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We present the joint angles analysis by means of the principal component analysis (PCA). The data from twenty-seven acute and
chronic hemiplegic patients were used and compared with data from five healthy subjects. The data were collected during walking
along a 10-meter long path. The PCA was applied on a data set consisting of hip, knee, and ankle joint angles of the paretic and the
nonparetic leg. The results point to significant differences in joint synergies between the acute and chronic hemiplegic patients that
are not revealed when applying typical methods for gait assessment (clinical scores, gait speed, and gait symmetry). The results
suggest that the PCA allows classification of the origin for the deficit in the gait when compared to healthy subjects; hence, the
most appropriate treatment can be applied in the rehabilitation.

1. Introduction

Neurological deficits caused by stroke lead among other
things to loss of leg strength, impaired balance, spasticity,
and rigidity, all affecting the ability to walk [1]. The inability
to walk directly leads to so-called no-use pattern, and this
diminishes cardiovascular fitness and contributes further
to disability. Thereby, it is important to restore walking
to the level that allows social activities. Currently, body-
weight supported gait on a treadmill and use of various
types of assistive systems to induce walking alike activity
suggest benefits. The meta-analysis, however, shows limited
improvement compared to traditional treatments [2–6].

This study is part of the clinical study of the efficacy
of the device Walkaround for assistance to posture while
exercising walking. The Walkaround provides partial body-
weight support, forces the progression at the preset speed
(0.1–1.2 m/s), eliminates the need for hand support, prevents
falls during gait training sessions, and provides longer
training [7]. The Walkaround allows free or assisted leg
joints rotations. The joint movements can be additionally
assisted with both external skeleton or functional electrical
stimulation systems.

The outcome measures of this clinical study include kin-
ematical measures (gait speed, symmetry of gait, cadence
and other temporal parameters, ground reaction forces, and
joint angles), and clinical measures (Functional Ambulation
Categories: 0 to 5 [8], Fugl-Meyer score for lower extremities:
0–36 [9], and Berg balance test: 0–56 [10]). The analysis
of data at the beginning of this study indicated significant
differences in measures of the gait that are not typically
included in the reports of clinical studies. Namely, the clinical
measures were very similar between the groups, but the
differences in kinematic synergies were significant. This
implicates that one needs to consider kinematics in details
when selecting the most appropriate therapy.

2. Methods

2.1. Subjects. Thirty-two subjects were recruited for the ran-
domized study. Twenty-seven patients were selected based on
the inclusion criteria: first ever stroke, acute or chronic stage
of hemiplegia; unilateral weakness; ability to walk at least 10
meters with or without an assistive device or hand support;
cognitive ability to follow the instructions. 16 subjects were
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Table 1: Basic characteristics of patients participating in the study.

Chronic group (CG) 16 subjects Acute group (AG) 11 subjects

Mean ± SD Min/Max Mean ± SD Min/Max

Age (years) 63.2± 6.9 44/66 65.5± 7.8 42/69

Time after stroke (months) 39.9± 27.9 12/84 3± 1.7 1/6

Fugl-Meyer (FM) Score 22.50± 4.5 15/30 21.67± 5.33 12/30

Berg Balance (BB) score 36.17± 4.83 28/44 31.83± 6.22 21/41

Functional Ambulation Category (FAC) score 2.28± 0.78 2/3 2.05± 0.56 1/3

Height (cm) 171.3± 5.4 165/179 168± 7.1 159/176

Weight (kg) 68.1± 12.0 64/82 71.3± 12.5 61/80

Sex (female/male) 7/9 4/7

Affected side (left/right) 10/6 8/3

Host computer

Figure 1: The data acquisition instrument with sensors used for
the recordings of ground reaction forces and gait kinematics. Bio-
metrics DataLog system was used for signal conditioning coming
from the flexible goniometers. The BUDA is the microcomputer
acquisition module for processing and wireless communication
with the remote computer [11].

in the chronic group (CG) (more than 6 months after stroke),
and 11 subjects in the acute and subacute group (AG). The
AG was composed of four patients in acute stage (less than
6 weeks after stroke) and seven patients in the subacute
stage (6 weeks to 6 months after first stroke). All subjects
signed an informed consent form, approved by the local
ethics committee. Subject characteristics are summarized in
Table 1.

The Fugl-Meyer for lower extremities (min 0, max 36),
Berg Balance test (min 0, max 56) and Functional Ambula-
tion Category (min 0, max 5) scoring was performed by a
single certified experienced physical therapist in all patients,
to eliminate the interrater variability.

In addition, the data when walking at slow pace (v =
0.4 to 0.6 m/s) from five healthy subjects (age 62 ± 3) with
no known neurological or orthopedic problem were used
as the benchmark. Healthy subjects signed the informed
consent approved by the local ethics committee before the
measurements.

2.2. Instrumentation. The kinematics of gait was acquired
with a portable multisensor system for gait analysis
(Figure 1). The core of the instrument is a data acquisition
portable device which transmits signals to a remote PC
via Bluetooth [11, 12]. The set of sensors used in this
study comprised six goniometers (SG110 for ankle joint,
SG150 for knee and hip joints; Biometrics Ltd., Gwent, UK)
and two shoe insoles instrumented with five force sensing
resistors each [11] for assessing ground reaction forces.
Goniometers were mounted using double-sided adhesive
tape and positioned across hip, knee, and ankle joints on
both legs following the instructions of the manufacturer.
Sensor insoles were placed in both, left and right shoe,
measuring ground reaction forces under toe, metatarsal, and
heel zone (Figure 1). Signals were recorded at a sampling rate
of 166 Hz.

2.3. Protocol. Subjects were asked to walk along a 10-meter
long straight-line path, at a self-selected, comfortable speed.
Ground reaction forces and joint angles data were recorded
during the gait. At least 12 gait trials were recorded for each
subject in three consecutive days. Patients were allowed to
rest for at least five minutes between the gait trials on the
same day to minimize effects of fatigue. The sessions were
also video-taped for later analysis of unexpected events in the
kinematic and dynamic data.

2.4. Data Processing. The data was truncated to individual
steps. The extraction of individual steps was done automat-
ically by the threshold method. The threshold level was set
at 5% of the maximum ground reaction force (heel-contact
and toes-off events), and the procedure was used for both
the paretic and the nonparetic leg. The steps were then
normalized to the 100% in order to allow a detailed analysis.
This normalization included fitting of the 100 points in the
data determined as one step. Steps that differed for more
than 10% of the average step duration in each gait trial were
disregarded (less than 4% of all strides). The signals were
initially low-pass filtered using a second-order Butterworth
filter ( fc = 5 Hz) and further processed, and then filtered
at 30 Hz with the fourth-order zero phase shift Butterworth
filter.
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Figure 2: Joint angles and ground reaction forces recorded during one of the gait sessions in one patient. The acronyms SSP and DSP are
for single support and double support phases of the gait cycle, and mg is the weight of the subject.

The novelty in this data processing is the application of
the Principal Component Analysis (PCA) to each of several
data sets consisting of normalized gait patterns over a step
cycle. The PCA is a way of identifying patterns in data
and expressing the data in such a way as to highlight their
similarities and differences. Since patterns in data can be
hard to find in data of high dimension, where the luxury of
graphical representation is not available, PCA is a powerful
tool for analyzing data. The other main advantage of PCA is
that one founds these patterns in the data, and compresses
the data, reduces the number of dimensions, with minimum
loss of information. We selected this method based on
important findings related to the characterization of gait [13,
14]. In factorial analysis, the basic waveforms are determined
by the structure of the data waveforms. The analysis involves
calculation of the correlation matrix, extraction of the initial
principal components, application of the varimax rotation,
calculation of factor scores, and interpretation of the results.
The principal components (PCs) were expressed using a
varimax rotation in order to minimize the number of
variables with high loadings on each component factor [15].
This is simplifying the interpretation of the PCs since the
waveforms of the rotated factors are closer to the original
signals [16, 17].

The appropriate application of the analysis involves an
initial estimate of the extent to which each data waveform
is composed of components common to other data waves,
the communality, and the extent to which activity is specific
to each wave alone, the uniqueness [18]. We hypothesized
that the waveforms in our case are being dependent on two
aspects: joint synergies characteristic for cyclic type behavior
and unique aspect of motor activity associated with a single,
not other joints.

We selected the Bartlett’s test of sphericity to assess
whether the dataset is adequate for factor analysis. The
Bartlett’s test of sphericity examines the hypothesis that the
correlation matrix comes from a population in which the
variables are independent. Rejection of the independence
hypothesis is an indication that the data are adequate to
factor analysis. Another important element that we included
was that eigenvectors with the corresponding eigenvalues less
than unity are typically related to noise [17, 19]. Hence, we
retained only factors with eigenvalues greater than one. This
criterion was proposed by Kaiser [15].

In summary, the PCA can be considered as a method for
reducing dimension of the data. When applying the method,
a set of input variables is transformed into a set of noncor-
related variables (principal components). These variables are
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Figure 3: Box plots for the symmetry, gait speed and FM score.

a linear combination of originals and ranked according to
the amount of variance that they contain. The PCA provides
the mapping of original data into orthogonal space, with
the principal axes in directions of maximum variance of the
original data. By this transformation, the mapping of vectors
x (x ε Rn) into a lower-dimensional vectors y (y ε Rm),
with m < n, is allowed. The data covariance matrix can be
estimated by

S = 1
N − 1

N∑

1

(
xk − μ

)(
yk − μ

)T , μ = 1
N

N∑

1

xk, (1)

where N is the total number of data. In order to determine
the orthogonal basis of mapped feature space, the eigenvalue
decomposition is performed. The eigenvalues γi are in
descending order, and i = 1, . . . ,n))

Sui = γiui, γ1 ≥ · · · γj · · · ≥ γn. (2)

Taking into consideration the m largest γi and their corre-
sponding eigenvectors ui, the mapping is given with

yi = ui
T
(
x − μ

)
, i = 1, 2 . . . ,m. (3)

2.5. Statistics. Student’s t-test was used to analyze the
differences in measured values between the groups.

3. Results

Figure 2 is an example showing a sequence from the
preprocessed recordings of joint angles and ground reaction
forces (GRFs) of the paretic and the nonparetic leg, with the
indications of double support phase (DSP), single support
phase (SSP), and swing and stance phases.

Figure 3 is the box plot with the quartile values for the
symmetry index (from paretic leg, to paretic leg and whole
stride), gait speed, and FM score normalized to the mean
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Figure 4: Quartile distribution of the hip, knee, and ankle joints of
the paretic and the nonparetic leg in chronic and acute groups. The
asterisks denote significant differences (P < 0.01).

value for each of the groups (CG and AG). There were no
significant differences between groups in these variables.

Figure 4 shows significant differences found between
joint angles for the AG and CG. Among all joint angles,
significant differences were found only in joint angles of
the nonparetic leg. This could be explained by the fact
that the dominating intersegmental coordination was lost.
This suggestion follows the result of Ivanenko et al. [14]
who found that temporal changes of the angles of lower
limb joints do not evolve independently, but they are tightly
coupled.

3.1. Healthy Individuals. The PCA of joint angles recorded in
healthy subjects shows that first two principal components
account for about 88% of total variance (from 83% to 94%).
First principal component (PC) describes about 58%, while
second PC describes about 30% of total variance. Projection
of all data points onto the first two components forms a
two-dimensional D-like shape (Figure 5). In all data used,
the Bartlett’s test of sphericity indicated that a PCA was
appropriate method (P < 0.0001).

The D shapes (Figure 5, left panel), called cyclograms,
have been already reported in the literature and used in
computer vision applications [20] and gait recognition [21].
The D shapes differ subtly in shape and position among
subjects, but always have the same well-recognizable form.
Calculations of principal components based on Pearson’s
correlation matrix gave us an additional insight into mutual
dependence of initial variables. Pearson’s correlations are
presented in Figure 5 (right panel) as vectors of the cor-
relation circle. If vectors are close to each other, they are
significantly correlated. If they are orthogonal they are not
correlated. We found that, in healthy subjects, hip and knee
are negligibly correlated (r = 0.09–0.22). Hip and ankle show
moderate degree of correlation (r = 0.48–0.66), while knee
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Figure 5: Cyclograms for five healthy subjects forming a characteristic D-like shape (left panel) and Pearson’s correlations between the ankle,
knee, and hip joint (right panel).

and ankle show variable degree of correlation across subjects,
ranging from low to moderate.

Figure 6 shows results of the principal component analy-
sis in four stroke patients. We present two patients from the
group that had gait speed above v = 0.5 m/s and had the FM
≈ 25 (Figure 6, top panels), and two patients that had the
gait speed at about v = 0.2 m/s and the FM ≈ 20 (Figure 6,
bottom panel). The left panels show patients from the CG,
and the right panels from AG. The main finding from the
analysis is that patients in the acute group have a near-normal
cyclogram in the nonparetic leg, suggesting that they have
near-healthy leg movement synergy, and that patients in the
CG have not only modified synergies in the paretic but also
in the nonparetic leg.

The summary of the figures showing the cyclograms is
given in Table 2.

4. Discussion

The clinical measures (Fugl-Meyer scores, Functional Ambu-
lation Categories, and Berg Balance scores) show no signifi-
cant differences between chronic and acute stroke patients
(Table 1).

The duration of the stride in acute groups was between
1.95 and 3.05 s, while the duration in the chronic group
was longer (2.05–3.50 s) yet, not statistically significant. The
step lengths were similar in the acute (0.71 and 0.81 m)
and chronic (0.66 and 0.78 m) groups. The analysis of other
temporal and spatial parameters also did not show significant
differences.

A typical measure of the quality of gait is symmetry. Our
study indicates that the differences in the symmetry exist

between the chronic and acute groups, but these differences
were not significant (Figure 3). One of the reasons for this
finding was likely a large variation of the symmetry indices
in both groups.

The analysis of joint angles of both legs (Figure 4)
revealed the differences in kinematics between the AG and
CG. The most interesting aspect is the difference that
was assessed in the nonparetic leg. Abnormal joint angle
patterns found are consistent with clinical characterization
of hemiplegic overground gait and are most probably related
to hip hike and circumduction.

These differences were further analyzed by means of
PCA. We found that in healthy subjects, first two principal
components account for majority of joint angle variance.
Planar covariance among joint angles, previously reported in
[14], represent a constraint that could be explained in terms
of mechanics as a reduction of number of degrees of freedom
from three to two. Thus, the two joint angles determine the
third one.

The analysis of data from patients reveals differences
from the healthy gait pattern. As severity of hemiplegia
grew, first two PC carried more of the total variance. Also,
distribution of variance among components changed. The
larger deviation from the normal gait pattern is expressed
as an increase of first PC at the expense of the second PC,
in some cases, leading to a significant reduction of this
component. In terms of joint angles, this provokes stronger
linear coupling of three joint angle variables. This linear
dependence reduces the possible number of different joint
angle combinations.

If we compare healthy gait pattern with planar covariance
to more constrained gait leading to almost linear covariance,
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Figure 6: Cyclograms and Pearson correlation coefficients for four stroke patients. The top panels are for subjects who belong to low level
of disability, and the bottom for the high level of disability. Left panels show 2 patients in the chronic stage, while the right panels show two
patients in the acute stage of hemiplegia.

we can conclude that, in case of injury, neural system loses
some of its control possibilities. Ivanenko et al. [14] showed
that in case of a constrained gait (in-place movements and
overground marching), trajectory collapses to a line and
there is linear covariance between angles. So, we could say
that as we get closer to linearity (first PC more dominant),
gait becomes more constrained.

After analyzing data from acute and chronic hemiplegic
patients, we were able to identify some patterns of disturbed
behavior. Results are shown in Table 2. We have introduced
a speed boundary set at 0.35 m/s, which separated those
functionally better from those who recovered less.

In both, acute and chronic hemiplegic patients, we found
considerable deviation from healthy pattern on the paretic
leg, regardless of speed. Distribution of variance between
principal components has moved, as mentioned above,

towards the first principal component (first PC explaining
up to 67% of total variance). Correlations between joint
angles showed notably weaker correlation between hip and
ankle, caused by a partial or complete loss of dorsiflexion
movement. This has provoked stronger negative correlation
of hip and knee.

The analysis of the nonparetic leg gave us an insight
into rather unusual differences between acute and chronic
hemiplegic patients. While all acute patients had a healthy-
like pattern on the nonparetic leg, chronic patients formed
two distinct groups. This partition was in accordance with
previously set gait speed boundary. Those functionally better
show either a healthy pattern on both legs or similar patterns
as in acute patients. On the other hand, a chronic group
that has not recovered a lot of their functionality shows
modified patterns on both, the nonparetic and the paretic
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Table 2: The values of PCA for the healthy subjects and hemiplegic individuals divided into four groups based on the velocity of gait. Bold
numbers show the category with significant difference (P < 0.05). Examples of “good” and “bad” recovery are shown in Figure 6.

GROUP F1 + F2 F1 F2

HEALTHY 88.3± 2.7 58.2± 2.7 29.2± 2.0

v > 0.35 m/s
CG 86.82± 4.1 59.38± 3.8 35.31± 4.7

Non paretic legAG 86.46± 5.0 57.99± 3.7 32.03± 4.9

v < 0.35 m/s
CG 94.01± 4.9∗ 63.88± 3.8∗ 38.49± 5.3∗

AG 89.01± 3.9 56.06± 6.0 30.95± 5.0

v > 0.35 m/s
CG 92.99± 4.2∗ 67.04± 3.6∗ 19.97± 3.2∗

Paretic legAG 95.77± 4.4∗ 66.31± 5.2∗ 29.46± 3.5∗

v < 0.35 m/s
CG 98.15± 1.3∗ 64.89± 5.1∗ 20.96± 3.4∗

AG 91.93± 3.6∗ 56.55± 4.4∗ 35.39± 4.1∗

leg. If we look at the correlations, the nonparetic leg is
characterized with negatively correlated hip and ankle, as
well as negatively correlated hip and knee. The paretic leg,
depending on a particular subject, shows various kinds of
disturbed behavior.

Although chronic subjects have been involved in at least
one conventional treatment, if not some additional, our
study showed that not all of them benefited from it. Results
from subjects in acute group indicate that in this early
phase of therapy, all patients have more or less-disturbed
pattern in the paretic leg and a healthy-like pattern on the
nonparetic leg. If we look at the differences in the gait
pattern of chronic group patients, we could conclude that
those who recovered more, kept their healthy patterns on
the nonparetic leg, and regained a healthy pattern on the
paretic leg, or at least improved this pattern to some point.
In subjects who made no particular progress in quality of
gait, despite the fact that they were involved in rehabilitation
for longer periods of time, we found disturbed gait patterns
on both legs. This indicates that compensatory mechanisms
evolved during rehabilitation process and not only affected
the paretic leg, but also violated the existing healthy pattern
of the nonparetic leg.

The most likely reason for the abnormal synergies is
related to the task that was dominating the recovery of
gait: faster gait and ability to cover longer distances. The
obvious fact is that in both groups there was basically little
“returning” to the normal synergies (Table 2).

The main finding from this study is that it is important
to use kinematical data and apply stochastic analysis in order
to provide adequate elements for analyzing the recovery that
follows a treatment. We suggest that the use of the PCA
characterizes better the specific features and abnormalities of
the joint angles compared to some conventional techniques
where only few nonconsecutive steps were used for the
analysis [22–25]. This is especially in case of studying
both acute and chronic stroke patients. While there are
many studies about benefits of rehabilitation of patients
in the acute recovery phase, there are still many doubts
about success in chronic patients, who may require different
techniques and approaches. Their treatment could benefit
from better understanding of underlying mechanisms that
PCA provides.

Acknowledgment

The work on this project was partly supported by the
Ministry of Science and Technology of Serbia. The authors
acknowledge the support in selection of the patients and
clinical work to Aleksandra Dragin, M.D. and Jelena
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Milica Djurić-Jovičić, Ph.D. student from the University of
Belgrade.

References

[1] M. Y. C. Pang, J. J. Eng, A. S. Dawson, H. A. McKay, and J.
E. Harris, “A community-based fitness and mobility exercise
program for older adults with chronic stroke: a randomized,
controlled trial,” Journal of the American Geriatrics Society, vol.
53, no. 10, pp. 1667–1674, 2005.

[2] A. M. Moseley, A. Stark, I. D. Cameron, and A. Pollock,
“Treadmill training and body weight support for walking after
stroke,” Cochrane Database of Systematic Reviews, no. 3, Article
ID CD002840, 2003.

[3] M. Wirz, D. H. Zemon, R. Rupp et al., “Effectiveness of
automated locomotor training in patients with chronic
incomplete spinal cord injury: a multicenter trial,” Archives of
Physical Medicine and Rehabilitation, vol. 86, no. 4, pp. 672–
680, 2005.

[4] A. R. Den Otter, A. C. H. Geurts, T. Mulder, and J. Duysens,
“Gait recovery is not associated with changes in the temporal
patterning of muscle activity during treadmill walking in
patients with post-stroke hemiparesis,” Clinical Neurophysiol-
ogy, vol. 117, no. 1, pp. 4–15, 2006.

[5] S. Hesse, C. Bertelt, M. T. Jahnke et al., “Treadmill training
with partial body weight support compared with physiother-
apy in nonambulatory hemiparetic patients,” Stroke, vol. 26,
no. 6, pp. 976–981, 1995.

[6] B. Husemann, F. Müller, C. Krewer, S. Heller, and E. Koenig,
“Effects of locomotion training with assistance of a robot-
driven gait orthosis in hemiparetic patients after stroke: a
randomized controlled pilot study,” Stroke, vol. 38, no. 2, pp.
349–354, 2007.
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dovanović, “Gait analysis: BUDA vs. GAITRITE,” in Proceed-
ings of the 53rd ETRAN Conference, Vrnjačka banja, Serbia,
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