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This paper presents a novel approach to segmentation of dermoscopic images based on wavelet transform where the approximation
coefficients have been shown to be efficient in segmentation. The three novel frameworks proposed in this paper, W-FCM, W-
CPSFCM, and WK-Means, have been employed in segmentation using ROC curve analysis to demonstrate sufficiently good results.
The novel W-CPSFCM algorithm permits the detection of a number of clusters in automatic mode without the intervention of a
specialist.

1. Introduction

According to the World Health Organization, skin cancer is
the most common form of human cancer. It is estimated that
over one million new cases occur annually. Additionally, the
diagnosis of skin cancer is particularly important because
melanoma can be cured with a simple excision if detected
early.

The term “skin cancer” refers to three different condi-
tions that are listed below in ascending order of mortality:

(i) basal cell carcinoma (or basal cell carcinoma epithe-
lioma),

(ii) squamous cell carcinoma (the first stage of which is
called actinic keratosis),

(iii) melanoma.

Melanoma is generally the most serious form of skin can-
cer because it tends to spread (metastasize) throughout the
body quickly.

To diagnosis skin cancer, doctors usually remove all or a
part of the growth by performing a biopsy, but this is consid-
ered an invasive technique. Alternatively, a technique calleda
dermatoscopy reduces the need for a biopsy by utilizing

a dermatoscope. Dermatoscopy is a particularly helpful stan-
dard method of diagnosing the malignancy of skin lesions
[1]. One of the major advantages of dermatoscopy is an
increase in accuracy compared with naked-eye examination
(up to 20% in the case of sensitivity and up to 10% in the case
of specificity), thereby reducing the frequency of unnecessary
surgical excisions of benign lesions [2–4].

In addition, several instruments designed for a com-
puter-aided diagnosis (CAD) of skin lesions have been pro-
posed. These usually work in four steps: data acquisition
of skin (dermoscopic images), segmentation, feature extrac-
tion, and classification. The most relevant step is the segmen-
tation process because it provides fundamental information
to the next stages. Image segmentation is the process of
adequately grouping pixels into a few regions, where pixels
within a group share some similar characteristics. Automated
analysis of the edges, colors, and shape of the lesion relies
upon an accurate segmentation, and this is an important
first step in any CAD system. However, irregular shape, non-
uniform color, and ambiguous structures make the problem
difficult.

Image segmentation can be classified into three cate-
gories (a) Supervised: these methods require the intervention
of the analyst, who should specify the sections of skin or
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Figure 1: Block diagram of statistical region merging.

lesions within the image [4, 5]. (b) Automatic: also known
as unsupervised methods, these systems attempt to find the
lesion borders without any intervention from an analyst. (c)
Semiautomatic: this describes a combination of manual and
automatic segmentation.

Many segmentation methods have been developed for
border detection in pigmented skin images, and they tradi-
tionally focus on dermoscopic images.

In [6], automatic adaptive thresholding (AT) has been
proposed where the main idea is to segment an image com-
paring the color of each pixel with a threshold. In [7], the
authors use a variant of a region growing and merging tech-
nique called statistical region merging (SRM) to segment an
image. The SRM technique has been proven to be robust for
the segmentation of color images, improving the detection
rate of skin lesions.

A recent review of methods for segmentation of skin
lesions in dermoscopic images [5] suggests that clustering is
the most popular segmentation technique, most likely due to
its robustness.

However, in some cases, it can be difficult to perform
good segmentation because of hair occlusions within the pig-
mented skin lesion. In this case, preprocessing methods, such
as those proposed in the following papers [8, 9], should be
employed before segmentation.

Texture is an important characteristic of image analysis
for both natural scenes and medical images. The wavelet
transform (WT) provides an ideal representation of texture
analysis presenting spatial-frequency properties via a pyra-
mid of tree structures that is similar to subband decomposi-
tion. The hierarchical decomposition enables an analysis of
the high frequencies in the image, which is important for the
segmentation process.

Several techniques use the image features within a WT
domain during the segmentation process. In Bello [10],
image data are first decomposed into channels for a selected
set of resolution levels using wavelet packets transform.
Then, Markov random field (MRF) segmentation is applied
to the subband coefficients for each scale, starting with
the coarsest level and propagating the segmentation process
from the current level to segmentation at the next level.
Strickland and Hahn [11] use the image features extracted
in the WT domain for detection of microcalcifications in
mammograms using a matching process and some a priori
knowledge on the target objects. Zhang and Desai [12]
employ a Bayes classifier on wavelet coefficients to determine
an appropriate scale and threshold that can separate segmen-
tation targets from other features.

In this paper, we propose an efficient approach for the
segmentation of dermoscopic images based on a clustering
process. Our novel approach uses feature extraction in
wavelet transform space before proceeding to the segmen-
tation process. The main difference with other algorithms
presented in the literature is in the usage of information
from three color channels (RGB space) in wavelet transform
space gathering the color channels via a nearest neighbor
interpolation (NNI).

The paper is organized as follows. Section 2 presents a
methodology; Section 3 exposes the proposed framework;
Section 4 discusses the evaluation criteria applied; Section 5
contains the simulation results; Section 6 contains the con-
tribution of this work; Section 6 concludes the paper.

2. Methodology

2.1. Statistical Region Merging. In [7], the authors use a
variant of a region growing and merging technique called
statistical region merging (SRM) to segment an image. The
SRM technique has been proven to be robust for the segmen-
tation of color images, improving the detection rate of skin
lesions. This framework includes the following strategy.

First, a registered image I in RGB space is considered an
observation of a true image I∗, in which pixels are perfectly
represented by a family of distributions from each of the
observed color channels. The color channel values for every
pixel are replaced by Q independent random variables with
values from (o, g/Q), where the value Q represents the
number of regions that should be generated.

The predicate of regions is defined as

P(R,R′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

true if ∀a ∈ {R, G, B}∣∣R′a − Ra

∣∣
≤ √b2(R) + b2(R′)

false otherwise,

(1)

where R and R′ represent the two regions being tested and Ra

denotes the observed average. R and R|p| are the set of regions
with p pixels. The SRM framework is shown in Figure 1.

2.2. K-Means Clustering Algorithm. This algorithm is an un-
supervised clustering algorithm that classifies the input data
points into multiple classes based on their inherent distance
from each other [13]. It works in an iterative manner ac-
cording to the following steps.
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(1) Choose initial centroids m1, . . . ,mk of the clusters
C1, . . . ,Ck.

(2) Calculate new cluster membership. A feature vector
xj is assigned to the cluster Ci if and only if

i = argmin
k=1,...,K

∥∥∥xj −mk

∥∥∥2
. (2)

(3) Recalculate the centroids for the clusters according to

mi = 1
|Ci|

∑
xj∈Ci

xj , (3)

where xj belong to dataset X = {x1, . . . , xi . . . , xN}.
(4) If none of the cluster centroids were changed, finish

the algorithm. Otherwise go to step 2.

2.3. Fuzzy C-Means Algorithm. The algorithm finds the cen-
ter of “n” number of clusters iteratively by adjusting their
position and evaluating an objective function. Additionally,
it permits more flexibility by introducing partial mem-
bership to other clusters. The classical algorithm uses the
following objective function:

E =
C∑
j=1

N∑
i=1

μki j
∥∥∥xi − cj

∥∥∥2
, (4)

where μki j is the fuzzy membership of the pixel xi, the cluster
identified by its center cj , and k is a constant that defines the
fuzziness of the resulting partitions.

The membership value is proportional to the probability
that a pixel belongs to some specific cluster where the
probability is only dependent on the distance between the
pixel and each independent cluster center. Consequently, the
criterion E has a minimal value when the pixels are nearby
the corresponding cluster center. Higher membership values
are assigned to these nearby pixels while lower membership
values are assigned to the pixels that are far from a center.
This algorithm runs with the clusters number and initial
center positions as previously determined. The algorithm
then determines how many pixels belong to each cluster. The
membership function and centers are determined as follows:

μi j = 1∑C
m=1

∥∥∥xi − cj
∥∥∥/‖xi − cm‖2/(k−1)

, (5)

ci =
∑N

j=1 u
k
i jx j∑N

j=1 u
k
i j

. (6)

The FCM algorithm runs four simple steps.

(1) The center is initialized with the first value “t” of the
data to be equal to zero, and this value is used as a
counter for the number of iterations.

(2) The fuzzy partition membership functions μi j are
initialized according to (5).

Table 1: Member functions of “Distance.”

Fuzzy set Function Center Variance

Minimum Gauss 15 16

Shorter Gauss 53 24

Short Gauss 105 30

Regular Gauss 150 30

Large Gauss 222 45

Maximum Gauss 255 15

Table 2: Member functions of “Size.”

Fuzzy set Function Center Variance

Min Gauss 9000 1.789e + 005

Small Gauss 3.015e + 005 1.626e + 005

Medium Gauss 6.53e + 005 1.968e + 005

Big Gauss 9.728e + 005 2.236e + 005

Max Gauss 1.44e + 006 2.862e + 005

(3) The value “t = t+ 1” is changed and novel centers are
computed using (6).

(4) Steps 2 and 3 run until criterion E converges.

Criterion E approaches a minimum value when its vari-
ations are decreased according to the restriction that a user
selects. The algorithm can also be interrupted if a user deter-
mines that only a certain number of iterations are required
[13].

2.4. Cluster Preselection Fuzzy C-Means. The FCM algorithm
is one of the most common procedures for image segmenta-
tion but has the following drawback: the number of clusters
needs to be predetermined by a user. Therefore, the user
may not select the correct number of clusters for a given
specific application. Therefore, a method that uses fuzzy logic
to find the number of clusters can reproducibly select the
correct number of clusters. To achieve this, we take into
consideration the difference between the max (Vmax) and the
min (Vmin) values of intensity in an image D = Vmax −Vmin.
Using these proportions, the algorithm determines the opti-
mal number of clusters. Specifically, image data are analyzed
to determine the centers, thus reducing the operational time
of the FCM algorithm. The first data classification for our
fuzzy system is called “Distance” and has a total of six fuzzy
sets, “minimum,” “shorter,” “short,” “regular,” “large,” and
“maximum” (see Table 1). The classification for our fuzzy
system called “Size” has a total of five fuzzy sets, “Min,”
“Small,” “Medium,” “Big,” and “Max” (see Table 2). Finally,
the classification for our fuzzy system called “Cluster” has
five fuzzy sets, “Very few,” “Few,” “Some,” “Many,” and “Too
Many” (see Table 3).

Finally, the fuzzy system “cluster” contains five fuzzy sets
that are applied in the determination of the centers using
30 fuzzy rules, reducing the operational time of the FCM
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Figure 2: Preselection of the number of clusters.

Table 3: Member functions of “Clusters.”

Fuzzy set Function Center Variance

Very Few Gauss 2 3

Few Gauss 7 3

Some Gauss 16 5

Many Gauss 23 5

Too Many Gauss 33 7

algorithm. The overall response of the fuzzy system can be
represented as follows:

Q(c)=max
i

{
min

{
min

{
μdistancia(d0),μsize(s0)

}
,μi(d0, s0, c)

}}
,

(7)

where i = 1, 2, . . . , 30 fuzzy rules, distance is {minimum,
shorter, short, regular, large, maximum} and size is {min,
small, medium, big, max}.

In Figure 2 we can see the membership functions with a
gaussian distribution of three conditions and the total num-
ber of clustrers.

In the second phase, the number of clusters and their
centers are already known, simply requiring dividing the dif-
ference D into the “N” clusters to determine the centers:

cj = j
D

N
j = 1, 2, 3, . . . ,N , (8)

where “N” represents the number of clusters to be created
and “ j” is a counter to define all the centers.

This looks like a hard type of algorithm, but the centers
are still rather far from the final ones. Therefore, there are
still a certain number of iterations that should be applied to
find them, but the number of iterations is far fewer than for
the original system, reducing the required computation time.

The RGB image is decomposed into its three-color chan-
nels, and the Euclidean distance is employed [13] to deter-
mine the difference between the three distances for each
color:

di(xred, xblue) =
√√√√√ P∑

k=1

(
xkred − xkblue

)2
,

d2

(
xred, xgreen

)
=
√√√√√ P∑

k=1

(
xkred − xkgreen

)2
,

d3

(
xgreen, xblue

)
=
√√√√√ P∑

k=1

(
xkgreen − xkblue

)2
.

(9)
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Two distances that are more alike are combined into one
grayscale image and then processed as a corrected image. The
proposed method is then used to determine the number of
clusters to be created.

The CPSFCM consists of the following steps.

(1) Divide the RGB image into three different images, use
(9) to find two images that are more similar to each
other, and use them to create a new grayscale image.

(2) Calculate the distance between intensity levels in the
image D, and obtain the size of an image.

(3) Use this data with the fuzzy preselective system and
obtain the number of centers to be created.

(4) Use (8) to obtain the approximate centers. The initial
value “t” is equal to zero, and it is used as a counter
for the number of the iterations.

(5) The fuzzy partition membership functions μi j are
initialized according to (5).

(6) Let the value be “t = t + 1” and compute the new
centers using (6).

(7) The steps 5 and 6 should be performed until criterion
E converges.

3. Proposed Framework

In the proposed approach, the procedure consists of the
following stages: a digital color image I[n, m] is separated
into R, G, and B channels in color space, where each channel
image is decomposed calculating their wavelet coefficients
using Mallat’s pyramid algorithm [14]. Using the chosen
wavelet family, the original image is decomposed into four
subbands. These subbands, labeled as LH, HL, and HH,
represent the finest scale wavelet coefficient (detail images),
while the subband LL corresponds to coarse level coefficients
(approximation image), noted below as D2i

h , D2i
v , D2i

d , and A2i ,
respectively at given scale 2 j , for j = 1, 2, . . . , J , where J is
the number of scales used in the discrete wavelet transform
(DWT). Finally, the DWT can be represented as follows:

Wi = |Wi| exp
(
jΘi
)
,

|Wi| =
(√∣∣Dh,i

∣∣2 +
∣∣Dv,i

∣∣2 +
∣∣Dd,i

∣∣2
)

,

Θi =
⎧⎨
⎩
αi if Dh,i > 0

π − αi if Dh,i < 0
αi = tan−1

(
Dv,i

Dh,i

)
.

(10)

Therefore, Wi is considered a new image for each color chan-
nel. The following process, conducted in wavelet transform
space, consists of several stages: the classic segmentation
method is applied to each channel image; the segmented
image corresponding to the red channel is interpolated with
the segmented image corresponding to the green channel,
and after applying the NNI process, the resulting image is
interpolated with the segmented image corresponding to
the blue channel using NNI again. Finally, this image is
considered the output of the segmentation procedure.

The block diagram in Figure 3 explains in detail the oper-
ations for the following: (a) image segmentation using the K-
Means algorithm where WT is applied, named WK-Means,
(b) image segmentation using the FCM algorithm where WT
is applied, named W-FCM, and, finally, (c) image segmen-
tation using the CPSFCM algorithm where WT is applied,
named W-CPSFCM.

4. Evaluation Criteria

Different objective measures are used in the literature for the
purpose of evaluation of the performance of border detection
in dermoscopic images.

Objective measures require a ground truth (GT) image,
which is determined by a dermatologist manually drawing
the border around the lesion. Using a GT image, Garnavi et
al. [15] calculated the operation exclusive disjunction (XOR)
measure. Other metrics used in segmentation performance
are presented in [16, 17] and include the sensitivity and
specificity, precision and recall, true positive rate, false positive
rate, pixel misclassification probability, and the weighted
performance index.

Below, let us consider the sensitivity and specificity
measure. Sensitivity and specificity are statistical measures
of the performance of a binary classification test, commonly
used in medical studies. In the context of segmentation of
skin lesions, sensitivity measures the proportion of actual
lesion pixels that are correctly identified as such. Specificity
measures the proportion of background skin pixels that are
correctly identified. We give the following definitions.

TP: true positive, lesion pixels correctly classified as le-
sion.

FP: false positive, skin pixels incorrectly identified as le-
sion.

TN: true negative, skin pixels correctly identified as skin.

FN: false negative, lesion pixels incorrectly identified as
skin,

where, in each of the above categories, the sensitivity and
specificity are given by

sensitivity = TP
TP + FN

,

specificity = TN
FP + TN

.

(11)

We also apply the receiver operating characteristic (ROC)
analysis that permits us to evaluate the image segmentation
quality in terms of the ability of human observers or a
computer algorithm using image data to classify patients
as “positive” or “negative” with respect to any particular
disease. This characteristic represents the second level of
diagnostic efficacy in the hierarchical model described by
Fryback and Thornbury [17]. The points of the ROC curve
are obtained by sweeping the classification threshold from
the most positive classification value to the most negative
and can be used to produce quantitative summary measures
of the ROC curve for this measure called the area under the
ROC curve (AUC).
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Figure 3: Block diagram of the proposed algorithms: WK-MEANS, W-FCM, and W-CPSFCM.

5. Simulation Results

The proposed segmentation algorithms were evaluated on
a set of 50 images of dermoscopic images obtained from
http://www.dermoscopyatlas.com [18]. These images do not
contain occlusions because the preprocessing procedure
has already been applied. The GT images were obtained
via human-based segmentation (see Figure 5). The dataset

presents 24-bit color images in JPEG format with 600 ×
600 pixel size. Below, we expose only five different images
with different texture characteristics where the sensitivity and
specificity are used as the evaluation criteria for segmentation
accuracy. We also plotted the ROC curves to examine the
classifier performance. Additionally, the diagnostic perfor-
mance was quantified by the AUC measure. Figure 4 shows
the dermoscopic images used in this study.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Dermoscopic images used in this study: (a) Clark’s nevus (lesion 1), (b) Clark nevus’s (lesion 2), (c) dermal nevus (lesion 3), (d)
melanoma (lesion 4), (e) melanoma (lesion 5), (f) recurrent nevus (lesion 6).

(a) (b) (c)

(d) (e) (f)

Figure 5: GT of dermoscopic images used in this study: (a) Clark nevus’s (lesion 1), (b) Clark’s nevus (lesion 2), (c) dermal nevus (lesion 3),
(d) melanoma (lesion 4), (e) melanoma (lesion 5), (f) recurrent nevus (lesion 6).

The simulation results in Table 4 present the AUC values
for the proposed framework based on different wavelet
families and confirm their improved performance compared
to classical techniques. The maximum AUC value is obtained
when WF Daubechies 4 is used followed by the WAF π6.

According to [16], AUC values should be greater than 0.8
to be considered a good test, but our study is focused on the

best approximation of a segmented image to GT, meaning
that the goal is to achieve an AUC value of approximately
one.

Figures 6(a) and 6(b) present the skin lesions and their
corresponding GT. In Figures 6(c) and 6(f), it is easy to
note that the segmentation procedure has selected the area
only around the lesion. On the other hand, in Figures 6(g)
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Table 4: AUC simulation results using different segmentation algorithms.

Lesion 1 Lesion 2 Lesion 3 Lesion 4 Lesion 5 Lesion 1 Lesion 2 Lesion 3 Lesion 4 Lesion 5

Without wavelet WAF Up2

CPSFCM 0.954 0.915 0.530 0.914 0.946 W-CSPFCM 0.798 0.787 0.886 0.906 0.921

FCM 0.967 0.936 0.955 0.954 0.960 W-FCM 0.826 0.929 0.901 0.935 0.913

K-Means 0.969 0.935 0.955 0.952 0.959 WK-Means 0.858 0.957 0.922 0.950 0.925

SRM 0.856 0.930 0.877 0.929 0.801

WF Coiflets 3 WAF π6

W-CSPFCM 0.851 0.841 0.923 0.948 0.932 W-CSPFCM 0.832 0.956 0.887 0.929 0.943

W-FCM 0.966 0.948 0.956 0.961 0.963 W-FCM 0.874 0.953 0.926 0.953 0.931

WK-Means 0.871 0.959 0.928 0.953 0.928 WK-Means 0.898 0.961 0.941 0.965 0.934

WF Daubechies 4 WAF fup2

W-CSPFCM 0.886 0.956 0.961 0.958 0.961 W-CSPFCM 0.811 0.758 0.868 0.914 0.936

W-FCM 0.969 0.945 0.957 0.959 0.970 W-FCM 0.846 0.940 0.911 0.943 0.920

WK-Means 0.874 0.964 0.937 0.960 0.939 WK-Means 0.878 0.960 0.931 0.957 0.931

WF Biorthogonal 6.8 WAF e2

W-CSPFCM 0.878 0.939 0.913 0.955 0.947 W-CSPFCM 0.811 0.763 0.870 0.911 0.935

W-FCM 0.966 0.949 0.956 0.962 0.964 W-FCM 0.844 0.939 0.910 0.942 0.919

WK-Means 0.869 0.958 0.927 0.953 0.928 WK-Means 0.875 0.960 0.929 0.959 0.932

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6: Image segmentation results under different algorithms using (a) melanoma, (b) ground truth, (c) FCM, (d) W-FCM with WF
Coiflets 3, (e) W-FCM with Daubechies 4, (f) W-FCM with WF biorthogonal 6.8, (g) W-FCM with WAF up2, (h) W-FCM with WAF π6,
and (i) W-FCM with WAF fup2, (j) W-FCM with WAF e2.
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Figure 7: (a) Lesion 4 melanoma, (b) ground truth image; ROC curves for (c) WK-Means algorithm, (d) FCM algorithm, and (e) W-
CPSFCM: for WF Daubechies 4 (dark blue), for WF biorthogonal 6.8 (red), for WF Coiflets 3 (purple), for WAF up2 (dark green), for WAF
fup2 (aqua), and for WAF π6 (light green); FCM (black).
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and 6(j), where WAF results are presented, one can see that
together with segmentation of the lesion border, there are
some skin areas included in the lesion segment.

Figure 7 presents ROC curves for lesion 4 comparing the
classic and proposed algorithms. In particular, Figure 7(c)
presents the ROC curves for the WK-means and K-Means
algorithms where one can see the superiority of the proposed
WK-Means algorithm that uses WAF π6 (see ROC curve in
light green color). Figure 7(d) presents the ROC curves for
the W-FCM and FCM algorithms where it is easy to observe
the better performance of WK-Means that employs the WF
biorthogonal 6.8 (see ROC curve in red color). Finally, in
Figure 7(e), the ROC curves for the W-CPSFCM and CPS-
FCM algorithms have confirmed the better performance of
the first one for WF biorthogonal 6.8 usage (see ROC curve
in red color). The method marks one boundary around the
principal lesion and sometimes other discontinues regions
that can be the regions of speared lesions. All marked clusters
are important for evaluation and classification processes.

6. Contributions of This Work

Many authors have studied the segmentation problem in
dermoscopic images. The principal contribution of the
current proposal resides in the use of information from
all color channels together during image segmentation. We
first propose an approach that involves the wavelet trans-
form space via decomposition process in the segmentation
process, employing different wavelet families. Then, the
interpolation procedure between every two channels is used,
finally gathering detail information of three color channels
of the output segmented image. Another achievement of
the proposed framework, in our opinion, is the designed
pre-selective clusters system, which determines the number
of clusters automatically, to analyze with the color channel
images. This preselective system optimizes the FCM frame-
work. A disadvantage of the proposed preselective system
consists of an additional program intervention that may be
needed for clusters with zero pixel values during channel
interpolation stage.

7. Conclusion

In this paper, we present three novel algorithms W-FCM,
W-CPSFCM, and WK-Means that are applied in segmen-
tation of dermoscopic images. All of these frameworks are
compared with analogue ones that do not apply wavelet
transform. The segmentation objective measures have been
performed using sensibility, specificity, and AUC metric.
The ROC curve analysis is also applied confirming that the
usage of wavelet transform features is very promising in
segmentation of dermoscopic images producing sufficiently
good results. The proposed W-CPSFCM algorithm employs
an additional procedure permitting to find a number of
clusters in automatic mode without the intervention of a
specialist. In the future, we suppose to develop the lesion
classification framework using the current segmentation
method.
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