to be interpreted into PSO
particle form. For phase unwrapping, every particle should
be composed of some elements corresponding to the indexes
of residues. If we calculate all the residues in the wrapped
phase image at one stroke, sometimes the size of the particle
may be too large and the swarm size required may be
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enlarged accordingly. This may result in a poor solution
and/or extending the convergence time. To avoid this, the
whole image is divided into sub regions and therefore the
residues are set into different small groups.

The process can be described as follows.

(1) The image is partitioned on the basis of its phase
derivative variance map. The phase derivative vari-
ance is defined as follows [5]:

Zm,n =

√
∑(

Δϕxi, j − Δϕxm,n

)2
+

√
∑(

Δϕ
y
i, j − Δϕ

y
m,n

)2

l2
,

(7)

where for each sum the indexes (i, j) cover over the
l × l window centered at the pixel (m,n). The terms
Δϕxi, j and Δϕ

y
i, j are the wrapped phase gradients in the

l × l windows, and Δϕxm,n and Δϕ
y
m,n are the averages

of these wrapped phase gradients. In this paper l = 3.

(2) Based on an appropriate threshold, the phase deriva-
tive variance map can be converted into a binary one,
where the low phase derivative variance values turns
out to be 0 and the high ones becomes to be 1. In
this way the image is divided into separate areas. To
obtain a proper threshold, a classical approach called
Otsu’s method [11] has been adopted in this study.

(3) It is observed that the majority of residues cluster in
the patches of value 1. Thus the residues are grouped
by taking the above steps.

In each region the indexes of the residues are inserted in
two arrays regardless of the order. One is a positive polarity
residue array, and the other is a negative polarity residue
array. Provided there are M positive polarity residues and
N negative polarity residues in one region, respectively, the
positive residue array and the negative one are accordingly
denoted as {s1, s2, . . . , sM} and Ui = {ui1,ui2, . . . ,uiN}. The
former will be fixed throughout all generations and serves
as a reference. And the later acts as a particle U1 of the
initial swarm. The rest particles of the swarm are generated
via arranging the order of the elements in U1 in a random
manner.

2.2.2. Fitness Estimate. From the abovementioned, it can be
easily seen that the dPSO algorithm is used to find out the
best matched order of the elements in the particle with the
reference array.

In dPSO, the quality of the current solution is judged by
the fitness function. Since the branch-cut phase unwrapping
must minimize the total length of branch cuts, the corre-
sponding fitness function is obviously for calculating the
total length of branch cuts in the wrapped phase image. Here
we employ Euclidian distance to assess the total cut length:

f =
min(M,N)∑

j

√(
xsj − xuij

)2
+
(
ysj − yuij

)2
, (8)

where x and y denote the residue’s x-coordinate and y-
coordinate.

2.2.3. Velocity Update. Owing to the attribute of dPSO
algorithm for branch-cut phase unwrapping, the iterative
velocity in formula (3) should be a set of permutation
operators rather than a usual vector. Various permutation
operators have been introduced for discrete particle swarm
optimization. Here we choose the adjustment operator
[12], not the swap operator [13, 14], as the permutation
operator. This is because compared with the swap operator,
the adjustment operator avoids returning to the previous
position [12].

In addition, during all the iterations, w is set to be linearly
varied ([0.9∼0.4]) [10]. This setting considers the global
searching capacity and convergence rate of the optimization:

w = 0.9− 0.5×
(
t

T

)
, (9)

where T is the maximal iteration times.
To make formula (3) suitable for the dPSO operation,

some concepts are given as follows.

Definition 1. The adjustment operator AO(k, l) is defined as
deleting the element in the kth position and popping it in the
lth position in the array.

For example, AO(5, 3) acting on the array Ui =
{5, 1, 4, 2, 3} gets a result U ′

i = {5, 1, 3, 4, 2}.

Definition 2. One or more adjustment operators make up
an adjustment sequence (AS). That is AS = {AO(k1,l1),
AO(k2, l2), . . . , AO(kn, ln)}.

Acting an AS on an array means that every adjustment
operator of the sequence acts on the array in turn. Therefore,
in the AS, it is critical to properly arrange the order of
adjustment operators.

Definition 3. The plus sign “+” between ASs has its new
meaning. It is defined as forming a new longer AS by putting
the latter behind the former.

For example, AO(2, 4) + AO(5, 4) = {AO(2, 4),
AO(5, 4)}, {AO(2, 4), AO(5, 4)} + AO(3, 1) = {AO(2, 4),
AO(5, 4), AO(3, 1)}, {AO(2, 4), AO(5, 4)} + {AO(1, 3),
AO(5, 4)} = {AO(2, 4), AO(5, 4), AO(1, 3), AO(5, 4)}. This
operation does not satisfy the commutative law.

Definition 4. The minus sign “−” between two arrays means
constructing an AS which can act on the array after minus
sign to obtain the array before.

Supposing there are two arrays, according to the array
before minus sign from left to right, this AS can be obtained
by adjusting the order of the array after. For example, in
W − R, W = {1, 4, 3, 2, 5} and R = {1, 5, 4, 2, 3}. W(2) =
R(3), so the first adjustment operator of AS is AO(3, 2), and
the first new array R′ = {1, 4, 5, 2, 3}. Then W(3) = R′(5), so
the second adjustment operator is AO(5, 3), and the second
new array is R′′ = {1, 4, 3, 5, 2}. W(4) = R′′(5), so the third
adjustment operator is AO(5, 4), and we finally obtain the
same array as W . Thus the calculation ends and AS = W −
R = {AO(3, 2), AO(5, 3), AO(5, 4)}.

Definition 5. The multiplication sign “∗” between two real
numbers is simply the operation of multiplication.
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Definition 6. The sign “∗” between a real number and an
AS means reserving a certain amount of the adjustment
operators in the AS in turn when the real number is in the
range (0, 1).

Given that the number of adjustment operators in the
AS denotes as ||AS||, the number of retaining adjustment
operators is [b||AS||], which rounds the product of b and
||AS|| to the nearest integer.

2.2.4. Position Update. Similarly, the formula (4) has to be
redeclared to fit the requirement of the dPSO.

Definition 7. The plus sign “+” between an array and an AS
means acting the adjustment operators of the AS on the array
in order. For example, given Ui = {5, 1, 3, 2, 4} and AS =
{AO(2, 1), AO(2, 5)}, Ui + AS = {1, 3, 2, 4, 5}.

It is obvious that the operations defined in Definitions 4
and 7 are inverse to each other.

2.2.5. The Procedure Description of dPSO Algorithm for Phase
Unwrapping. The process of using the dPSO algorithm for
phase unwrapping is summarized as follows.

(1) According to Section 2.2.1, the residues in the image
are divided into several clusters. Set h = 1.

(2) Do the following steps in the hth group of residues.

(3) Set values to the parameters of dPSO, which include
the learning factors (c1, c2), the maximal iteration
times (T), and the number of particles in swarm, and
also the termination criteria.

(4) Initialize the swarm according to Section 2.2.1. Each
particle has its random velocity, that is, AS. Set t = 1.

(5) Evaluate the fitness of every particle according to
formula (8) and find the current Pi Pg by formula (5),
(6), respectively. Calculate the current inertia weight
factor according to formula (9).

(6) Set t = t + 1. Use formula (3) to get the new velocity
Vi. Then calculate the new position Ui according to
formula (4).

(7) Repeat (5)-(6) until t = T or meeting the termination
criteria.

(8) Pg is the best indexes order of the negative polarity
residues matched with the positive ones in this group.

(9) Set h = h + 1. Repeat (2)–(8) until h equals the
number of the residues groups plus 1.

2.3. Branch Cuts and Unwrapping. Once the best match in
every group has been found by dPSO, each pair of two
matching opposite polarity residues are connected by the
branch cuts. It is worth mentioning that, owing to that the
number of opposite polarity residues is not always equal to
each other, there are usually one or more residues left in each
group. Then the nearest-neighbor algorithm [7] is employed
to place branch cuts to balance these remaining residues. So
far all the residues have been balanced by branch cuts.

Finally, the phase data can be unwrapped by flood-fill
algorithm [15, 16], without crossing the branch cuts as
follows:

(1) Choose a start pixel, whose phase value is stored as
an unwrapped phase value in the solution matrix.
The four neighboring pixels are unwrapped next
and their unwrapped phase values are placed in the
solution matrix. These four pixels are inserted in the
unwrapped list.

(2) Pick (and then eliminate) a pixel from the unwrapped
list. Unwrap the phase values of its four neighboring
pixels, avoiding pixels that have been unwrapped.
Insert these pixels in the unwrapped list and put their
unwrapped phase values in the solution matrix.

(3) Repeat (2) until the unwrapped list becomes empty.

In fact, it does not always mean that all the pixels
have been unwrapped when the unwrapped list becomes
empty. Because sometimes there are some pixels in the image
encircled by the branch cuts, they cannot be unwrapped if
not crossing the branch cuts.

2.4. Weighted L0 Measure. Weighted L0 measure, the most
general/practical error measure to consider [5], is used to
evaluate the quality of an unwrapped solution:

ε = 1
rc

⎡
⎣
r−1∑

i=1

c∑

j=1

wx
i, j

∥∥∥ψ
(
i + 1, j

)− ψ(i, j)− Δϕxi, j
∥∥∥

0

+
r∑

i=1

c−1∑

j=1

w
y
i, j

∥∥∥ψ
(
i, j + 1

)− ψ(i, j)− Δϕ
y
i, j

∥∥∥
0

⎤
⎦,

(10)

where r and c are the number of rows and columns, wx
i, j and

w
y
i, j are user-defined weights, and the L0 norm measures a

count of the number of pixels at which the gradients of the
unwrapped solution mismatch the wrapped phase gradients.
In this paper the weights adopted are derived from the quality
map mentioned above, not just omitted (i.e., equal to 1).

3. Results and Discussion

We have tested the performance of the proposed algorithm
on both simulated and MRI phase data on a PC (Intel 2 Quad
CPU 2.39 GHz, MATLAB). We set both learning factors
(c1, c2) used in dPSO to be 2. The results were compared with
the well-known Goldstein’s and the MCM algorithms.

3.1. Simulation Results. The proposed algorithm was imple-
mented on a simulated wrapped phase image with salt and
pepper noise (the signal-to-noise ratio is 7.58 dB), which
has 2460 residues. Figure 2(a) shows the simulated wrapped
phase image. And its residue distribution is shown in
Figure 2(b), where the positive and negative residues are
marked as white and black pixels, respectively.

The resultant unwrapped phase image in Figure 3(a)
was achieved by dPSO using a swarm of 300 particles and
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(a) (b)

Figure 2: (a) A 512 × 512 simulated wrapped phase image, (b) its residue distribution including 2460 residues, 1231 positive polarity
residues (white pixels), and 1229 negative polarity residues (black pixels).
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Figure 3: The top row is the unwrapped phase image for the simulated wrapped phase map in Figure 2(a) achieved by (a) dPSO, (b)
Goldstein’s, and (c) MCM algorithms. The bottom is the corresponding difference map got by (d) dPSO, (e) Goldstein’s, and (f) MCM
algorithms.

T = 1000. Figures 3(b) and 3(c) depict the correspond-
ing unwrapped phase images obtained by Goldstein’s and
MCM algorithms, respectively. We rewrapped these resultant
solutions and subtracted the original wrapped phase data
from them. The corresponding difference maps, which are
plotted in 3D visualization, are shown in Figures 3(d)–3(f).
As mentioned in Section 1, the difference between the
wrapped phase and the true phase is an integer multiples of

2π. As a result, these curve surfaces of difference maps give
a visual representation of the deviations between the true
phases and the results, which can illustrate the accuracy of
the unwrapped solutions directly. The average value of the
difference map is called average difference.

The performance of dPSO with respect to the other two
algorithms can clearly be seen in Table 1. In terms of weight-
ed L0 measure, average difference, and total cuts length,
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Table 1: Comparing dPSO with other algorithms for the simulated phase image in Figure 2(a) in terms of weighted L0 measure, average
difference, total cuts length, and execution time.

Algorithm Weighted L0 measure Average difference (radian) Total cuts length Execution time (s)

dPSO 0.001301 0.873e − 5 1310 1328

Goldstein’s 0.001384 3.77e − 5 1313 79

MCM 0.001286 0.365e − 5 1298 3513

(a) (b)

Figure 4: (a) A 44 × 44 displacement encoded MRI heart phase image, (b) its corresponding residue distribution involving 396 residues,
198 positive polarity residues, and 198 negative polarity residues.

the dPSO algorithm is better than the Goldstein’s, but not
as good as the MCM. On the other hand, the execution
time of dPSO is much less than that of the MCM, but not
comparable to that of the Goldstein’s.

3.2. Results of MRI Data. The proposed algorithm was also
executed on a displacement encoded MRI heart phase data
set [17] with 396 residues. The wrapped phase image and its
corresponding residue distribution are shown in Figure 4.

Figures 5(a)–5(c) depict the branch-cut distribution
achieved by the three algorithms, where the black pixels mark
the branch cuts. The dPSO result in Figure 5(d) was obtained
by using a swarm of 300 particles. And the results of the other
algorithms are shown in Figures 5(e) and 5(f), respectively.
In Figure 5(e) several patches are isolated, two large ones in
the upper part, two small ones in the middle, and a very
large one in the lower right part. Compared with Figures 4(b)
and 5(b), it is easy to observe that these patches are com-
pletely isolated by branch cuts, which would lead to an incor-
rect unwrapping. In addition, the isolated areas tend to arise
in the regions with dense residues, because in such regions
the branch cuts are often close to each other and have more
possibility to encircle some pixels. However, in Figures 5(d)
and 5(f) the isolated patches are much smaller and less.
The dipole branch-cut methods appear to be less likely to
isolate regions in the phase image by branch cuts, since the
branch cuts balance the residues in pairs not in clumps. The

difference maps of the three approaches are then generated
like in Section 3.1, shown in Figures 5(g)–5(i). Intuitively,
both the dPSO and MCM produce more desirable results
than the Goldstein’s.

As shown in Table 2, the Goldstein’s algorithm is ex-
tremely fast. Neither dPSO nor MCM is comparable to it. But
the proposed approach has the smallest weighted L0 measure
and average difference. In addition, its total cuts length is the
shortest.

Another example is the MRI head phase data. The
wrapped phase image is shown in Figure 6(a). Figure 6(b)
depicts its residues distribution. The unwrapped phase
images achieved by the dPSO, Goldstein’s, and MCM algo-
rithms are displayed in Figures 7(a)–7(c), respectively.
Obviously, in Figure 7(b) the surrounding area was not
unwrapped at all. According to the previous analysis, the
Goldstein’s method isolates this area by branch cuts. In
comparison to Figure 6(a), the surrounding part roughly
is the back ground with dense noise. However, due to the
property of dipole branch-cut phase unwrapping method
the branch cuts could hardly enclose the surrounding area,
which certainly caused unwrapping phases in this area. The
same inferences can be also made according to the difference
maps of three methods shown in Figures 7(d)–7(f).

The weighted L0 measure, average difference and total
cuts length are calculated over the whole image whether the
pixel is inside the region of interest (ROI) or background.
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Figure 5: The top row is the branch-cut distribution for the MRI heart phase image in Figure 4(a) achieved using (a) dPSO, (b) Goldstein’s,
and (c) MCM algorithms. The middle is the corresponding unwrapped phase result of (d) dPSO, (e) Goldstein’s, and (f) MCM algorithms.
The bottom is the corresponding difference map of (g) dPSO, (h) Goldstein’s, and (i) MCM algorithms.

Table 2: Comparing dPSO with other algorithms for the displacement encoded MRI heart phase map in Figure 4(a) in terms of weighted
L0 measure, average difference, total cuts length, and execution time.

Algorithm Weighted L0 measure Average difference (radian) Total cuts length Execution time (s)

dPSO 0.052223 0.056251 310 142

Goldstein’s 0.109667 0.294767 468 8

MCM 0.052490 0.076967 317 203

Thereby in these three respects, as shown in Table 3, the
dPSO and MCM algorithms are much better than the
Goldstein’s. Though the dPSO method does not get a better
solution than that of the MCM, there is little difference
between them. That is, dPSO is comparable to MCM.

Furthermore the former converges nearly 68% faster than the
latter.

Viewing dPSO’s performance on these three exam-
ples, we can find that the dPSO algorithm takes more
time to achieve an optimal solution when plenty of residues
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(a) (b)

Figure 6: (a) A 256× 256 MRI head phase image, (b) its corresponding residue distribution containing 9795 residues, 4904 positive polarity
residues, and 4891 negative polarity residues.
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Figure 7: The top row is the unwrapped phase image for the MRI head phase image in Figure 6(a) achieved by (a) dPSO, (b) Goldstein’s,
and (c) MCM algorithms. The bottom is the corresponding difference map got by (d) dPSO, (e) Goldstein’s, and (f) MCM algorithms.

Table 3: Comparing dPSO with other algorithms for the MRI head phase map in Figure 6(a) in terms of weighted L0 measure, average
difference, total cuts length, and execution time

Algorithm Weighted L0 measure Average difference (radian) Total cuts length Execution time (s)

dPSO 0.064380 0.025642 9871 979

Goldstein’s 0.156827 0.665523 25533 41

MCM 0.063179 0.021957 9846 3052
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uniformly scatter throughout large areas. This is because the
pixels in each of these areas often have similar quality and
then the residues in each area can hardly be separated into
more than one group, which results in the increase of the
particle size for every group.

4. Conclusions

We have presented a new branch-cut phase unwrapping
method based on dPSO algorithm in this paper. Both
simulated and real wrapped phase data were used to test
the performance of the proposed algorithm. The results of
dPSO were compared with the Goldstein’s and the MCM
algorithms. It was found that the dPSO method is better
than Goldstein’s algorithm in terms of weighted L0 measure,
average difference and total branch cuts length. Moreover,
the dPSO is much faster than the MCM algorithm in getting
a global optimum solution while it is comparable to the
latter in terms of weighted L0 measure, average difference
and total branch cuts length. Generally speaking, it has
been demonstrated to be robust, effective for the phase
unwrapping application.

In addition, it is capable of dealing with large branch-
cut problem with thousands of residues. The complexity of
the dPSO algorithm increases when the number of residues
in a group increases, as the length of the particle extends
which requires a larger swarm size. Future research will make
this algorithm to be more efficiently operated for the phase
unwrapping study.
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