
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 481923, 25 pages
doi:10.1155/2012/481923

Research Article

A Generalized Gamma Mixture Model for
Ultrasonic Tissue Characterization

Gonzalo Vegas-Sanchez-Ferrero, Santiago Aja-Fernandez,
Cesar Palencia, and Marcos Martin-Fernandez

Laboratorio de Procesado de Imagen, ETSI Telecomunicación Edificio de las Nuevas Tecnoloǵıas,
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Several statistical models have been proposed in the literature to describe the behavior of speckles. Among them, the Nakagami
distribution has proven to very accurately characterize the speckle behavior in tissues. However, it fails when describing the
heavier tails caused by the impulsive response of a speckle. The Generalized Gamma (GG) distribution (which also generalizes
the Nakagami distribution) was proposed to overcome these limitations. Despite the advantages of the distribution in terms of
goodness of fitting, its main drawback is the lack of a closed-form maximum likelihood (ML) estimates. Thus, the calculation of
its parameters becomes difficult and not attractive. In this work, we propose (1) a simple but robust methodology to estimate the
ML parameters of GG distributions and (2) a Generalized Gama Mixture Model (GGMM). These mixture models are of great
value in ultrasound imaging when the received signal is characterized by a different nature of tissues. We show that a better speckle
characterization is achieved when using GG and GGMM rather than other state-of-the-art distributions and mixture models.
Results showed the better performance of the GG distribution in characterizing the speckle of blood and myocardial tissue in
ultrasonic images.

1. Introduction

Among the noninvasive imaging modalities, probably, the
most widespread are the ultrasound imaging. The main
reason of its success is that it provides a low-cost way to help
diagnosing and can be used for many medical applications.
However, ultrasonic (US) images are characterized by the
presence of a peculiar granular pattern: the so-called speckle.

This term was adopted from the field of laser optics [1] in
the early 1960s due to the similarity of the patterns between
laser optics and ultrasonics. Although the nature of the
speckle in US images stems from a different phenomenon,
there still share some similarities. Both patterns come from
the random interference of many coherent wave components
reflected from different microscopic elements. In the case of
US, the volume, the number of effective scatterers, and the
acquisition process contribute to the formation of a speckle
[2].

The analysis of backscattered echo from tissues needs a
proper description of the ultrasonic signals. For this purpose,
and due to the random nature of the speckle, several statis-
tical models have been proposed in the literature. This char-
acterization can be used either for segmentation [3], classi-
fication [4] purposes or for filtering the speckle itself [5–8].
The latter usually considers the speckle as an undesired con-
sequence, since it degrades resolution and adds spatial noise
to the image. Thus, filtering is commonly applied as a prepro-
cessing step for further segmentation of regions of interest or
to extract relevant measures for physiological analysis.

The statistical description of US signals provide an
important information of the backscattered echo from tis-
sues. The parameters of the statistical models allow identify-
ing the features of tissues and provides important descriptors
for classification. Some of the filtering algorithms relay on
a Bayesian approach where an accurate statistical model
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becomes necessary. As a consequence, modeling the ampli-
tude statistics of US signals has been a very active area.

Several statistical models have been proposed in the last
decades. Probably the most wellknown is the Rayleigh model,
which is a one-parameter distribution which describes the
so-called fully formed (or developed) speckle. This proba-
bilistic distribution describes the behavior of a speckle when
a high number of effective scatterers are present in the resol-
ution cell. However, real images show a deviation from this
model, this non-Rayleigh behavior can be due to a small
number of scatterers in the resolution cell or when there
are some dominant components in the cell. The most com-
monly accepted distributions that try to model non-Rayleigh
distributions are the Rice (fully resolved speckle),K (partially
formed speckle), and Homodyned K (partially resolved
speckle).

Although, those models are based on physical assump-
tions of the backscattering process, some other distributions
have proven to provide a good performance on real images.
This is the case of Gamma [9–11] and Nakagami [12] dis-
tributions. The first is proposed as a two-parameter distri-
bution that describes the result of interpolated/filtered fully
formed speckle [9] and also has shown good results in
empirical tests among other distributions [10, 11]. The Nak-
agami distribution proposed by Shankar for the case US cha-
racterization [12] is also a two-parameter distribution which
generalizes the Rayleigh distribution. This distribution was
adopted from the models proposed to describe the statistics
of the returned echo radar.

The capability of the Nakagami distribution to model
the backscattering from tissues for fully resolved and
fully formed speckle made it become the most commonly
accepted model for tissue characterization. However, the
tails of the probabilistic density functions of Nakagami, K,
Rayleigh, or Gamma do not show the impulsive response
of speckle which originate heavier tails. In order to describe
this impulsive response, a generalized Nakagami distribution
was proposed by Shankar in [13]. This is a three-parameter
model which has shown a better behavior than the Nakagami
or Rayleigh, an expected result since it is a generalization
of the other models. However, the generalized Nakagami
distribution does not have closed-form maximum likelihood
estimates (MLE) and, thus, it makes their use difficult.
Note that, though Shankar in [13] said that the MLE can
be obtained, the equations used were based on the results
from Stacy and Mihram [14], which were calculated by the
methods of moments and they also expressed the difficulties
of obtaining an MLE: “Closed expressions for solutions to
the maximum likelihood equations are highly unlikely.” It is
important to note that the results of [14] were obtained for
the estimation of the Generalized Gamma (GG) distribution
which is essentially the same as the generalized Nakagami
distribution but with another parametrization.

The different nature of tissues is reflected in a different
response of the speckle. Hence, a mixture model has shown
to be a natural strategy for statistically describing the features
of tissues. This approach has been previously used for seg-
mentation purposes in the case of Nakagami mixture models
(NMMs) by Destrempes et al. in [3], for classification with

Rayleigh Mixture Models by Seabra et al. in [4], and for filter-
ing with a mixture of Gamma and Gaussian Mixture Models
in [8, 9]. All these approaches make use of the Expectation-
Maximization (EM) [15] algorithm to calculate the parame-
ters that better fit the empirical probability distribution func-
tion (PDF). This method is particularly useful when the MLE
exists since it maximizes the expected value of the log-like-
lihood function with respect to the condition of the belong-
ing to each tissue class for a given data.

The EM algorithm cannot be easily applied for the cal-
culation of a Generalized Gamma Mixture Model (GGMM)
without an MLE. However, some interesting results have
been recently published on the calculation of the MLE of the
Generalized Gamma which permit efficient computation of
the GGMM.

The aim of this work is to revitalize the use of the Gen-
eralized Gamma distribution (also called, Generalized Nak-
agami Distribution) for tissue characterization. For this pur-
pose, we present two main contributions: first, we propose
a simple methodology to calculate the ML estimate which
offers robust results comparing to the methods in the litera-
ture [14, 16, 17]. Second, two different methods were pro-
posed for the calculation of the GGMM parameters. Both
were developed by applying the EM method in the derivation
of the proposed ML method. Results when comparing both
methods to the GMM and NMM in real images showed the
better fitting of the GGMM. The GGMM provides a posterior
probability of belonging to each tissue class which can be of
help for further filtering, segmenting, or classifying methods.

The rest of the paper is structured as follows. In
Section 2.1, we introduce the distributions most commonly
used for characterizing speckle of ultrasonic images. There,
the GG distribution is motivated as a suitable generalization
of the Gamma and Nakagami distributions which fail in
describing the impulsive response of speckle. Then, in
Section 2.2, we analyze the methods proposed in the liter-
ature for estimating the parameters of the GG distribution
and a simple but robust method is proposed (Section 2.2.4).
One of the advantages of this method is that it can be easily
extended to estimate the parameters of a GGMM by means
of the EM algorithm. Section 2.3 is devoted to the extension
of the ML method to obtain the parameters of the GGMM
where two algorithms are proposed. The performance of the
ML estimate derived in Section 2.2.4 is compared to other
state-of-the-art methods in Section 3.1 for synthetic data and
for real cases in Section 3.2. The performance of the GGMM
is analyzed in Section 3.3, where the GGMM is compared to
NMM and GMM. Finally, we propose some applications for
the GGMM in Section 3.4. In Section 4, we conclude.

2. Materials and Methods

2.1. Statistical Models for Describing the Nature of Speckle.
The formation of US images begins with the emission of
a pulse packet which travels through the tissue. The back-
scattering produced by the scatterers in the resolution cell
contribute to the change of the pulse shape according to the
characteristics of the media, that is, the number of scatterers
as well as their size [4, 9, 12].
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The contribution of the backscattered echo, s(t), can be
treated as a random walk due to the random location of the
scatterers in the resolution cell [12]:

s(t) =
N∑

n=1

αn cos
(
ω0t + φn

)
, (1)

where ω0 is the mean frequency of excitation and N is the
number of effective scatterers in the resolution cell. The
phases, φn, are usually modeled as uniformly distributed in
[0, 2π] and the amplitude is usually considered to be Normal
distributed.

The fully formed speckle model assumes a high number
of scatterers, so the Central Limit Theorem applies and the
backscattered echo can be expressed as

s(t) = X cos(ω0t) + Y sin(ω0t), (2)

where X and Y are zero mean identically distributed Gaus-
sian distributions.

Then, the envelop of the backscattered signal echo, R =√
X2 + Y 2 is Rayleigh distributed [1, 18]:

fR(r) = r

σ2
e−r

2/2σ2
u(r), (3)

where u(·) is the Heaviside step function defined as

u(x) =
{

0, x < 0

1, x ≥ 0.
(4)

Under the assumption of a high number of effective
scatterers but with the presence of resolvable structures in the
resolution cell (specular component, C), X and Y become
nonzero Gaussian distributions. The envelop does no longer
follow a Rayleigh distribution but a Rician one [18]:

fR(r) = r

σ2
e−(r2+C2)/2σ2

I0

(
rC

σ2

)
u(r), (5)

where I0(·) is the modified Bessel function of first kind.
When the number of scatterers decreases and the Cen-

tral Limit Theorem cannot be applied, more complicated
distributions are proposed to model the distribution of
the envelope. Concretely, the K distribution models the
case when the number of scatterers is a random variable
itself, which is modeled as a Poisson whose local mean
is Gamma distributed, this is equivalent to consider σ as
gamma distributed [2]:

fR(r | σ) = r

σ2
e−r

2/2σ2
u(r),

fσ(σ) = 1
2b2

1
Γ(ν + 1)

(
σ

2b2

)
e−σ/2b

2
u(σ),

(6)

so, the PDF of R is

fR(r) =
∫
fR(r | σ) fσ(σ)dσ

= 2
bΓ(ν + 1)

(
σ

2b2

)ν+1

Kν

(
r

b

)
u(r),

(7)

where Kν(·) is the modified Bessel function of the second
kind.

A generalization of the previous models appears when
a specular component is considered and the number of
scatterers, N , follows a negative binomial distribution. This
is the case of the homodyned-K distribution [19]:

fR(r) = r
(∫

x

1 + x2σ2/2ν
J0(xC)J0(xr)dx

)
u(r). (8)

This PDF has no closed expression and this limits its use.
On a completely different approach, Shankar in [12] pro-

posed a Nakagami distribution as a “simpler universal model
for tissue characterization.” Unlike the previously reviewed
models, the Nakagami is not based on physical arguments or
on a bottom-up modeling of the scattering process. However,
it has empirically shown a better performance than the
Rayleigh and Rice distributions.

The Nakagami PDF is as follows:

fR(r) = 2mmr2m−1

Γ(m)(2Ω)m
e−(m/2Ω)r2

u(r). (9)

This distribution offers good properties to describe the
backscattered echo: the Rayleigh distribution is a particular
case of the Nakagami (m = 1) and, additionally, when m > 1
is similar to the Rice distribution. However, this distribution
has some limitations. The Nakagami model cannot fit the
heavier tails of the empirical PDFs due to the impulsive
nature of scatterers [13].

In order to describe the impulsive response of scatterers,
Shankar proposed in [13] a generalized Nakagami distribu-
tion which is essentially the same as a Generalized Gamma
distribution [14]. However, this distribution presents some
difficulties in the estimation of its parameters, since there are
no closed equations for the ML estimates.

In the next section, we describe some methods that
have been used in the literature with special attention to
methods that provide an ML estimate of the GG parameters.
Additionally, we propose a simple method to calculate the
ML estimates of the parameters. The results obtained in the
derivation of this ML method provide the foundations for
the development of the Generalized Gamma Mixture Model,
which is the main contribution of this work.

2.2. Estimation of Parameters of the Generalized Gamma

2.2.1. Moments Method. This method was proposed by Stacy
in [14]. For the derivation of the method, the following para-
metrization was adopted:

f
(
x | a, ν, p

) = p
xpν−1

apνΓ(ν)
e−(x/a)pu(x), (10)

where the parameters (a, ν, p) are all positive.
This is the definition of the GG distribution hereafter. For

a given p > 0, all moments E{Xr} exist.
Now, let Z be the random variable (RV) defined as

Z = log
(
X

a

)p

= p
(
log(X)− log(a)

)
. (11)
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For this RV, the central moments, μr(·), of rth order are

μr(Z) = prμr
(
logX

)
. (12)

Additionally, it is easy to show that, given a RV, X , which
follows a GG distribution (X ∼ GG(a, ν, p)), the following
properties hold:

kX ∼ GG
(
ka, ν, p

)
, k > 0

Xm ∼ GG
(
am, ν,

p

m

)
, m /= 0.

(13)

So, a new RV Z can be defined as Z = log(X/a)p where
(X/a)p follows a Gamma distribution of parameter ν. Hence,
the log-transformed distribution of the Gamma RV is the
following:

fZ(z) = fGG(ez | 1, ν, 1)ez = 1
Γ(ν)

exp
(
νz − exp(z)

)
, (14)

where z ∈ R.
The moment generating function of Z is easily calculated

as E{etZ} = (t+ν)/ν. Where E{·} is the expectation operator.
So, the rth moment of Z is the following:

E{Zr} = Γ(r)(ν)
Γ(ν)

= Ψ(r)(ν), (15)

where Ψ(r) is the polygamma function defined as

Ψ(r)(x) = dm+1

dx
logΓ(x). (16)

Finally, the three first central moments are defined as:

pE
{

logX − log a
} = Ψ(0),

p2μ2
(
logX

) = Ψ(1),

p3μ3
(
logX

) = Ψ(2).

(17)

These equations can be used to estimate the parameters
of the GG(a, ν, p); â, ν̂, p̂, by approximating the moments by
means of the sample moments:

â = exp
(
y −Ψ(0)(ν̂)

)
,

p̂ = − sign
(
gy
)
√
Ψ(1)(ν̂)

Sy
,

−
∣∣∣gy
∣∣∣ = Ψ(2)(ν̂)

(Ψ(1)(ν̂))3/2 ,

(18)

where y = (1/N)
∑N

i=1 log xi, with {xi}Ni=1 the set of samples
of X ; S2

y is the sample variance of {yi}Ni=1 = {log xi}Ni=1, and
gy its sample skewness.

The estimates are derived by means of calculating the
value ν̂ from the last equation of (18). So, a numerical cal-
culation needs to be performed. In the original article [14],
Stacy and Mihran provided a graph representing Ψ(2)(ν)/
(Ψ(1)(ν))3/2 for a range ν ∈ [0.1, 5].

This method, though provides a quite straight-forward
calculation of the parameters, can provide estimates which
are outside the parameter space. Yet, it is highly sensitive to
the number of samples.

2.2.2. Heuristic Approaches. In order to avoid the problems
associated to the moments method, some heuristic methods
have been proposed in the literature. As examples, Gomes
et al. [16] proposed an iterative method which evaluates the
best performance of the χ2 goodness-of-fit test for a fixed
p (see the parametrization of (10)). The parameters of the
transformed samples Y = Xp, which are Gamma distributed,
were calculated by the moments method. At the end of the
loop, the set of parameters with least P value is chosen.

This method presents some shortcomings. First, the
parameters of the Gamma distributed data were calculated
by the moments method, so the problems associated to
the moments method are not circumvent. However, even
if a good estimate is calculated, the χ2 goodness-of-fit test
depends on the calculation of the estimated PDF which
strongly depends on the number of bins considered and the
assumption of a sample with sufficient large size.

Other heuristic method is the one presented by Wingo in
[20]. This method, based on the one proposed by Hager and
Bain [21], tries to solve the maximum likelihood equations
for the GG distribution. The log-likelihood, LL, of a RVX ∼
GG(a, ν, p) for the parametrization presented in (10) is

LL
(
a, ν, p | x

) = log

⎛
⎝
(

p

apνΓ(ν)

)n n∏

i=1

x
pν−1
i e−

∑n
i=1(xi/a)p

⎞
⎠

= n log
(
p
)− npν log(a)− n log(Γ(ν))

+
(
pν− 1

) n∑

i=1

log xi −
n∑

i=1

(
xi
a

)p

,

(19)

where x = {xi}ni=1 is the set of samples.
Now, calculating the derivatives with respect to the para-

meters and setting it equal to zero, one can obtain the ML
equations:

ap = 1
nν

n∑

i=1

x
p
i ,

p
n∑

i=1

log
(
xi
a

)
− nΨ(ν) = 0,

n

p
+ ν

n∑

i=1

log
(
xi
a

)
−

n∑

i=1

(
xi
a

)p

log
(
xi
a

)
= 0,

(20)

where Ψ(x) ≡ Ψ(0)(x) = Γ′(x)/Γ(x).
This system of equations can be reduced to a single non-

linear equation with p as the single unknown:

−Ψ(ν) +
p

n

n∑

i=1

log(xi)− log

⎛
⎝

n∑

i=1

x
p
i

⎞
⎠ + log(nν) = 0, (21)
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where

ν = −
⎛
⎝ p

n

n∑

i=1

log(xi)− p

∑n
i=1 x

p
i log(xi)∑n
i=1 x

p
i

⎞
⎠
−1

,

a =
⎛
⎝ 1
nν

n∑

i=1

x
p
i

⎞
⎠

1/p

.

(22)

So, the problem is reduced to calculate p from (21). Some
authors reported the difficulty of solving this equation
with the conventional numerical methods such as Newton-
Raphson [21] and conclude that the MLE may not exist.

In [20], the author faced the problem by analyzing
the effect of inappropriate zero finding algorithms. So, an
heuristic method for isolating roots of a general scalar non-
linear equation was proposed. This method makes use of the
root-isolation technique proposed in [22], which uses only
function values to isolate the roots in a compact interval of
the real line.

Though this method can provide an ML estimate of the
parameter by solving (21), it has to heuristically divide the
intervals where p is searched and calculate whether a root is
in it or not by means of the mean value and variance of the
function in each of the intervals, so many evaluations of the
function are required.

2.2.3. ML Approach. A very interesting analysis was recently
published by Noufaily and Jones in [17], where an iterative
approach is proposed to solve the likelihood equations, (20),
in a way that the individual equations are uniquely solv-
able. This result provides a very promising technique for cal-
culating the MLE parameters of the GG.

In that work, the log-likelihood equations were calcu-
lated following the re-parametrization proposed in [23].
Concretely, for a RV X which is distributed, X ∼ GG(a, ν, p),
the new RV Y = logX is calculated, whose PDF is the fol-
lowing:

fY
(
y
) = p

Γ(ν)
eypν

apν
exp

(
−e

yp

ap

)

= νν−1/2

σΓ(ν)
exp

(√
νw − νew/

√
ν
)

,

(23)

where y ∈ R, w = (y − μ)/σ , σ = 1/p
√

ν and μ = log(a) +
(1/p) log(ν).

So, in the end, the following equations have to be solved:

μ = σ
√

ν log S0, (24)

R(σ) ≡ S0

S1
− Y − σ√

ν
= 0, (25)

T(ν) ≡ log(ν)−Ψ(ν)− L√
ν
= 0, (26)

where L = (μ− Y)/σ and Sj = (1/n)
∑n

i=1 y
j
i exp(yi/σ

√
ν).

The important result of [17] is the demonstration that
both (25) and (26) are well behaved with unique solutions
in σ and ν, respectively. So, an iterative method can be

developed to calculate ν̂ by (26) from an initial guest of the
parameters and then σ̂ by solving (25). Finally, μ̂ is calculated
by replacing the previous estimates in (24). These estimates
can be used to calculate a new L to compute the new log-
likelihood function. By repeating these steps until a desired
accuracy, the estimates are achieved [23].

This method provides a fundamental result about the
behavior of the log-likelihood equations, and guarantees
their solution. However, the method does not provide any
proof concerning its convergence or the uniqueness of the
ML. Yet, this method needs to solve two nonlinear equations
by numerical techniques, whereas the method proposed by
Wingo in [20], previously described, only needs to solve a
linear equation.

2.2.4. The Proposed Approach. We propose a simple but
efficient method to calculate the ML estimates of the GG
distribution. The main advantage of the method is that it
can be easily implemented and has the same properties of
the method of [17], that is, the equation to solve are well
behaved with unique solution. Additionally, the method just
needs the calculation of just one non-linear equation and,
thus, the computing time is considerably reduced.

The method consists in transforming the RV, X ∼
GG(a, ν, p) by the following transformation Y = Xp0 where
p0 is a positive real number. So, the new PDF of Y is the fol-
lowing:

fY
(
y
) = p

p0

y(p/p0)ν−1

apνΓ(ν)
exp

(
− yp/p0

ap

)
u
(
y
)
. (27)

Note that this PDF follows a Gamma PDF when p0 = p.
Hence, a reasonable way to find the P value is to find the value
of p0 that maximizes the likelihood of the GG distribution
and also maximizes the Gamma distributed RV Y = Xp0 .

In order to see if this method provides a proper solution,
we first demonstrate that the ML estimate of the parameters
of the new random variable Y also maximizes the likelihood
of the GG distribution when p0 = p.

First, we calculate the ML estimates of the parameters of
(27) for p0 = p, whose log-likelihood is the following:

LLY = − npν log(a)− n log(Γ(ν))

+ (ν− 1)
n∑

i=1

log
(
yi
)−

n∑

i=1

yi
ap

.
(28)

The maximum with respect to the parameter a is easily
calculated by taking the derivative with respect to the a and
setting it equal to zero:

a
p
0 =

1
nν

n∑

i=1

yi. (29)

Finally, (28) can be maximized with respect to ν by intro-
ducing the value of a0:

log(ν)−Ψ(ν) = log

⎛
⎝ 1
n

n∑

i=1

yi

⎞
⎠− 1

n

n∑

i=1

log
(
yi
)
. (30)
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Now, by introducing a0 in the log-likelihood function of
the GG distribution, (19):

LLX = n log
(
p
)− nυ log

⎛
⎝ 1
nυ

n∑

i=1

yi

⎞
⎠− n log(Γ(ν))

+

(
ν− 1

p

) n∑

i=1

log
(
yi
)− nν.

(31)

Now, by maximizing with respect to ν, we obtain the fol-
lowing equation:

∂LLX

∂ν
≡ − n log

⎛
⎝ 1
n

n∑

i=1

yi

⎞
⎠ + n log(ν)

+
n∑

i=1

log
(
yi
)− nΨ(ν) = 0,

(32)

and finally, reordering terms, we obtain the same equation
for which ν0 is also a solution.

This result guarantees that there exists always a solution
for the ML estimate of the GG distribution (â, ν̂, p̂) and the
parameters â and ν̂ are those obtained for the ML estimate
for the transformed RV Y = X p̂. Hence, there is always a
solution for the MLE for a GG.

Additionally, since the MLE of a Gamma distribution
always exist for whatever positive yi values ((30) is well
behaved), the problem is reduced to finding the value p that
maximizes LLX among the ones that maximize LLY .

The search method for p was implemented by the Nelder-
Mead method [24] while the Brent’s algorithm was applied
for calculating ν [25].

This method does not demonstrate the uniqueness of p
as did not any of the methods in the literature. However, in
our experience, we agree with Noufaily and Jones [17] that
the global maximum of the LLX appears to be distant to
any other local maximum.

The main advantage of the method here proposed is that
it is easy to implement and only one non linear equation
has to be solved, whereas the method of [17] needs to solve
two non-linear equations in each iteration and [20] method
needs several calculations of non-linear equations for each
interval considered for the isolation root technique.

2.3. Generalized Gamma Mixture Model. An additional
advantage of the proposed method for the calculation of the
MLE parameters for the GG distribution is that it can be
easily adapted for the calculation of the parameters of GG
Mixture Models (GGMM).

There were some attempts in the literature to obtain the
parameters of a GGMM. Concretely, in [26], they calculated
the GGMM by means of the Nelder-Mead and Gradient
descent methods for maximizing the log-likelihood. How-
ever, that method is strongly sensitive to the number of
mixtures since it is just a direct optimization of the log-like-
lihood score equations of the mixture model.

In this section, we derive the GGMM by applying the
Expectation-Maximization methodology [15] and combin-
ing them with the method used to calculate the MLE of the
GG distribution.

Let X = {xi}, 1 ≥ i ≥ N be a set of samples. These
samples are considered to be independent and identically dis-
tributed (IID) RVs. Now, the GGMM considers that these
samples result from the contributions of J distributions:

p(xi | Θ) =
J∑

j=1

πj fX
(
xi | Φ j

)
, (33)

where Φ is a vector of the parameters of the GGMM
(π1, . . . ,πJ ,Θ1, . . . ,ΘJ) and Θ j are the parameters of the PDF
(in our case the parameters of the GG, represented as ai, ν j ,
pj).

The joint distribution of IID samples is given by

p(X | Θ) =
N∏

i=1

p(xi | Θ). (34)

The EM is applied here to maximize the log-likelihood
function when some hidden discrete random variables Z =
{Zi} are introduced into the model. These RVs take values
in {1, . . . , J} and indicate the class for which each sample xi
belongs.

Now, defining Θ(n) as an estimate of the parameters of
the mixture in the nth iteration, the expectation step is per-
formed by calculating the expected value of the log-likeli-
hood LL(Θ | X ,Z):

Q
(
Θ | Θ(n)

)
= EZ|Θ(n){LL(Θ | X ,Z)}. (35)

In the maximization step, the new estimate Θ(n) is
obtained by maximizing the expectation of the log-likelihood
function Q(Θ | Θ(n)). These steps are iterated until a stop
criterion such as Q(Θ | Θ(n+1))−Q(Θ | Θ(n)) < Tol for some
preestablished tolerance (Tol) is reached.

The application of the EM algorithm for estimating the
parameters of mixture models has been applied for several
distributions, see, for example, [15, 27]. However, to the best
of our knowledge, this is the first time a mixture model is
presented for GG distributions.

In order to derive the estimates of the parameters in each
iteration, we first define the joint distribution of IID samples
X and the hidden random variables, Z as

p(X ,Z | Θ) =
N∏

i=1

p(xi, zi | Θ), (36)

where p(xi, ziΘ) = p(xizi,Θ)p(ziΘ).
Now, the log-likelihood function can be defined in the

following way:

LL(Θ | X ,Z) = log
(
p(X ,Z | Θ)

) =
N∑

i=1

log p(xi, zi | Θ)

=
N∑

i=1

log p(xi | zi,Θ) +
N∑

i=1

log p(zi | Θ)

=
N∑

i=1

log fX(xi | zi,Θ) +
N∑

i=1

logπzi .

(37)
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The expectation of the log-likelihood function with
respect to the hidden RVs when data {xi} and the previous
estimate Θ(n) are known as:

Q
(
Θ | Θ(n)

)
= EZ|Θ(n){LL(Θ | X ,Z)}

=
N∑

i=1

EZ|Θ(n),xi

{
log fX(xi | Θ) + log p(zi | Θ)

}

=
N∑

i=1

J∑

j=1

p
(
Zi = j | xi,Θ(n)

)

×
(

log fX
(
xi | Θzi

)
+ logπj

)
,

(38)

where πj = p(Zi = j | Θ) is the probability of xi to belong to
the class j.

The probability p(Zi = j | xi,Θ(n)) can be calculated by
applying the Bayes theorem as

p
(
Zi = j | xi,Θ(n)

)
=

fX
(
xi | Θ(n)

)
p
(
Zi = j | Θ(n)

)

p(xi | Θ(n))
. (39)

Note that (37) is composed of two terms, so the maxi-
mization step can be done to each term independently. For
the term depending on the πj some constraints have to be

considered since they must hold
∑J

j=1 πj = 1. An optimi-
zation via Lagrange’s multipliers can be done in a straight-
forward way and they guarantee a necessary condition for
optimality in this problem. The new Lagrange function with
λ as the Lagrange multiplier is the following:

Λ(π, λ) =
N∑

i=1

J∑

j=1

γi, j logπj + λ

⎛
⎝

J∑

j=1

πj − 1

⎞
⎠, (40)

where we introduced γi, j = p(Zi = j | xi,Θ(n)) to simplify
notation.

Now, calculating the derivative with respect to each πj

and setting it equal to 0, the following expression is derived:

N∑

i=1

γi, j = −λπ̂j . (41)

By summing both terms of the equation over j, we
obtain λ = −∑N

i=1

∑J
j=1 γi, j = −N and the estimates for the

parameters πj that maximize the Lagrange function (and the
likelihood function) are

π̂ j = 1
N

N∑

i=1

γi, j = 1
N

N∑

i=1

p
(
Zi = j | xi,Θ(n)

)
. (42)

For the calculation of the maximum of (37) with respect
to Θ j = (aj , ν j , pj), we first calculate the derivative with
respect to aj :

∂

∂aj

⎧
⎨
⎩

N∑

i=1

J∑

j=1

γi, j log fX
(
xi | Θ j

)
⎫
⎬
⎭ = 0, (43)

where the log-likelihood of p(xi | Θ j) is the one described in
(19) for one sample xi:

log fX
(
xi | Θ j

)
= log p − pν log(a)− logΓ(ν)

+
(
pν− 1

)
log xi −

(
xi
a

)p

.
(44)

The result is

âpj =
∑N

i=1 γi, jx
pj

i

ν j
∑N

i=1 γi, j
. (45)

Now, plugging (45) into (37) and deriving with respect
to ν j and setting it equal to 0

∂

∂ν j

⎧
⎨
⎩

N∑

i=1

J∑

j=1

γi, j log fX

⎛
⎝xi |

∑N
i=1 γi, jx

pj

i

ν j
∑N

i=1 γi, j
, ν j , pj

⎞
⎠

⎫
⎬
⎭ = 0. (46)

It results in the following equality:

log
(

ν j

)
−Ψ

(
ν j

)
= log

⎛
⎝
∑N

i=1 γi, jx
p
i∑N

i=1 γi, j

⎞
⎠ +

∑N
i=1 γi, j log

(
x
pj

i

)

∑N
i=1 γi, j

.

(47)

Note that (47) is essentially the same as (30), which is well
behaved and always has a unique solution. Thus, this non-
linear equation can be solved by numerical methods in the
same way as was performed in the MLE of the GG para-
meters. In our case, we also used the Brent’s algorithm [25].

The interval where the Brent’s algorithm is performed
can be derived by means of the following property:

1
2ν j

< log
(

ν j

)
−Ψ

(
ν j

)
<

1
ν j
. (48)

So, the desired value of v̂ j in the interval

1
2A

< ν̂ j <
1
A

, (49)

where

A = log

⎛
⎝
∑N

i=1 γi, jx
pj

i∑N
i=1 γi, j

⎞
⎠ +

∑N
i=1 γi, j log

(
x
pj

i

)

∑N
i=1 γi, j

. (50)

This property can be found in [28] and was also used in
[17] for the calculation of the ML estimates of the GG.

Now, the problem can be stated in the same way as
was done for the ML estimate proposed in Section 2.2.4.
We are interested in the parameter pj which maximizes the
likelihood for the component j ∈ [1, J]. So, for each pj , (45)
and (47) provide the estimate of aj and ν j , respectively. By
applying the Nelder-Mead algorithm to maximize the log-
likelihood function for each component j, as was done for
the ML estimates in Section 2.2.4, one can obtain the desired
ML estimates. We will refer to this method as the GGMM1

method.
It is important to note that the parameter estimates can

be also solved by extending the ML method of [17]. For
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this purpose, the parametrization proposed by Lawless [23]
can be applied to the mixture model as was explained in
Section 2.2.3.

The log-likelihood equations to be solved are completely
equivalent to (45) and (47) due to the invariance of the ML
estimates to the transformation Y = log(X). However, Law-
less’ parametrization allows us to extend the results of [17]
to the case of GGMM. For the sake of clarity, we rewrite the
parametrization:

σj = 1
pj
√

ν j
,

μj = log
(
aj

)
+

1
pj

log
(

ν j

)
,

kj = ν j .

(51)

With this parametrization, (45) becomes

μ̂ j =
√
kjσj log

(
S̃0

)
, (52)

where

S̃r =
∑N

i=1 γi, j y
r
i e

(yi/σj
√

kj )

∑N
i=1 γi, j

. (53)

So, in the case of the parameter σj which maximizes the
log-likelihood of Y = log(X):

∂

∂σj

⎧
⎨
⎩

N∑

i=1

J∑

j=1

γi, j log fY
(
yi | μ̂ j , σj , kj

)
⎫
⎬
⎭ = 0. (54)

It results in

S̃1

S̃0
− σj√

kj
−
∑N

i=1 γi, j yi∑N
i=1 γi, j

= 0. (55)

This equation is well behaved and all the theoretical
demonstrations obtained in [17] still hold: it is monotone
decreasing and, when lim σj → 0, the function takes the
value

ymax −
∑N

i=1 γi, j yi∑N
i=1 γi, j

> 0. (56)

As a conclusion, (55) has always a positive solution for
any μj and kj . Additionally, due to the invariance of the ML
estimates for the transformation Y = log(X), there always
exist a pj for any aj and ν j .

The solution is in the interval

0 < σ̂j <
√
kj

⎛
⎝ymax −

∑N
i=1 γi, j yi∑N
i=1 γi, j

⎞
⎠. (57)

So, the value can be calculated by any numerical method. We
used here also the Brent’s algorithm.

So, finally, from an initial guess of pj one can calculate
kj ≡ ν j from (47) and then use it to calculate the estimate of
σj from (55), in an iterative way until a desired tolerance is
reached.

This methodology generalizes the proposed method of
[17] for the case of GGMM and we will refer to it as the
GGMM2 method.

2.4. Implementation Generalized Gamma Mixture Model. In
this section, we detail the implementation of both of the pro-
posed methods for the GGMM.

In Algorithm 1, the Nelder-Mead method [24] was used

for the calculation of p(n)
j and the Brent’s algorithm [25] for

ν
(n)
j in the interval given in (49).

In the case of Algorithm 2, the Brent’s algorithm [25] was
used for calculating σ and k in the intervals of (57) and (49),
respectively.

The computational complexity of the previous GGMM
methods when compared to the calculation of a simple GG
depends on the number of components, J , assumed by the
model. In each iteration of the EM algorithm, the expected
parameters of each component have to be calculated. So, if
the time consumed to estimate a GG is T , the calculation of
the expected parameters of the mixture is J × T .

When other mixture models such as RMM, NMM, and
GMM are considered, the complexity of the EM method is
similar to the GGMM. Note that both the GMM and the
NMM need to solve a non-linear equation similar to (47)
so the consumed time of the solution is the same. The addi-
tional cost of calculating the GGMM parameters is due to the

calculation of the estimate of the parameter p(n)
j . If we define

the time to solve (47) and (45) as T1, and T2 as the time con-
sumed for solving p(n)

j , the computational time for a simple
GG (TGG) and a GGMM of J components (TGGMM) would be

TGG = T1 + T2,

TGGMM = J · (T1 + T2).
(58)

The estimated times in a Matlab (R2011a) implemen-
tation running in an ASUS G53SW laptop (Intel Core
i7 2630QM Processor, 2.2 GHz, 8 GB RAM) were T1 =
1.637 ms and T2 = 0.2056 s.

3. Results and Discussion

3.1. Performance of the ML Method. In this section, we show
the performance of the proposed methods for calculating
the parameters of a GG distribution. For this purpose, we
performed 200 synthetic experiments and tested the methods
presented in Section 2.2. Concretely, we tested the method
of Stacy and Mihram [14], Gomes et al. [16], Noufaily and
Jones [17], and our proposed method of Section 2.2.4. We
will refer to them as Stacy, Gomes, Noufaily, and proposed
methods, respectively.

The synthetic data was calculated in the same way as was
done in [17]: a set of gamma-distributed random samples
are generated by means of the method proposed in [29] and
the GG-distributed data are obtained by taking the 1/pth
power of the samples. The parameters of the GG distribution
were also calculated from sets of parameters in a reasonable
dynamic range. The scale parameter a was set to 1 in all
the experiments since this parameter just affects to the scale
of the data. Both, the p parameter and the ν parameter
were obtained from random samples of a uniform RV in the
interval [0.3, 5].
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{x}Ni=1 ← Samples
J ← Number of components

Θ(0) ≡ {π(0)
j , a(0)

j , ν
(0)
j , p(0)

j }
J

j=1
← Initial guess of parameters for

each component
γ(0)
i, j ← p(Zi = j | xi,Θ(0))

maxIter←Maximum number of iterations
Tol← Tolerance
Err←∞
n← 0 Iterations counter
while err > Tol and n < maxIter do

n← n + 1
for j = 1← J do

p(n)
j ←− arg

p j
max

⎧
⎨
⎩

N∑
i=1
γ(n−1)
i, j log fX

⎛
⎝xi |

∑N
i=1 γi, jx

pj
i

ν j(pj)
∑N

i=1 γi, j

⎞
⎠

⎫
⎬
⎭

ν
(n)
j ←− log(ν j)−Ψ(ν j) = log

⎛
⎜⎝
∑N

i=1 γi, jx
p

(n)
j

i∑N
i=1 γi, j

⎞
⎟⎠

+

∑N
i=1 γi, j log(x

p
(n)
j

i )
∑N

i=1 γi, j

a(n)
j ←−

⎛
⎜⎝
∑N

i=1 γi, jx
p

(n)
j

i

ν
(n)
j

∑N
i=1 γi, j

⎞
⎟⎠

1/p(n)
j

π(n)
j ← (1/N)

∑N
i=1 γ

(n−1)
i, j

γ(n)
i, j ← p(Zi = j | xi,Θ(n))

end for
err← ‖Θ(n) −Θ(n−1)‖/‖Θ(n−1)‖ Evaluate the relative tolerance

end while
Return Θ(n)

Algorithm 1: Implementation of the GGMM1 method.

We choose this interval since lower values than 0.3 make
the distribution to take values that tend to infinity as ν get
closer to 0. This is an unrealistic situation when real images
are considered. Additionally, when p takes lower values, the
tail becomes heavier and the shape of the distribution also
becomes unrealistic. These effects are shown in Figure 1,
where some examples of the PDFs of the GG distribution are
depicted.

The number of iterations for the proposed method and
for the method of [17] was set to 100 and the tolerance
function to 10−8. The number of bins where the χ2-test was
performed in the method of [16] was 150 and the number
of samples per experiment was 104. The comparisons of the
methods were performed by comparing the goodness-to-fit
of each distribution by means of two different measures:
Kullback-Leibler divergence (KL) and Kolmogorov-Smirnov
(KS) statistic. The former is a nonsymmetric measure of the
difference between two probability distributions defined as

DKL
(
pn, fX

) =
N∑

i=1

pn(i) log
pn(i)
fX(i)

, (59)

where pn is the empirical PDF estimate and fX is the theo-
retical distribution (the GG distribution). For the empirical

estimate of the PDF, the number of bins of the histogram was
set to 150.

The Kolmogorov-Smirnov statistic is the uniform norm
of the cumulative distribution function (CDF), defined as

DKS = sup
∣∣∣F̂(i)− FX(i)

∣∣∣, (60)

where F̂ is the empirical CDF of data and FX the theoretical
CDF. The KS measure was chosen since it does not depend on
the PDF estimate and can be calculated with a few number of
samples. Additionally, the Glivenko-Cantelli theorem states
that if the samples are drawn from distribution FX, then DKS

converges to 0 almost surely [30].
In Figure 2, the results for both measures are depicted.

It is clear that the moments method of Stacy gives poorer
results than the other methods for both measures. This
result was expected since the moments method depends on
moments of third-order, so the variance of the estimates
becomes higher. The rest of the methods performed well for
both measures. In the case of the DKL, they fit practically the
same while, in the case of DKS, there are some better results
for the method of Noufaily and the proposed one. This is the
effect of the approximation of the PDF for the χ2 test per-
formed by the method of Gomes: it calculates the best set of
parameters for an approximation of the empirical PDF which
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{x}Ni=1 ← Samples

{y}Ni=1 ← {log(xi)}Ni=1 Transformed samples

J ← Number of components

Θ(0) ≡ {π(0)
j , a(0)

j , ν
(0)
j , p(0)

j }
J

j=1
← Initial guess of parameters for

each component
γ(0)
i, j ← p(Zi = j | xi,Θ(0))

maxIter←Maximum number of iterations
Tol← Tolerance
err←∞
n← 0 Iterations counter
maxIterML←Maximum number of iterations for the ML algorithm
TolML← Tolerance for the ML
while err > Tol and n < maxIter do

n← n + 1
for j = 1 → J do

(aaux, νaux, paux)← (a(n−1)
j , ν

(n−1)
j , p(n−1)

j )
errML←∞
m← 0 Iterations counter for ML
LL(0)

j ← Calculate the log-likelihood for the jth component
while errML > TolML and m < maxIterML do

m← m + 1
σ = 1/(paux

√
νaux)

k ←− log(ν j)−Ψ(ν j) = log

(∑N
i=1 γi, jx

paux
i∑N

i=1 γi, j

)

+

∑N
i=1 γi, j log(x

paux
i )

∑N
i=1 γi, j

S̃0 ←
∑N

i=1 γi, j exp(yi/σ
√
k)

∑N
i=1 γi, j

S̃1 ←
∑N

i=1 γi, j yi exp(yi/σ
√
k)

∑N
i=1 γi, j

σ ← S̃1

S̃0

− σ√
k
−
∑N

i=1 γi, j yi∑N
i=1 γi, j

= 0

νaux ← k
paux ← 1/(σ

√
k)

aaux ←
(∑N

i=1 γi, jx
paux
i

νaux
∑N

i=1 γi, j

)1/paux

LL(m)
j ← Calculate the log-likelihood for the jth component

errML← ‖LL(m)
j −LL(m−1)

j ‖/‖LL(m−1)
j ‖

end while
(a(n)

j , ν
(n)
j , p(n)

j )← (aaux, νaux, paux)

π(n)
j ← (1/N)

∑N
i=1 γ

(n−1)
i, j

γ(n)
i, j ← p(Zi = j | xi,Θ(n))

end for
err← ‖Θ(n) −Θ(n−1)‖/‖Θ(n−1)‖ Evaluate the relative tolerance

end while

Algorithm 2: Implementation of the GGMM2 method.

depends on the number of bins and the number of samples
of the dataset. So, as the number of samples is reduced or the
number of bins is reduced, the estimate becomes worse.

In order to see the effect of this, we also show in Figure 3
the relative error of the estimates for all the methods (the
relative error of an estimate θ̂ is calculated as εrel = ‖θ−θ̂‖/θ,
while the absolute error is εabs = ‖θ − θ̂‖). In the figure,

the whiskers show the dynamic range of the data which is
not considered an outlier. So, though the method of Gomes
provides good fitting, the variance of the estimates is higher
than the method of Noufaily and the proposed one. At
first sight, the results of Figure 3 demonstrate the better
performance of the proposed method in terms of variance of
the ML estimates with no appreciable bias in the estimates.
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Figure 1: Some examples of the GG distribution for the parameters of the synthetic dataset.

An example of the fitting performance of the methods is
shown in Figure 4 where the PDFs obtained with the meth-
ods are depicted as well as the absolute error and the relative
error of the PDFs.

Following, we analyze the dependence of the estimates
with the number of samples. The same experiment is
repeated considering 500 samples. The results of both good-
ness-to-fit measures are shown in Figure 5, and the relative
errors of the estimates are depicted in Figure 6. The perform-
ance for the DKL measure is similar for all the methods.
However, note that the value is considerably higher than the
obtained for the case of 104 samples, this effect is caused by
the difficulties of estimating the PDF with so few samples.
Since the Gomes algorithm is based on the χ2 test, it is

expected that its performance decreases and the variance of
the parameter estimates increases. In the case of the DKS

measure, the performance of all methods is comparatively
equal to the case of 104 samples but a higher variability is
observed in the Gomes method due to the sensitivity to the
number of samples.

The better performance of Noufaily and the proposed
methods are seen in Figure 6 where the variability of the
Noufaily method did not increase dramatically as the Gomes
method did. The proposed method also presented a very low
variance of the parameter estimates with no appreciable bias.
In the light of these results, we can conclude that the pro-
posed method is robust with respect to the number of
samples and it does not introduce any appreciable bias in
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Figure 2: Results for DKL and DKS for 104 samples. Methods: Stacy and Mihram [14], Gomes et al. [16], Noufaily and Jones [17], and the
proposed one of Section 2.2.4.
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Figure 3: Results for the relative error of the estimates for 104 samples. Methods: Stacy and Mihram [14], Gomes et al. [16], Noufaily and
Jones [17], and the proposed one of Section 2.2.4.
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Figure 4: Example of the fitting performance for 104 samples. Methods: Stacy and Mihram [14], Gomes et al. [16], Noufaily and Jones [17],
and the proposed one of Section 2.2.4. (a) Probability Density Functions, (b) Absolute error of the PDFs, and (c) Relative error of the PDFs.

the parameter estimates. The goodness-of-fit performance
of both the Noufaily and the proposed method are similar,
though the estimates are more accurate with the proposed
method. This can be due to the better convergence of the
Nelder-Mead method than the algorithm of the Noufaily
method.

3.2. Tissue Characterization in Real US Images. In this sec-
tion, we test the performance of the GG distribution for cha-
racterizing tissues of real images. For this purpose, we
used a set of 518 real US images (584 × 145, 8 bits)
obtained from 3 human subjects by means of a clinical mach-
ine GE Vivid 7 echographic system (GE Vingmed Ultrasound

AS, Horten, Norway). The images were acquired before the
Cartesian rearrangement. The image collection was super-
vised by specialists Marta Sitges and Etelvino Silva (Hospital
Clinic IDIBAPS Universitat de Barcelona, Spain). The sub-
jects were volunteers for a study of the reconstruction pro-
cess of ultrasonic images. The acquisition was done in the
Hospital Clinic of Barcelona with its approval. The images
were provided by Nicolas Duchateau (CISTIB-Universitat
Pompeu Fabra, Ciber-BBN, Barcelona, Spain) and Bart
Bijnens (Instituco Catalana de Recerca i Estudis Avan cats
(ICREA), Spain).

In Figure 7, an example of a real US images is shown
with its Cartesian rearrangement. The red contour is the
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Table 1: Results of the t-test for blood.

Blood P value Hypothesis

Nakagami versus Gamma <10−15 H1

Gamma versus GG 3.38 · 10−7 H1

Nakagami versus GG <10−15 H1

Table 2: Results of the t-test for myocardial tissue.

Myocardial tissue P value Hypothesis

Nakagami versus Gamma 3.24 · 10−4 H1

Gamma versus GG 0.96 H0

Nakagami versus GG 2.74 · 10−4 H1

segmented areas of blood which are considered in the study,
while the green contour is the segmented areas of tissue. The
intersection of both regions was rejected in the study.

Additionally, the histogram of the image was depicted
for the blood region as well as the fitted distributions most
commonly used to characterize tissue. From the whole data
set, a total number of 3185 regions were segmented for myo-
cardial tissue while 1960 were segmented as blood. The sizes
of regions vary depending on the tissue. However, it is high
enough to provide a good estimate of the parameters. For
instance, the segmented region of Figure 7 has 18250 samples
for blood and 5529 for tissue.

In the case of Figure 7, the lower value of the histogram
shown is 19 since the intensity values in the blood area were
in the interval [19, 156]. The number of bins used for the
representation of the histogram was set to 20 equally spaced
in that interval.

The performance of the GG distributions was tested by
estimating the PDFs for both tissue classes (myocardial tissue
and blood) for the following distributions: Exponential,
Rayleigh, Weibull, Normal, Nakagami, Gamma, and GG. The
PDFs were compared by means of both the DKL and the
DKS measures. The results of the comparison are depicted
in Figure 8 where the better performance of the Gamma,
Nakagami, and GG becomes clear. In order to see whether
these measures are statistically significant, we carried out a
Welch t-test for the Gamma, Nakagami, and GG distribu-
tions for the DKS measures. This test was chosen since no
equal variance should be assumed and the DKS since it does
not depend on the empirical PDF estimate but just on the
samples. The assumed hypothesis H0 is that “both distribu-
tions have the same mean,” H1 indicates that the null hypo-
thesis can be rejected at a 5% of significance level.

The results are shown in Tables 1 and 2. Note that all
the null hypothesis were rejected but just one: myocardial
tissue. In that case, the difference of the mean value of the
Gamma and the GG is not statistically significant. The mean
values of the DKS are represented in Table 3 where the lower
mean value of the GG for both tissues can be appreciated.
The results of the t-test of Tables 1 and 2, and the lower
mean values of the DKS evidence the better performance of
the GG than the rest of the distributions, with the exception
of the myocardial tissue, where a Gamma distribution offers
the same performance.

Table 3: Mean values for DKS.

Nakagami Gamma Generalized Gamma

Blood 5.5626 · 10−2 4.4970 · 10−2 4.2860 · 10−2

Myocardial 5.7711 · 10−2 5.5665 · 10−2 5.5644 · 10−2

3.3. Performance of the GGMM Methods. In this section,
we test the performance of the proposed GGMM methods
in three different scenarios. First, we test the necessity of
using more than a simple GG for describing tissues with an
increasing echolucent response of the effective scatterers. The
case of a variation of the number of effective scatterers is
also considered. This behavior can be found in structures
with an increasing deterministic response that changes the
speckle nature from fully formed speckle to fully resolved
speckle. The variation of the number of effective scatterers
can be found in structures which change their scattering
cross-section.

In order to simulate B-mode US images, we followed the
same methodology proposed in [9]. This method scans an
image and records the data in a matrix which is corrupted
by means of the speckle formation model of (1) where the
tissue is modeled as a collection of scatters of size comparable
to the wavelength. The speckle pattern is obtained by means
of a random walk which does not assume any statistical
distribution in order to avoid any bias of the results. The
Cartesian arrangement is obtained by means of linear inter-
polation of the corrupted samples.

As a first example, we simulate an increasing echolucent
tissue which varies its intensity from 0 to 255 from left to
right. The sampling process and the resulting B-mode image
are shown in Figures 9(a)-9(b). The number of samples were
set to 50 angular samples and 100 radial samples, represented
as red points. The amplitude of each scatterer is defined as a
Normal distributed RV with zero mean and σ = 8. Note that,
along with the variation of intensities from left to right, a
specular component of the speckle will appear. The number
of scatterers was set 20 in order to simulate fully formed
speckle in regions with low echolucent response and fully
resolved speckle in regions with high echolucent response.
The resulting B-mode image is represented in Figure 9(b).

The fitted GG and GGMM with 2 components depicted
in Figure 9(c) show that one simple GG fails to model the
probabilistic behavior of a spatially variant echolucent tissue,
while a GGMM with 2 components properly describes the
echolucent variation.

As an additional experiment, in Figure 10, we represent
the spatial variation of the number of effective scatterers.
The simulation was performed with the same sampling para-
meters as was done in the previous experiment. In this case,
the echolucid response was set to be homogeneous with no
deterministic component. Thus, the nature of the speckle
changes from fully formed speckle to partially formed
speckle. The number of scatterers decreases from left to right
from 256 to 1. The amplitude of each scatterer is defined as a
Normal distributed RV with zero mean and σ = 8.

The speckle PDF in this case becomes more impulsive in
areas with more effective scatterers (left part of Figure 10(a)),
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Figure 7: Example of an image of the data set. The red contour is the segmented areas of blood which are considered in the study, while the
green contour is the segmented areas of tissue. The intersection of both regions was rejected in the study.

this behavior is observed in a lower decay of the tail. Both the
simple GG and GGMM with 2 components were calculated
from the data and are depicted in Figure 10(b). In that figure,
the fitting of a simple GG clearly shows that one component
does not suffice to describe a spatial variation of number of
effective scatterers.

In the last synthetic experiment for testing the necessity
of GGMM, we simulate an anatomic phantom of a kidney
scan. For this purpose, we used the artificial kidney scan
proposed by Jensen [31]. The image can be downloaded from
the Field II website (http://field-ii.dk/). The sampling of the
kidney and the resulting B-mode image are represented in
Figure 11. In this case, a GGMM with 4 components was
used to fit the PDF of the image. The probability of belonging
to each component is represented in Figure 12 where the
differentiation of tissues can be easily observed. In this case, a
lower number of components fail to describe the kidney and
the surrounding tissue which have a similar speckle response.

For testing the performance of the proposed GGMM
methods with real data, we use the same data set used in
the previous section. The number of components is set to
two: blood and myocardial tissue. In order to compare the
performance of the GGMM methods, we also fit a Gamma
Mixture Model and a Nakagami Mixture model to the data
[3, 32, 33]. Both the DKL and the DKS where calculated for
the mixture models in each image. The number of iterations
for each mixture model was set to 100 and the tolerance to
10−8.

The lower values of DKL and DKS shown in Figure 13
evidences the better characterization of the GGMM when
compared to the NMM or the GMM. These results were
expected due to the results of the previous section. Again,
the t-tests were performed to the DKS measure of the data. All
the mixtures were statistically different with the exception of
the GGMM1 and GGMM2. In that case, a P value of 0.4906
was obtained. These results show once more that the GG
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Figure 8: Results for the relative error of the estimates for 500 samples. Methods: Stacy Stacy and Mihram [14], Gomes et al. [16], Noufaily
and Jones [17], and the proposed one of Section 2.2.4.

can characterize better than other commonly accepted distri-
butions and the differences are significant.

3.4. Potential Applications of the GGMM. A proper character-
ization of the speckle by means of suitable distributions can
be used to guide segmentation algorithms as the one in [3].
The parameters of the mixture model can be used as features
for developing a classifier as was done in [4]. Furthermore,
some filters use the probability of belonging to each tissue
class. As an example of the performance of the GGMM, we
show some results of the Probabilistic-Driven Oriented Spec-
kle Reducing Anisotropic Diffusion (POSRAD) [8].

This last filter includes the probability of belonging each
tissue class and adapts the diffusion tensor. Concretely, it cal-
culates the structure tensor of the posterior probability and

detects the most probable edges of the image. This infor-
mation is used to define the diffusion tensor which provides
a better behavior in the boundaries of the image.

The structure tensor of the probability density function
for each tissue class is calculated as:

Tj(xi) = Gσ

∗
(
∇σ p

(
Zi = j | xi,Θ

) · ∇σ p
(
Zi = j | xi,Θ

)T),

(61)

where Gσ is a Gaussian kernel of standard deviation σ , and
∇σ p(Zi = j | xi,Θ) is the gradient of the probability den-
sity function for each tissue class filtered with a Gaussian ker-

nel of standard deviation σ . Finally, let λ
j
1 ≥ λ

j
2 be the eigen-

values and (v
j
1, v

j
2) their respective eigenvectors. The local
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Figure 9: Simulation of spatial variant echolucent response of tissue. (a) Sampling of an increasing echolucent tissue. (b) Resulting B-mode
image obtained by corrupting the samples by a random walk process of 20 scatterers per resolution cell, in order to simulate a fully formed
speckle in regions with low echolucent response and fully resolved speckle in regions with high echolucent response. (c) Histogram of (b)
and (a) GG and GGMM with 2 components.

orientation of the maximal variation of probability of the

class C j is given by v
j
1, and the local orientation of the mini-

mal variation is given by vk
2 .

Let us consider the following diffusion equation:

u(x, 0) = u0

∂u

∂t
= div(D∇u),

(62)

where the matrix D is the diffusion tensor which can be
described by its eigenvectors (v1, v2) and eigenvalues λ1, λ2.

Given a diffusion tensor, D, the diffusion of the intensity
values of the image is performed in the direction of eigen-
vectors with different diffusion coefficients. For each eigen-
vector, its eigenvalue defines the diffusion coefficient and,
thus, an anisotropic diffusion can be achieved.

As an example, when one eigenvalue is equal to 1 and the
other one is 0, a complete anisotropic diffusion is obtained,
since the intensity values diffuse in the direction of the
eigenvector associated to the eigenvalue equal to 1. This
would be the desired behavior of a filter in regions where
structures must be preserved. When both eigenvalues are
equal to 1, the diffusion process becomes isotropic and the
intensity levels diffuse equally in all directions. This case
would be the desired behavior for homogeneous regions
where no structures must be preserved.

The POSRAD philosophy makes use of the structure
tensors determined out of the probability maps to obtain
the most probable structures. In that case, the diffusion
filter should be anisotropic. When no probable structures are
detected, the diffusion should be isotropic.

Since we have J structure tensors (each tissue class with
probability density function), we choose the eigenbase of the
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Figure 10: Simulation of spatial variant density of scatterers. The number of scatterers per resolution cell decreases from left to right in order
to simulate fully formed speckle in regions with low density and partially resolved speckle in regions with high density.
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Figure 11: Simulation of an anatomic phantom of a kidney scan.
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Figure 12: Probability of belonging to each component of the GGMM fitted to the image in Figure 11(b). The components are sorted in
increasing mean value.
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Figure 13: Results for DKL and DKS of the Mixture Models: GGMM1, GGMM2, GMM and NMM.

structure tensor with maximal λ
j
1: ĵ = arg max j(λ

j
1). This

base gives the orientation of the maximal variation of pro-
bability among all the classes.

The interpretation of this choice is that we choose as
boundary the one with the maximal gradient of the pro-
bability density function over all tissue classes. This way, the

most probable boundary is preserved in the filtering process.
In the basis of Tĵ , namely, (e1, e2), the diffusion matrix D is
defined as

D = E

(
λ1 0
0 λ2

)
ET , (63)
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(a) p(Zi = 0 | xi,Θ) (b) p(Zi = 1 | xi,Θ)

Figure 14: Probability of belonging to each tissue class, where the class 0 describes the blood and the class 1 describes the myocardial tissue.

Figure 15: Anisotropic behavior of the filter. The most probably edges of the image are described by the lower values of λ1 ∈ [0, 1].

(a) Original image (b) Filtered image

Figure 16: Results of the POSRAD filter. The anisotropic behavior of the filter is appreciated in the preserved details of the myocardial
tissues.
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Figure 17: Undirected graph. The nodes represent a random variable X and the edges’ relationships between nodes. Each random variable
can be classified as a tissue class J .

where

λ1 = 1− ∥∥∇e1,σ p
(
Zi = j | xi,Θ

)∥∥
2

λ2 = 1,
(64)

and ‖ · ‖2 is the 2-norm,∇ei,σ is the directional derivative in
the direction ei filtered with a Gaussian kernel with a stand-
ard deviation σ , and E is the matrix whose columns are
the eigenvectors (e1, e2). This definition performs a diffu-
sion filtering in the direction of the minimal variation of pro-
bability (e2) while preserves the maximal variation of
probability since ‖∇e1,σ p(Zi = j | xi,Θ)‖2 will have a value
closed to 1. Note that the discrete approximations of
‖∇e1,σ p(Zi = j | xi,Θ)‖2 is bounded in [0, 1], thus λ1 ∈
[0, 1].

In Figure 14, we show the probability of belonging to
each tissue class, p(Zi = j | xi,Θ), provided by the GGMM
method (the GGMM2 was used for this example). All the
figures of the example are represented in their Cartesian
arrangement in order to ease visualization of fine structures.
Note that the structures are clearly identified by each
posterior probability of each tissue class and the filter can
perform an efficient anisotropic diffusion. To see this, in
Figure 15, we represent λ1, which describes the anisotropic
behavior of the filter. When λ1 = 1, the filter acts like a con-
ventional isotropic filter, whereas the pure anisotropic behav-
ior is carried out when λ1 = 0.

Finally, the resulting image after 40 iterations is depicted
in Figure 16 in comparison to the original one.

As a final application of the GGMM, one can make use
of the pixel-wise probability of belonging to each tissue class
to obtain a spatially coherent probability by introducing an
undirected graph where the nodes (each pixel of the image)
represent a random variable and the edges of the graph rep-
resent the relationships between nodes as it is represented in
Figure 17. The problem is reduced to find the labels for each
node by taking into account the relationships between nodes
of the local neighborhood (the Markov property is assumed).
This problem, though is intractable in terms of direct proba-
bilistic inference, can be solved by means of the Loopy Belief

Propagation (LBP) algorithm introduced by Pear in [34].
This algorithm performs approximate inference of a graphi-
cal model. Although LBP does not guarantee to converge due
to the presence of loops in the graph, however it has shown
good experimental results and is commonly used [35].

In the end, the problem is faced as a discrete MRF where
the labels, Z, are each tissue class and the nodes are the pixels
of the image. The energy to be minimized by the LBP method
can be defined as

V(Z) =
N∑

i=1

V1(Zi) +
∑

k∈η(i)

V2(Zi,Zk), (65)

where η(i) is the neighborhood of the ith node, V1(Zi) =
− log p(Zi = jxi,Θ), and

V2(Zi,Zk) = −
∑

k∈η(i)

log p(Zk = zi | xk,Θ). (66)

The output of the LBP is a belief of node i belongs to class
Z = j. Thus, the probability with spatial coherence can be
directly obtained from the outputs of the LBP algorithm. In
Figure 18, the probability of each tissue class when the spatial
coherence is introduced.

These coherent probability maps can be of help for clas-
sifying purposes or as prior information for segmentation
algorithms. The valuable information that they provide can
be seen in a simple experiment in which we consider the clas-
sification of two tissues (blood and myocardial tissue) and we
compare the results with the k-means algorithm applied to
the original image and a simple classifier consisting of assign-
ing the class with maximum posterior probability. The results
of this example are shown in Figure 19 where the identi-
fication of the myocardial tissue is clearly obtained by the
posterior probability of the GGMM, whereas the k-means
method cannot properly define a contour of each tissue.

4. Conclusions

Throughout this work we have analyzed the advantages of
using a GG distribution for characterizing the speckle in
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(a) p(Zi = 0 | xi,Θ) (b) p(Zi = 1 | xi,Θ)

Figure 18: Probability of belonging to each tissue class after the LBP, where the class 0 describes the blood and the class 1 describes the
myocardial tissue.

(a) Classification with k-means (b) Classification with the GGMM probability maps
after LBP

Figure 19: Simple example of the valuable information of the posterior probability obtained from the GGMM with spatial coherence.

ultrasound images. This distribution offers a suitable way
to deal with the impulsive behavior of speckle which causes
heavier tails in the distributions. Additionally, the GG is
a natural generalization for many distributions commonly
used to characterize the speckle: Rayleigh, Gamma, Nak-
agami, Weibull, Exponential, and Rician [13]. Thus, it has
all the advantages of these distributions and avoids some of
their generalization problems.

Although some approaches have used this distribution in
the literature, the inconveniences of estimating its parame-
ters make this option thorny and not attractive. The problem
stems from the inaccurate estimate of the moments method
proposed in [14] and the impossibility of obtaining a closed-
form ML estimates. Some solutions have been recently
proposed such as heuristic methods [16], which are strongly
dependent on the number of samples, and iterative methods
[17] which depend on the initial condition.

In this work, we have proposed a simple methodology
to calculate the ML estimate which offers robust results

comparing to the methods in the literature [14, 16, 17].
It is worth to mention that the fundamentals of the ML
method of [17] and the proposed one are the same since
both try to find the solution of three simultaneous non-linear
equations. However, the different optimization technique
makes the proposed method more robust. Additionally, the
performance for describing speckle was tested in a set of 518
real US images of the heart, in which 3185 regions were man-
ually segmented for myocardial tissue and 1960 for blood.

Results with t-tests applied to the DKS goodness-of-fit
measure demonstrated the better behavior of the GG in most
of the cases and in those cases where there were no statistical
difference, the other distribution is a particularization of the
GG.

The formulation of the proposed method allows to gen-
eralize this methodology to a GGMM. These mixture models
are of great value due to the different nature of the echogenic
response of tissues in the received signal. Two different
methods were proposed for the calculation of the GGMM
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parameters GGMM1 and GGMM2. Both were developed by
applying the EM method in the derivation of the proposed
ML method, the optimization technique for GGMM1 follows
the same approach used for the proposed ML method. The
GGMM2 method makes use of the optimization technique
proposed by [17]. Results when comparing both methods
to the GMM and NMM in real images showed the better
fitting of the GGMM. No statistical differences were detected
between GGMM1 and GGMM2.

Through this paper we showed the better behavior of the
GGMM methods when compared to the RMM, NMM, and
GMM for the case of cardiac imaging. The potentials of mix-
ture models have proven a good classification performance in
intravascular ultrasonic images for RMM [4]. Additionally,
the NMM showed good results for segmentation in carotid
arteries [3]. In the case of filtering Cardiac imaging, the
mixture models have also shown good results [9].

We think the GGMM methods here proposed can be used
with good results in the aforementioned modalities since
they generalize the RMM, NMM, and GMM in a natural way
and allow to describe heavier tails of the PDFs that the RMM,
NMM, and GMM fail to fit. Many other US modalities such
as breast, liver, and kidney should be considered. We hope the
proposed GGMM methods can encourage future research for
tissue characterization in those different US modalities.

Finally, we want to recall that the potential applications
of GGMM do not confine to those proposed in this paper.
We hope the results of this work can revive the use of the GG
distribution and its extension, the GGMM, in many other
areas.
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