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Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA
regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding
with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study
of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by
analyzing ChIP-Seq data from MCF-7 breast cancer cell line. By integrating three peak detection algorithms and two datasets,
we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by
ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with
expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in
the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites
using Gene Ontology (GO), KEGG, and GeneGo pathway databases. The results revealed novel ER-regulated genes pathways for
further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the
development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and
its associated genes.

1. Introduction

Breast cancer is a complex disease with high occurrence. It
involves a wide range of pathological entities with diverse
clinical courses. Gene and protein expression have been
extensively profiled in different subtypes of breast cancer
[1]. Growth of human breast cells is closely regulated by
hormone receptors. Estrogen receptor (ER), a hormonal
transcription factor, plays a critical role in the development
of breast cancer. Combined with estrogen, it regulates the
expression of multiple genes. Studies have found that ER-
positive and ER-negative breast cancers are fundamentally
different [2]. The outcome of hormone receptor positive
tumors is better than hormone receptor negative tumors
[3]. Thus, the identification of ER target genes may reveal

critical biomarkers for cancer aggressiveness and is therefore
crucial to understanding the global molecular mechanisms
of ER in breast cancer. To identify direct target genes of
ER, it is necessary to map the ER binding sites across the
genome. ChIP-Seq is an effective technology for the genome-
wide localization of histone modification and transcription
factor binding sites. It enables researchers to fully understand
many biological processes and disease states, including
transcriptional regulation of ES cells, tissue samples, and
cancer cells.

Several previous studies have been dedicated to ER-
regulated genes and their function in breast cancer cell line
[4, 5]. However, most studies lacked the comprehensive and
genome-wide view and failed to perform an integrated anal-
ysis. In this study, we combined ChIP-Seq and microarray
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Table 1: The CHIP-Seq datasets.

Dataset Platform Cell line Sample information

GSE19013 Illumina MCF-7
Ethanol treated

E2-treated

GSE14664 Illumina MCF-7
ER minus ligand

ER E2

datasets to analyze the ER-regulated genes in the MCF-7
breast cancer cell line. The molecular mechanisms of ER
were fully studied, including binding sites, motif, regulated
genes, related single nucleotide polymorphisms (SNPs) and
functional annotation. The process of this analysis was
illustrated in Figure 1.

2. Materials and Methods

2.1. Datasets. The breast cancer associated ChIP-Seq datasets
were extracted from Gene Expression Omnibus (GEO):
GSE19013 [6] and GSE14664 [7]. Both datasets can be
used to survey genome-wide binding of estrogen receptor
(ER) in the MCF-7 breast cancer cell line. Control sample
was incorporated for the genomic peak finding of ER. (See
Table 1 for details.)

2.2. Chip-Seq Analysis. Bowtie [8] was selected to align
sequence tags to human genome. Bowtie is an ultrafast and
best short-read aligner. It is suitable for sets of short reads
where many reads have at least one good and valid alignment,
many reads with relatively high quality, and the number of
alignment reported per read is small (closed to 1). ChIP-seq
datasets we used were satisfied these criteria. In the analysis,
tags were selected using the criterion that alignments had no
more than 2 mismatches in the first 35 bases on the high
quality end of the read, and the sum of the quality values at
all mismatched positions could not exceed 70.

Peak detection algorithm is crucial to the analysis of
ChIP-Seq dataset. Currently, several tools are available to
identify genome-wide binding sites of transcription factors,
such as FindPeaks [9], F-Seq [10], CisGenome [11], MACS
[12], SISSRs [13], and QuEST [14]. These different methods
have their own advantages and disadvantages, although they
act in a similar manner. Table 2 showed an overview of
the characteristics of these algorithms. ChIP-Seq data has
regional biases because of sequencing and mapping biases,
chromatin structure, and genome copy number variations
[15]. It is believed that more robust ChIP-Seq peak predic-
tions can be obtained by matching control samples [12].
In order to get more stable result, three tools, CisGenome,
MACS, and QuEST, were used to identify the binding sites
of ER in this study. All the three tools systematically used
control samples to guide peak finding and calculate the FDR
(False Discovery Rate) value of peaks.

Additionally, MEME program [16] was employed for
de novo motif search, keeping default options (minimum
width: 6, maximum width: 50, motifs to find: 3, and
minimum sites: ≥2). For each site, statistical significance (P

value) gives the probability of a random string having the
same match score or higher. And a criterion of P-value < 0.01
was used here.

2.3. Expression and SNP Analysis. Expression analysis was
performed using the same package [17, 18]. Differentially
expressed genes were selected based on the q-value less than
1%.

Using the table SNP (131) (dbSNP build 131) [19] in
UCSC (http://genome.ucsc.edu/), we identified SNPs near
the ER binding sites. The SNPs with at least one mapping
in the regions were selected.

2.4. Functional Annotation. Three functional annotation
systems, the Gene Ontology (GO) categories [20], canon-
ical KEGG Pathway Maps [21], and commercial software
MetaCore-GeneGo Pathway Maps, were used to perform the
enrichment analysis for gene function.

Enrichment of GO categories was determined with
the Gene Ontology Tree Machine (GOTM) [22], using
Hypergeometric test, Multiple test adjustment (BH), and
a P-value cut-off of 0.01. WebGestalt (WEB-based
GEne SeT AnaLysis Toolkit) [23] (http://bioinfo
.vanderbilt.edu/webgestalt/option.php) was used for enrich-
ment of KEGG Pathway. Hypergeometric test, Multiple
test adjustment (BH), and a P-value cut-off of 0.01 were
also used as criterion. MetaCore-GeneGo is a commercial
software which offers gene expression pathway analysis and
bioinformatics solutions for systems biology research and
development. Hypergeometric intersection was used to
estimate P-value, the lower P-value means higher relevance.
P-value < 0.01 and FDR < 0.05 were used as criterion.

3. Results and Discussion

3.1. ChIP-Seq Analysis Mapped ER Binding Sites across the
Human Genome. Using ChIP-Seq datasets, we identified the
global ER binding sites. Sequence tags were firstly aligned
to human genome assembly (UCSC, hg19) using Bowtie.
Three ChIP-Seq peak calling programs, CisGenome, MACS,
and QuEST, were selected to identify the enriched binding
peaks. Using a false discovery rate of 0.01, 933 ER binding
peaks were revealed by all the three tools in both datasets
(Table 3). There were differences among the predicted results
using different methods in both two datasets (Figure 2).
The calculated FDR value was not only related to different
methods, but also influenced by datasets. The overlapped
binding sites seemed to be more robust, with 84.9% having
FDR value less than 0.005 in all methods and datasets. These
binding sites were used for the following analysis. Firstly, we
compared these binding sites with two published studies by
Welboren et al. [7] and Hu et al. [6]. Our results showed
a substantial overlap with the two studies (77.8 and 78.5%,
resp.). Also, 719 binding sites, which were shared by all three
studies, were likely to be more reliable. The presence of
consensus sequence motifs in the ER binding sites was also
examined. De novo motif search using the MEME program
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Table 2: An overview of the characteristics of different Chip-Seq peak detection algorithm.

Algorithm Profile Background model Control sample Use control to compute FDR

F-Seq Kernel density estimation (KDE)
√

FindPeaks Aggregation of overlapped tags Monte Carlo

SISSRs Window scan Poisson
√

QuEST Kernel density estimation (KDE)
√ √

MACS Tags shifted then window scan dynamic Poisson
√ √

CisGenome Strand-specific window scan Negative binomial
√ √

Bowtie

Detected the genomic binding sites

CisGenome QuESTMACS

Genomic 

locations

Gene 
expression 

analysis

SNP 

analysis

Functional 

annotation

Motif 

detection

Mapped to genome (UCSC, hg19)

ChIP-Seq datasets

Figure 1: The ChIP-Seq data analyzing pipeline.
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Figure 2: Comparison of QuEST, CisGenome, and MACS predicted result. (a) The FDR value in the dataset of GSE19013. (b) The FDR
value in the dataset of GSE14664.
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Figure 3: The genomic binding sites of ER. (a) The consensus motif identified in the ERE binding sites. De novo motif search was performed
using the MEME program. (b) The percentage of occurrences of ERE motifs in ER binding sites. (c) Comparison of the occurrences of ERE
motifs between published and newly identified binding sites.

Table 3: Number of ER binding sites identified by three ChIP-Seq peak calling programs (FDR < 0.01).

Number of ER binding sites
Dataset Number of overlaped sites

CisGenome MACS QuEST

GSE19013 8137 5583 5418 2019
933

GSE14664 6773 7765 9280 5061

[16] identified a refined ERE motif that was markedly similar
to the canonical ERE (Figure 3(a)). Almost all of the ER
binding sites contained one or more ERE motif (P-value
< 0.01) (Figure 3(b)). Both published and newly identified
binding sites contained at least one ERE motif (Figure 3(c)).

Furthermore, we examined the location of ER enrich-
ment sites relativer to the nearest-neighbor genes. The result
was shown in Figure 4(a). Only 8% (72) of the peaks occured
within gene promoters (defined here as within 5 kb upstream
of 5′ to TSS). Also, 34% (317) of the peaks resided in
intragenic sites, including 1% (10) in the 3′UTR, 9% (81) in
the 5′UTR, 2% (20) in the exon, and 22% (206) in the intron.
The occupancy of enhancer (>5 kb away 5′ to TSS) was 35%
(332). According to Figure 4(b), the peaks occurred most

frequently between −10 kb to −100 kb, +10 kb to +100 kb,
with +10 kb to +100 kb being the highest. A further insight
into the peaks within +10 kb to +100 kb showed that peaks
were preferably located within the regions spanning from
+10 kb to +40 kb (Figure 4(c)).

3.2. Using Gene Expression Data to Confirm the ER Binding
Sites. In order to determine the specific gene responses
corresponding to ER in MCF-7 cells, we compared the
nearest-neighbor genes of ER binding sites to the published
studies examining differentially expressed genes between
ER+ and ER− breast tumors. We used the 3 studies in Table 4
for the gene expression analysis. Differentially expressed
genes were selected based on a q-value cut-off of less
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Table 4: Breast cancer gene expression dataset and differently expressed genes number (q-value < 1%).

Author Journal Array type
Sample N
ER+

Sample N
ER−

Differently expressed genes

Upregulated Downregulated

Graham et al. [24] Clin Cancer Res Affy 15 15 709 333

Wang et al. [25] Lancet Affy 209 77 2081 2537

Lu et al. [26]
Breast Cancer Res

Treat
Affy 76 53 5136 5445

All 5692 6101

than 1% using a stringent statistical analysis method. We
identified 5692 and 6101 up- and downregulated genes.
When combined with the nearest-neighbor genes of ER
binding sites, 289 up-regulated genes and 198 down-
regulated genes were associated with the ER binding sites
(see additional file 1, Supplementary Material available
online at doi:10.1155/2012/568950). Among these genes, 33
upregulated genes and 11 downregulated genes were also
identified by published ChIP-PET analysis [27].

Our analysis found that more binding sites were
associated with ER up-regulated genes (60%) compared to
down-regulated genes (40%), indicating that ER was more
frequently involved in the direct regulation of up-regulated
genes. We also examined the location of ER binding sites
in up-regulated and down-regulated genes. As shown in
Figure 5, both the up- and down-regulated genes occurred
most frequently between −10 kb to −100 kb, +10 kb to +100
kb, which verified the long-range control mode of ER factor.

3.3. SNPs Occurred near the ER Binding Sites. Current studies
have shown that the breast cancer risks are associated
with commonly occurring single nucleotide polymorphisms
(SNPs) [28–32]. The table SNP (131) (dbSNP build 131) in
UCSC (http://genome.ucsc.edu/) was used to identify SNPs
near the ER binding sites. A total of 2694 SNP loci were found
and subsequently annotated using dbSNP in NCBI.

Compared with the differently expressed gene set in the
vicinity of ER binding sites, 836 SNPs in or near 157 ER-
regulated genes were identified (see additional file 2). Most
of the SNPs (94.5%) were located in intron and untranslated
regions. Only 5.5% were located in the regions of near-gene,
coding-synon, missense, and frameshift. These SNPs might
have close relationship with breast cancer.

3.4. Functional Annotation of ER Binding Sites. To identify
the biological processes and pathways altered by ER, we
employed three functional annotation systems, the Gene
Ontology (GO) categories [20], canonical KEGG Pathway
Maps [21], and commercial software MetaCore-GeneGo
Pathway Maps, to perform the enrichment analysis for gene
function.

To gain an overview of the biological processes in which
the nearest-neighbor genes of ER binding sites reside, we
firstly performed gene set enrichment analysis using Gene
Ontology database. Statistically significant (Hypergeometric
test, P-value < 0.01) enriched GO terms were identified
using the web tool GOTM (Gene Ontology Tree Machine)

[22]. The Gene Ontology Directed Acyclic Graph for the
nearest-neighbor genes generated by GOTM was presented
in Figure 6. The terms with red color were significantly
enriched. In terms of biological process, negative regulation
of biological process and cellular process, cellular component
movement, and regulation of localization and locomo-
tion, structure and system development were significantly
enriched. Furthermore, whether differently expressed or
not, genes were mostly associated with biological regulation
and metabolic process in biological process terms, protein
binding in molecular function terms, and membrane in
cellular component terms (each term included more than
100 genes). Gene functions for all the nearest-neighbor genes
were summarized in Table 5.

The KEGG Pathway database (posted on May 23, 2011)
was used to identify functional modules regulated by ER.
Seventeen significantly enriched pathways (P-value < 0.01)
were revealed (Table 6). In these pathways, most genes were
also differentially expressed between ER+ and ER− tumors.
Pathways in cancer, focal adhesion, axon guidance, regu-
lation of actin cytoskeleton, and MAPK signaling pathway
ranked among the most enriched pathways. The top enriched
maps, such as focal adhesion pathway and MAPK signaling
pathway, were reported to be related with ER in breast
cancer. High expression of focal adhesion kinase had been
reported to be related to cancer progression of breast. And
tumors with high expression of focal adhesion kinase lack
ER and PR [33]. It was also reported that hyperactivation
of MAPK could repress the ER expression in breast tumors
[34]. Pathways in cancer were the top enriched KEGG
pathway. The abnormal expression of some genes occurred
in several types of cancer [35–37]. Axon guidance pathway
played important roles in cancers. Axon guidance molecules
might control the development, migration, and invasion of
cancer cells [38]. Regulation of actin cytoskeleton was related
to cancer cell migration and invasion [39]. This indicated
the crucial role of ER in the development, migration, and
invasion of breast cancer.

GeneGo was also used to perform the pathway analysis.
Ten pathways were found to be significantly enriched with
P-value < 0.01 and FDR < 0.05 (Table 7). The result showed
that ER binding sites were enriched in breast cancer related
pathways. Among the top five maps, development prolactin
receptor signaling and development glucocorticoid receptor
signaling had been reported to associate with ER [40, 41].
development ligand-independent activation of ESR1 and
ESR2 was another enriched map which might have close
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Table 5: The comparison of top enriched GO categories between different expressed and other nearest-neighbor genes of ER binding sites
(number of genes ≥ 100).

Genes set Biological process Molecular function Cellular component

Differently expressed
Biological regulation, metabolic process,
cell communication, organismal process,
localization, developmental process

Protein binding,
iron binding

Membrane,
nucleus

Others Biological regulation, metabolic process Protein binding Membrane

Table 6: KEGG pathways enriched with the nearest-neighbor genes of ER binding sites (P-value < 0.01).

KEGG ID Pathways name P-value Number of genes Number of different expressed genes

hsa05200 Pathways in cancer 2.24E − 05 22 16

hsa04510 Focal adhesion 0.0002 15 14

hsa04360 Axon guidance 0.0009 11 8

hsa04810 Regulation of actin cytoskeleton 0.0012 14 11

hsa04010 MAPK signaling pathway 0.0022 15 12

hsa04114 Oocyte meiosis 0.0024 9 8

hsa04144 Endocytosis 0.0024 12 11

hsa04115 p53 signaling pathway 0.0024 7 7

hsa05216 Thyroid cancer 0.0024 5 4

hsa05218 Melanoma 0.0033 7 3

hsa04020 Calcium signaling pathway 0.004 11 4

hsa04062 Chemokine signaling pathway 0.0064 11 9

hsa04914 Progesterone-mediated oocyte maturation 0.0085 7 7

hsa01100 Metabolic pathways 0.0086 35 28

hsa00450 Selenoamino acid metabolism 0.0088 4 3

hsa05414 Dilated cardiomyopathy 0.0096 7 7

hsa03440 Homologous recombination 0.0097 4 3

Table 7: Terms of the enriched GeneGo pathway maps (P-value < 0.01, FDR < 0.05).

GeneGo pathway terms P-value

Apoptosis and survival APRIL and BAFF signaling 1.29889E − 05

Development prolactin receptor signaling 4.95517E − 05

Development glucocorticoid receptor signaling 5.81237E − 05

Development ligand -independent activation of ESR1 and ESR2 0.000295251

Immune response IL-22 signaling pathway 0.000381484

Development EPO-induced Jak-STAT pathway 0.000531744

Development growth hormone signaling via STATs and PLC/IP3 0.000531744

Cytoskeleton remodeling keratin filaments 0.000622315

Development GM-CSF signaling 0.000660576

Transcription transcription regulation of aminoacid metabolism 0.000752764

relationship with ER. APRIL and BAFF were the members
of tumor necrosis factor family which related to a plethora
of cellular events from proliferation and differentiation to
apoptosis and tumor reduction [42]. IL-22 might play a role
in the control of tumor growth and progression in breast
[43]. However, the relationship between ER and these two
pathways need further experimental study.

4. Conclusions

ER is an important molecular symbol of breast cancer. A full
understanding of the molecular mechanisms of ER will be

useful for the research in the prediction and treatment of
breast cancer. The ChIP-Seq technology is useful to study
the interaction of protein and DNA on a genome-wide
scale. ChIP-Seq data can effectively analyze the regulatory
mechanism of transcription factor in genome-wide scale. In
this study, we used ChIP-Seq data to identify the global sites
regulated by ER in MCF-7 breast cancer cell line. In order
to get more reliable result, three different tools were used to
analyze two datasets. And 933 binding sites were identified,
and the ERE motif was refined here.

The analysis of the global genomic occupancy of ER-
regulated genes revealed that 92% of the total 933 ER-binding
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Figure 4: Location analysis of ER binding sites. (a) locations relative
to nearest-neighbor genes. (b) Genomic Locations of ER ChIP-Seq
peaks. (c) Genomic locations of ER ChIP-Seq peaks within +10∼
+100 kb.
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Figure 5: Genomic Locations of differentially expressed genes in
the vicinity of ER binding sites.

sites were located far away from promoters. This suggested
that the canonical mode of ER factor function involved long-
range control. Previous research had reported that ER-α
includes looping [44]. Using ChIP-PET, Lin et al. [27] had
analyzed the genome-wide ER-α chromatin occupancy and
revealed abundant nonpromoter sites. Our findings provided
further support for this mode of ER factor function.

We compared the ER binding sites found in this study
with published differentially expressed genes between ER+
and ER− breast tumors. A set of 487 genes was found
significant in discriminating ER status in breast tumors. This
indicated that these genes appeared to affect ER response.
Only 9% (44) of the genes have been identified by Lin et al.
[27], while the remaining need further validations. We found
that binding sites were preferentially associated with ER up-
regulated genes, indicating that ER was more frequently
involved in the regulation of upregulated genes. The location
of 487 genes verified the long-range control mode of ER
factor.

In this study, we found 2694 single nucleotide polymor-
phisms loci located in or near the ER binding sites. Among
these SNPs, the 157 genes of 836 SNPs were also differentially
expressed between ER+ and ER− breast tumors. It indicated
that this set of SNPs might have close relationship with ER in
breast.

The functional annotation provided a deeper under-
standing of ER and ER-associated genes. Enrichment analysis
of GO gave an overview of gene function. As shown in
Figure 6, significantly enriched terms belonged to three
classes, biological regulation, cellular processes, and devel-
opmental processes. The result of KEGG enrichment analysis
was similar. Five pathways were involved in cellular processes,
including focal adhesion, regulation of actin cytoskeleton,
oocyte meiosis, endocytosis, and p53 signaling pathway.
These pathways were associated with cell communication,
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Figure 6: Directed Acyclic Graphs (DAGs) of significantly enriched GO (Gene Ontology) categories (P < 0.01).

movement, growth, and death. Most enriched terms deter-
mined by GeneGO were development pathways. It was
suggested that ER-regulated genes participated in various
development processes. Moreover, KEGG pathway analysis
suggested that ER-regulated genes were enriched in some
diseases related pathways. Both KEGG and GeneGO pathway
analysis revealed that some immune-related pathways were
enriched, such as chemokine signaling pathway and immune
response IL-22 signaling pathway. These results indicated
that ER-regulated genes related to the development, progres-
sion, and metastasis of breast. ER affected every developed
stage of breast. However, the regulatory mechanisms of ER
in different stages and different pathways still need further
studies.
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