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The heart rate variability (HRV) signal derived from the ECG is a beat-to-beat record of RR intervals and is, as a time series,
irregularly sampled. It is common engineering practice to resample this record, typically at 4 Hz, onto a regular time axis for
analysis in advance of time domain filtering and spectral analysis based on the DFT. However, it is recognised that resampling
introduces noise and frequency bias. The present work describes the implementation of a time-varying filter using a smoothing
priors approach based on a Gaussian process model, which does not require data to be regular in time. Its output is directly
compatible with the Lomb-Scargle algorithm for power density estimation. A web-based demonstration is available over the
Internet for exemplar data. The MATLAB (MathWorks Inc.) code can be downloaded as open source.

1. Introduction

A time record consisting of beat-to-beat RR intervals is
referred to as the heart rate tachogram. This forms the basis
for a number of metrics of heart rate variability (HRV). The
simplest measures of HRV are based on variance deter-
mined over a range of time periods. More complex mea-
sures can be derived from power spectrum density (PSD)
estimations. The two most commonly used PSDs are the
Welch Periodogram, based on the DFT, and the AR Spec-
trum, based on an autoregressive process model [1]. Both
approaches require the data to be sampled regularly. Resam-
pling the raw HRV data onto a regular time axis introduces
noise into the signal and the information quality is compro-
mised [1]. Conventionally, the HRV power is reported over 3
bandwidths: [0.01 · · · 0.04] Hz (Very Low Frequency, VLF)
[0.04 · · · 0.15] Hz (Low Frequency, LF), and [0.15 · · · 0.4]
Hz (High Frequency, HF) [1, 2].

Prior to transformation into the frequency domain, nor-
mal practice requires that the time series data are “det-
rended” or “high-pass filtered” at a very low frequency, say
∼0.005 Hz. There is no universally formal justification for
such detrending other than it minimises the effects of me-
dium-term nonstationarity within the immediate time epoch
(window) of interest [2]. Stationarity is an axiomatic
assumption in conventional time-to-frequency transforma-
tion of the PSD (see Appendix B).

A number of methods have been described to identify the
trend component in the tachogram such that it can be simply
removed by subtraction. These methods include fixed low-
order polynomials [3, 4], adaptive higher-order polynomials
[5, 6], and, more recently, the smoothing by priors approach
(SPA) proposed by [7] which they describe as a time-varying
finite impulse high-pass filter. The SPA uses a technique well-
established in modern time series analysis and it addresses
directly the phenomenon of nonstationarity.
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However, the Tarvainen approach suffers two limitations.
The first is conceptual: the algorithm requires resampling by
interpolation onto a regular time axis. The second is prac-
tical: the MATLAB implementation is computationally inef-
ficient and expensive and consequently very slow. In practice,
its application is limited to relatively short tachograms [7].

In the present work, a novel algorithm is introduced
which obviates these limitations by extending the SPA. The
Smoothing by Gaussian process Priors (SGP) method de-
scribed here explicitly does not require resampling and
executes in MATLAB at least an order of magnitude faster
than the SPA. By employing the SGP twice in sequence, the
bandpass effect achieves detrending (high-pass) and low-
pass filtering which is directly compatible with the Lomb
Scargle Periodogram (LSP) [8].

2. The Smoothing Priors Approach

The SPA method considers the problem of modelling the
trend component in a time series with a linear observation
model:

ztrend = Hy + v, (1)

where H is the observation matrix, v is observation error, and
y are parameters to be determined. The solution to estimat-
ing the trend is then expressed in terms of minimisation of a
regularised least squares problem:

ŷσ = arg min
y

∥

∥Hy − z
∥

∥
2 + σ2

∥

∥Dd
(

Hy
)∥

∥
2, (2)

where σ is a regularisation parameter and Dd is the discrete
approximation to the dth derivative operator.

By choosing H as the identity matrix, and d = 2, the
solution can be written as

ŷσ =
(

I + σ2DT
2 D2

)−1
z. (3)

Tarvainen et al. argue that selection of the observation
matrix is done to simplify things, in the context of estimating
parameters in a finite-dimensional space. A Bayesian inter-
pretation of (2) is given, but always in the context of finite-
dimensional parameter spaces. It is interesting and useful
to give a different interpretation in the context of Gaussian
Process (GP) priors, which implies a function-space view,
rather than a parametric view, of the regression problem. In
passing it is noted that the SPA, as published, is markedly
inefficient and potentially unstable in using matrix inversion.
A more efficient approach is presented as Appendix C.

3. An Alternative Smoothing Prior Operator

Use of the D2 operator implies uniform sampling of the data
and in the case of the HRV tachogram requires that the raw
data be projected onto a regular time axis using some means
of interpolation. Such a projection is frequently referred
to as resampling which is undesirable in that it corrupts,
preferentially, the higher frequency components [2]. In the
present development, it is proposed that resampling can be
avoided by using a different approximation for the second-
order derivative operator. The usual approximation is based
on a centred formula:

f ′′(xi) = f (xi+1)− 2 f (xi) + f (xi−1)
h2

+ O
(

h2), (4)

which implies that each row of the D2 matrix is the constant
vector [1,−2,1].

A different approximation formula to the derivative,
which does not imply uniform sampling, can also be ob-
tained by Taylor expansion with nonuniform increments.
After some algebra,

f ′′(xi) = 2
f (xi+1)(xi−1 − xi)− f (xi)(xi−1 − xi+1) + f (xi−1)(xi − xi+1)

(xi−1 − xi)(xi−1 − xi+1)(xi − xi+1)
+ O(h), (5)

where h is now the maximum local grid spacing.
The rows of the operator now explicitly depend on the x

values as desired:
[

2
(xi+1 − xi−1)(xi+1 − xi)

,

− 2
(xi+1 − xi)(xi − xi−1)

,
2

(xi+1 − xi−1)(xi − xi−1)

]

.

(6)

The operator is denoted by the symbol ̂D2.
An efficient implementation of the above algorithm

(MATLAB) is the following:

T = length(x);

id = 2 : (T− 1);

idp1 = id + 1;

idm1 = id− 1;

V1 = 2./((x(idm1)− x(idp1)).∗(x(id)− x(idp1)));

V2 = −2./((x(idm1)− x(id)).∗(x(id)− x(idp1)));

V3 = 2./((x(idm1)− x(id)).∗(x(idm1)− x(idp1)));

D2hat = spdiags ([V1, V2, V3] \ V1(1), [0 : 2], T −
2, T);

L = chol(speye(T) + sigma∧2∗D2hat′ ∗D2hat, ‘low-
er’);

z stat = z − L′ \ (L \ z);



Computational and Mathematical Methods in Medicine 3

Note that to reduce the possibility of numerical instabilities
in the solution of the linear systems, the D2hat matrix is
normalised by the first element of vector V1.

4. Equivalent Kernel and Smoothing

The operation of the smoothing priors can be understood by
looking at the following simplified form:

y = Hz, (7)

where z is the vector of data and H is the matrix coefficient
of (3). The smoother acts as a linear filter.

Since each element of z and y can be thought of as
placed at a distinct time point, it is seen that each row of
the H matrix acts over all the elements of z to produce a
single element of y. Consequently, the filter is noncausal.
In fact, each row of H defines a weighting function. Each
weighting function is localised around a specific time, and
its bandwidth determines how many samples from the past
and from the future contribute to the estimate. The wider
the weighting function, the smoother the resulting estimates.

In the case of uniformly sampled data, the weighting
functions have the same shape (except at the boundaries),
which can be imagined as a sliding window translating in
time: this is a consequence of the definition of the D2

operator, which is time independent. Figure 1 shows some
weight functions implied by the D2 operator.

However, for the case of arbitrarily (irregularly) sampled
data of the HRV tachogram, the ̂D2 operator actually
depends on time; therefore the weighting functions will take
on a different shape. This makes the resulting filter effectively
a time-variant filter. It is possible to calculate the transfer
function of the filter H in the limit as the number of data
points tends to infinity. It can be shown [2] that the (non-
stationary) spectral density of the Gaussian process prior is

S
(

f
)∝ 1

4π2 f 4
. (8)

From the above, the power spectral density of the equiv-
alent kernel filter is derived as

h
(

f
) = 1

σ24π2 f 4 + 1
. (9)

In Figure 2 it is shown an example of the transfer
function of the equivalent kernel filter (with σ2 = 1): the
phase is constant zero.

5. Estimation of the Filter Bandwidth

Although the approximation in (9) is only valid in the limit
as the number of data points goes to infinity, it is still
useful for calculating the approximate −3 dB bandwidth of
the finite-sample approximation of the filter in terms of
the smoothing parameter σ2. Whereas the SPA as presented
[7] does not provide an effective bandwidth estimate but
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Figure 1: Weight functions (viz. D2 operator).

Table 1: approximation of −3 dB point [Hz].

True –3 dB cut-off frequency Approximate frequency

0.05 0.049

0.1 0.102

0.2 0.208

0.3 0.34

only the qualitative behaviour of the filter, the following
approximation provides a quantitative tool.

Inverting (9) and applying the bilinear transformation of
the continuous frequencies, we get

σ2 =
(√

2− 1
)

(

2 tan
(

ωcπ

2

))−4

, (10)

where ωc is the normalised cut-off frequency (namely, the
Nyquist frequency = 1).

Since the number of data points mostly impacts the
estimation of low frequencies, the expectation is that the
approximation is good in the low-frequency range.

In a Monte Carlo simulation, 1000 replications of the
Welch periodogram estimates were made of white Gaussian
noise coloured through the equivalent filter H. Each noise
sequence was composed of 5000 regularly spaced samples.
In Table 1, it is seen that this approximation is good and,
predictably, deteriorates as the cut-off frequency increases.

Figure 3 shows the transfer function of the digital
equivalent kernel filter.

There is very little phase distortion, except at very high
frequencies close to the Nyquist frequency.

6. Illustrative Performance with Synthetic
and Real Data Sets

A synthetic data set of was generated (MATLAB) as series
of normallydistributed random numbers of mean 0.85(1) s
(equivalent to a heart rate of ∼75 bpm) and std 0.025 s:
this was low-pass filtered at 1 Hz (3rd-order phase-less IIR).
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Figure 2: Bode plot of theoretical transfer function of equivalent kernel filter.
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Figure 3: Bode plot of discrete transfer function of equivalent kernel filter.

These data were projected by interpolation, onto an irregular
time axis of mean interval 0.86(1) s and variance 0.01s2.
The resulting synthetic HRV record, as a time record of
band-limited Gaussian noise, was of 30 s duration, average
sampling frequency of 1.15(6) Hz and had no significant
power above 1 Hz.

Clinical ECG data from a Lead II configuration were
recorded from a healthy adult seated for a period of 60
minutes using a Spacelabs Medical Pathfinder Holter system.
RR intervals were available with 1 ms resolution.

The time domain and frequency domain (as the Lomb
Scargle periodogram) representations of the synthetic data
set and the clinical data set are shown in Figure 4 to illustrate
the band-pass filtering effect achieved using sequential SGP.
The synthetic HRV data and the clinical HRV data are filtered
in the band-pass [0.025 · · · 0.5] Hz and [0.025 · · · 0.35]
Hz, respectively.

7. Internet Resources and Open-Source Code

Resources relevant to this work are located at http://
clinengnhs.liv.ac.uk/links.htm and include the following.

(1) A website demonstration of SGP running on an au-
tomation instance of MATLAB 2008a. Developed for
JavaScript-enabled MS IE6+ and FireFox browsers.

(2) MATLAB open-source code:

(i) Smoothing by Gaussian process Priors (SGP):
gpsmooth 3.m,

(ii) Optimized Lomb Scargle Periodogram (fLSPw:
fastest Lomb Scargle Periodogram in the West):
fLSPw.m.

8. Conclusion

The SGP (Smoothing by Gaussian process Priors) algorithm
is a second-order response time-varying filter which operates
on irregularly sampled data without compromising low-
frequency fidelity. In the context of Heart Rate Variability
analysis, it provides detrending (high-pass) and low-pass
filtering with explicitly specified −3 dB cut-off points. A
small limitation is the implicit requirement to assume a
representative sampling frequency to establish the frequency
interval: here this is taken as the reciprocal of the median
sampling interval. The SGP MATLAB code is available as
open source via a comprehensive website and is directly
compatible with an optimised implementation of the Lomb
Scargle Periodogram (fLSPw) estimator.

Appendices

A. Gaussian Process Interpretation of
Smoothing Priors

Consider the posterior expectation of a GP regressor (2) at a
set of training data points z:

ŷσ = K
(

K + σ2I
)−1

z, (A.1)
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Figure 4: Synthetic and clinical HRV records band-pass filtered by sequential application of SGP: raw data vt0 “smoothed” to give vt1;
vt2 = vt0 − vt1 (not shown); vt2 “smoothed” to give vt3. Lomb Scargle Periodograms (LSPs) are for vt0, vt2, and vt3.

where K is the covariance matrix of the GP y and σ is the
standard deviation of the white (Gaussian) noise corrupting
the data z. By algebraic manipulation of (A.1), it follows:

ŷσ =
[(

K + σ2I
)

K−1]−1
z ≡ (KK−1 + σ2K−1)−1

z

≡ (I + σ2K−1)−1
z.

(A.2)

Comparing the above with (3),

DT
dDd = K−1. (A.3)

The above derivations show some important facts about the
solution of the problem.

(1) The parameter σ describes the amount of (Gaussian)
white noise, which affects the data. As σ gets smaller,
the filtering process gets smoother.

(2) The smoothness properties of the resulting estimator
depend not only on σ , but also on the choice of the
covariance matrix K. Note that polynomials up to
(and including) 1st degree are in the null space of the
regularization operator (i.e., they are both mapped to
constants), which means that they are not penalized
at all. This implies that the Gaussian Process prior is
not stationary (see Appendix B for a definition).

B. Stationarity

A Gaussian process is completely described by its mean
function and covariance function. Given a real process f (t),
these functions are specified as the following expectations:

m(t) = E
[

f (t)
]

,

k(t, t′) = E
[(

f (t)−m(t)
)(

f (t′)−m(t′)
)]

.
(B.1)

For a fixed t, f (t) is a Gaussian random variable with mean
m(t) and variance k(t, t), so that a Gaussian process can
be defined as a collection of random variables, any finite
number of which have a joint Gaussian distribution.

A stationary covariance function is a function of t − t′,
that is, it is invariant to translations. The above definitions
can be used to define stationarity for Gaussian processes.
A process which has constant mean and whose covariance
function is stationary is called weakly stationary (or wide-
sense stationary, WSS). A process whose joint distributions
are invariant to translations, that is, the statistics of f (t) and
f (t + c) are the same for any c, is called strictly stationary
(or strict-sense stationary, SSS). It can be shown that as SSS
process is also WSS, and if the process is Gaussian, then the
converse is also true.
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Figure 5: Speed-up of SGP over SPA with increasing data set size.

If any of the above conditions are violated, then the
process is non-stationary; an example is the Gaussian process
whose inverse covariance matrix is given by (4) and (5).

C. Improving the Speed and Stability of
the SPA Smoothing Process

In general, matrix inversion is very computationally expen-
sive and should be avoided whenever possible A more
efficient solution uses the backslash operator \, which in
MATLAB implements the solution of a linear system by
Gaussian elimination. However, the matrix (I +σ2DT

2 D2) can
be nearly singular and ill conditioned, depending on values
of the parameter σ2. To circumvent this risk, the lower
Cholesky factor L (the square root) of this matrix is derived,
so that

LLT =
(

I + σ2DT
2 D2

)

. (C.1)

With this decomposition, matrix inversion can then
simply be written as the solution, in sequence, of two tri-
angular systems of linear equations, which is a very fast and
numerically stable operation:

ŷσ = LT \ (L \ z). (C.2)

Although the theoretical computational complexity of
straight matrix inversion and the above (seemingly more
complex) steps is the same, the hidden factors of the actual
numerical computations make a very significant difference
[9]. The speed-up is illustrated by performing the above
computations on a sequence of varying length (from 1000
to 3000 samples), repeating the execution of both algorithms
100 times. Figure 5 shows the speed-up as a function of the
data set size.

It is clear that, as the dimension of the data set in-
creases, the speed-up increases quadratically, showing the

inefficiency of the matrix inversion-based smoothing. The
following code (MATLAB R006b) was used:

T = length(z);

D2 = spdiags(ones(T − 2, 1) ∗[1 − 2 1, 0 : 2], T −
2, T);

L = chol(speye(T) + sigma∧2∗D2′ ∗D2, ‘lower’);
% warning: potential bottleneck!

z stat = z − L′ \ (L \ z);

It should be noted that in MATLAB R2006a, and possibly
previous versions, multiplication of the σ2 coefficient by the
sparse matrix is anomalously a very slow operation.
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