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Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology.
Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large
variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an
application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations
with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows
us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-
order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed
to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity
epidemic model.

1. Introduction

Epidemiological mathematical models based on ordinary
differential equations are usually used to understand the
processes involved in the transmission of diseases [1].
The coefficients of these equations have traditionally been
considered deterministic, that is, they have been assumed
to be known and have no variation; see, for example, [2,
3]. However, in many situations, equations with random
coefficients are better suited in describing the real behavior
of quantities of interest than their counterparts with deter-
ministic coefficients. Therefore, considering randomness is
particularly important. A probabilistic description provides a
more natural and realistic portrayal. Additionally, in the case
of multiple uncertain parameters, a probabilistic approach is
necessary to avoid unreasonable conservatism.

Differential equations where some or all of the coeffi-
cients are considered random variables or that incorporate
stochastic effects (usually in the form of white noise) have
been increasingly used in the last few decades to deal with
errors and uncertainty see [4, 5].

Monte Carlo methods [6, 7] have been used for many
years to perform simulations when random effects were
involved. They are simple to implement and understand but
require many realizations due to their slow convergence rate
and hence tend to be expensive. Other methods that have
been developed and used are, for example, moment methods
[8, 9] and polynomial chaos methods see [10, 11] and the
references therein. Moment methods approximations use
Taylor series expansions about the mean value of the input
parameters. The first-order moment is the deterministic
value of the output parameter obtained at the mean of the
input, while evaluation of the higher order moments requires
computation of sensitivities. The drawback of this approach,
is that it is intrinsically limited to small perturbations; it
also becomes complicated beyond second-order expansions
[4, 12]. In the polynomial chaos approach a high-order
representation is far easier to construct—the equations are
basically the same at any order the difference lies only
in the number of terms to be considered and are of the
same form as the corresponding deterministic equations. So
there is no need to develop new algorithms and numerical
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methods. High-order moments are easily accessible, and
the spectral convergence of the stochastic approximation
guarantees that of high accuracy can be obtained even with
a small number of terms see [12, 13] for computational
results. An alternative approach is to add white noise terms
and thus obtain a system of stochastic differential equations,
see, for example, [14, 15] for applications to epidemic
models. For discrete population, models can also incorporate
randomness. For example, micromodels [16, 17] can be used
to model interactions between individuals given by random
parameters.

In this paper, we will use the polynomial chaos approach
to study this type of epidemiological models with ran-
domness, due to its simplicity. The computational cost can
be high if many random parameters are considered, and
high-order expansions are used. But in our problem this
was not the case. The polynomial chaos method applied
to a system of ordinary differential equations with random
equations is based on expanding the random coefficients and
the unknown variables in terms of orthogonal polynomials
of random variables. For example, if a random coefficient
has a normal distribution, the Hermite polynomials should
be used since they form an orthogonal basis with the
normal distribution as the weight. These expansions are
then substituted into the differential equations, and the
orthogonality is used to obtain a system of the differential
equations of the same form as the deterministic model for
the unknown coefficients of the expansions. These equations
can then be solved using the same numerical methods used
for the deterministic case. More details are given in Section 3.
As an example, we analyze the time evolution of a system
of ordinary differential equations with random transmission
parameters designed to understand an obesity epidemic. A
deterministic version of the obesity mathematical model
considered was presented in [18].

This polynomial chaos technique allows us to consider
that the transmission parameters in an epidemiological
model are random variables and obtain the evolution of the
epidemic and its predictions considering the effects of these
randomness. Additionally, the quantification of the effects
of the random transmission parameters on the variance
of the response of the epidemiological model can also be
analyzed calculating the polynomial chaos-based Sobol’s
indices. These indices are based on the decomposition of
the variance of the output as a sum of contributions of
each input variable. Taking into account this decomposition,
Sobol’s indices allow us to quantify the rate defined by the
variance related to each parameter and the total variance of
the output.

Therefore, this approach is useful to predict the evolution
of an epidemic considering the effects of the randomness
and to quantify the effects of the random transmission
parameters on epidemic evolution (sensitivity analysis).

This paper is structured as follows. In Section 2, a
test mathematical model for obesity epidemic is briefly
described. The polynomial chaos approach is presented in
Section 3. Section 4 is devoted to numerical results. Finally,
conclusions are considered.

2. Epidemiological Models

Classical models of disease dynamics rely on systems of
differential equations that divide the number of individuals
in various categories through continuous variables allowing
for infinitesimal population densities. The origin of these
models is commonly traced back to the well-known pioneer
work of Hethcote [1]. In this work, they obtained the
epidemic threshold result that the density of susceptible
population must exceed a critical value in order for an
epidemic outbreak to occur.

Some of the assumptions in this type of models are:
(i) The number of individuals grows without bound in a
Malthusian way; this is modeled by a linear term. (ii) The
effect of the disease (the transit to infected population) is
modeled by a nonlinear term proportional to the infected
and noninfected populations. (iii) The death rate results in
exponential decay and is modeled by a linear term.

2.1. Obesity Model. The population with excess weight is
growing at a worrying rate in developed and developing
countries [20]. The obesity epidemic is becoming a serious
health concern not only from the individual health point of
view but also from the public socioeconomic one, and it is
considered that the study of obesity is of the highest priority,
evaluating its magnitude and proposing effective strategies in
order to invert this trend in the next few years.

The obesity model used to present the possibilities of
the polynomial chaos approach was proposed in [18] to
understand the dynamics of the obesity epidemic. This
model was defined for individuals aged 24–65 years old.
They are divided into three subpopulations using their Body
Mass Index size (BMI = weight/height2), where the weight
is in kilograms and the height in meters: N : individuals
with normal weight (BMI < 25): S, overweight people
(25 ≤ BMI < 30), and O obese individuals (BMI ≥ 30).
The transitions between these different subpopulations are
described by the following system of differential equations
(t, time in weeks):

N ′(t) = μN0 − μN(t)− βN(t)[S(t) + O(t)] + ρS(t),

S′(t) = μS0 + βN(t)[S(t) + O(t)]− [μ + γ + ρ
]
S(t) + εO(t),

O′(t) = μO0 + γS(t)− [μ + ε
]
O(t).

(1)

The time invariant parameters of this system of equations are
as follows.

(i) ε: rate at which an obese adult with healthy lifestyle
becomes a overweight individual.

(ii) μ: average stay time in the system of 24–65 years old
adults.

(iii) ρ: rate at which a overweight individual moves to the
normal weight sub-population.

(iv) β: transmission rate due to social pressure to adopt
an unhealthy lifestyle (TV, friends, family, job, etc.).

(v) γ: rate at which an overweight 24–65 years old adult
becomes an obese individual by unhealthy lifestyle.
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(vi) N0: proportion of normal-weight individuals coming
from the 23-year-old age group.

(vii) S0: proportion of overweight individuals coming
from the 23-year-old age group.

(viii) O0: proportion of obese individuals coming from the
23-year-old age group.

The values of these parameters for the region of Valencia
(Spain) were determined by health survey for the region of
Valencia, Spain, year 2000 and year 2005 [19] and a technical
report published by Arrizabalaga et al. [21]. To be precise, we
take into account the weekly growth of the average weight
of a 24–65-year-old adult in the region of Valencia, and
the mean time that an individual takes after he/she stops
physical activity to start again. Additionally, we consider that
an overweight individual takes 24 weeks to transit from obese
to overweight subpopulation by physical activity and healthy
nutritional habits. We show them in Table 1. For more details
about the parameter estimations see [18].

Parameters, μ, γ, ε, and ρ can be interpreted as the mean
length of the transit period between two subpopulations
(weeks−1). Note that length of the transit period for a
subpopulation is usually assumed to follow an exponential
distribution [22].

The initial conditions of the system are also defined by
health survey for the region of Valencia, Spain, year 2000. In
this case,

N(t = 0) = 0.522, S(t = 0) = 0.362,

O(t = 0) = 0.116,
(2)

that is, in the region of Valencia, 52.2% was normal-weight
population, 36.2% was overweight population, and 11.6%
was obese population in year 2000.

Note that taking into account the differential equations of
the model (1), the parameter values (Table 1), and the initial
conditions shown above, we can predict obesity incidence in
the next few years.

3. Random Transmission Parameters and
Polynomial Chaos

It is necessary to introduce randomness in the model
(1) since the parameters involved have some degree of
uncertainty due to sampling, rounding, and other errors. We
consider the transmission parameters of the model (β, γ, ε,
and ρ) as random variables with a certain probability distri-
bution. The proportions of individuals coming from the 23-
year-old group (N0, S0,O0) will not be considered random
since they can be determined with much more accuracy than
the aforementioned parameters. The equations also require
initial values of the three sub-populations N(t = 0), S(t =
0), and O(t = 0). These values can also be determined with
more accuracy than the transmission parameters and will,
therefore, not to be considered random. In both cases (pro-
portions of individuals coming from the 23-year-old group
and initial values of the model), the values are estimated
considering a representative sample of Valencian population

Table 1: Estimated parameters for the region of Valencia, Spain.

Parameter Value

β 0.00085

μ 0.000469

γ 0.0003

ε 0.000004

ρ 0.000035

N0 0.704

S0 0.25

O0 0.046

Table 2: Probability distributions of the transmission parameters.

Parameter Value Distribution

β 0.00085 Uniform (0, 0.0017)

γ 0.0003 Uniform (0, 0.0006)

ε 0.000004 Uniform (0, 0.000008)

ρ 0.000035 Uniform (0, 0.00007)

with a sample size of 4,319 individuals. In addition, N0,
S0, O0, N(0), S(0), and O(0) are determined by the given
population that we are studying, and we are interested
in investigating the effects of changes in the transmission
parameters on the future values of the three sub-populations.
So by only considering that the transmission parameters
are random, we take into account the largest sources of
uncertainty, while keeping the model relatively simple.

In many situations, the number of data points available
is very small, so it is not possible to establish the type of
distributions satisfied by the random parameters. This is
also true in our case where the number of data points for
the transmission parameters is so scarce that is not possible
to have a well-defined type of distribution. In this work,
we only have the information of one value to estimate
the probabilistic distribution of the parameters, the values
shown in Table 1. We have not a lot of information to do
it. Therefore, we consider a noninformative distribution,
the uniform probability distribution. As it is commented
in [23, 24], this is a habitual consideration to estimate the
parameters of a mathematical model when we have not a
lot of information. Table 2 shows details about the assumed
probability distribution of the transmission parameters.
Note that for each parameter θ, with values β, γ, ε, and ρ,
the maximum likelihood estimation of Uniform (0, θ) is the
maximum of the sample considered, that is, the only value of
the sample is the known value of the parameter. In this case,
the expected value of each parameters is a half of its known
value. Therefore, if we consider the distribution defined by
Uniform (0, 2∗θ), we have that its expected value is the
known value of the parameter.

Therefore, we consider that the transmission parameters
of the model β, γ, ε, and ρ are random variables depending
on the outcome w of an experiment, β = β(w), γ = γ(w), ε =
ε(w), and ρ = ρ(w), and the populations N(t;w), S(t;w),
and O(t;w) then become stochastic processes depending also
on time [25].
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In order to perform numerical simulations of the dynam-
ical model (1) with β = β(w), γ = γ(w), ε = ε(w) and ρ =
ρ(w), and estimate various moments of the solution, N(t;w),
S(t;w), and O(t;w), we apply the Generalized Polynomial
Chaos approach [26, 27].

In this context, polynomial chaoses can be arranged
in a sequence Φi((w)), such that the expansion of the
random transmission parameters and stochastic processes
appearing in the extended mathematical model (model (1)
with random transmission parameters) takes the following
form:

N(t;w) =
∞∑

i=0

Ni(t)Φi((w)),

S(t;w) =
∞∑

i=0

Si(t)Φi((w)),

O(t;w) =
∞∑

i=0

Oi(t)Φi((w)),

β(w) =
∞∑

i=0

βiΦi((w)), γ(w) =
∞∑

i=0

γiΦi((w)),

ε(w) =
∞∑

i=0

εiΦi((w)), ρ(w) =
∞∑

i=0

ρiΦi((w)),

(3)

where the Φi are properly chosen polynomial basis functions
of some components of the random variable vector, and the
number of variables in represents the dimension of the chaos
(i.e., the number of input random parameters considered).

In this paper, since the probability distributions of the
transmission parameters are uniform see Table 2, we have
taken the expansions in terms of Legendre polynomials
and = (w) as a vector with four components where each
component is a random uniform variable with variation
range in [−1, 1]. Taking into account the orthogonality of the
basis functions together with truncation of the polynomial
chaos series to a finite number of terms will lead to an
auxiliary system of ordinary differential equations governing
the time evolution of the chaos coefficients of the solutions
of the obesity model with random transmission parameters.
In this paper, we will use a polynomial chaos method of
order two based on Legendre polynomials (this means we
will use Legendre polynomials up to degree two), and the
chaos dimension is four (we consider four input random
parameters: β, γ, ε, and ρ). Since there are fifteen Legendre
polynomials of degree less or equal to two using a selection
of the four variables of (there is one polynomial of degree
zero, four of degree one, each one for each ξi, four of degree
two in one variable, each one for each (ξi, ξi), and six of
degree two in two variables, each one for each (ξi, ξj), i /= j),
the number of terms of the polynomial chaos expansion
(truncation) of the unknown stochastic processes is equal
to fifteen. In general this number is (n + p)!/(n!p!) where
p is the maximum degree of the polynomials used, and n
is the number of random parameters (p = 2 and n = 4
in this work). This number grows very fast with increasing
n and p, which is one reason to choose the order of the

chaos to be two. A more important reason is that in [27]
a comparison was done for some epidemic models of the
effect of the order on the solutions. There it was shown
that while order one is not accurate, chaos or order two
and three produce very similar results. A good reference to
contextualize these assumptions considered related to the
order of the polynomial chaos expansion is [26].

For N(t;w), for example, the chaos expansion will take
the following form:

N(t;w) = N0(t) +
4∑

i=1

Ni(t)Φ1(ξi(w))

+
4∑

i=1

i∑

j=1

Nij(t)Φ2

(
ξi(w), ξj(w)

)
.

(4)

The first coefficient in the expression, N0(t), represents the
first-order moment of the output stochastic process; N(t;w)
and Φ1,Φ2 are Legendre polynomials in terms of a selection
of the components of the vector. To be precise,

Φ1(ξi(w)) = ξi(w),

Φ2(ξi(w), ξi(w)) = 3
2
ξi(w)2 − 1

2
,

Φ2

(
ξi(w), ξj(w)

)
= ξi(w)ξj(w).

(5)

A proper description of the random transmission param-
eters in terms of the independent chaos variables ξ1(w),
ξ2(w), ξ3(w), and ξ4(w) must take into account all the
possible correlations between these parameters. Since we
assume the four transmission parameters are independent
random variables, each of them can be expanded as a
functional of only one variable of ξ1(w), ξ2(w), ξ3(w), ξ4(w).
Thus, its expansion to only order two is as follows.

β(w) =
∞∑

i=0

βiΦi((w)) = β0 + β1Φ1(ξ1(w))

+ β2Φ2(ξ1(w), ξ1(w)).

γ(w) =
∞∑

i=0

γiΦi((w)) = γ0 + γ1Φ1(ξ2(w))

+ γ2Φ2(ξ2(w), ξ2(w)).

ε(w) =
∞∑

i=0

εiΦi((w)) = ε0 + ε1Φ1(ξ3(w))

+ ε2Φ2(ξ3(w), ξ3(w)).

ρ(w) =
∞∑

i=0

ρiΦi((w)) = ρ0 + ρ1Φ1(ξ4(w))

+ ρ2Φ2(ξ4(w), ξ4(w)).

(6)

Note that β0, γ0, ε0, and ρ0 are the first-order moments of
each transmission parameter.
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We are now ready to develop the differential equations
used in the numerical study. Considering the equations of
the mathematical model (1) and introducing the polynomial
chaos expansions, we obtain these equations.

Considering that we define the model in the restricted
region {N(t) > 0, S(t) > 0, O(t) > 0, 0 < N(t) + S(t) +
O(t) = 1} see [18], we can take into account that N(t) +
S(t) + O(t) = 1, then it is only necessary to work with two of
the equations of the system; for example, the second one and
the third one and then determine N(t) from N(t) = 1−S(t)−
O(t). This option has also been considered in the polynomial
chaos approach.

For notational convenience, we consider a one-to-one
correspondence between the Legendre polynomials Φq(·)
(q = 1 and 2) and Ψi(·). Then, N(t;w), for example, can
be rewritten as N(t;w) = ∑∞

i=0 Ni(t)Ψi. Now, taking into
account this new notation and introducing the polynomial
chaos expansions for S(t), O(t) and random transmission
parameters in the last equation of (1), we obtain the
following expression:

14∑

i=0

d

dt
Oi(t)Ψi = μO0 +

14∑

i=0

γiSi(t)Ψi − μ
14∑

i=0

Oi(t)Ψi

−
14∑

j=0

14∑

i=0

εiOj(t)ΨiΨ j .

(7)

To obtain a system of ordinary differential equations for
the unknown coefficients with only one derivative of an
unknown per equation, we use the orthogonality of the basis
functions. In particular, taking the inner product of (7) with
the basis functions ΨL (L = 0, 1, . . . , 14) results in

〈ΨL,ΨL〉 d
dt
OL(t)

= 〈μO0,ΨL
〉

+
14∑

j=0

14∑

i=0

γiSj(t)
〈
ΨiΨ j ,ΨL

〉

− μ
14∑

i=0

Oi(t)〈Ψi,ΨL〉

−
14∑

j=0

14∑

i=0

εiOj(t)
〈
ΨiΨ j ,ΨL

〉
.

(8)

Note that 〈Ψi,Ψ j〉 is defined as
∫ 1
−1 ΨiΨ j f (ξ)dξ, and f (ξ) is

the uniform probability density function.
For the second equation of system (1) the equivalent of

the expression (8) is as follows:

〈ΨL,ΨL〉 d
dt
SL(t)

= 〈μS0,ΨL
〉

+
14∑

j=0

14∑

i=0

βiOj(t)
〈
ΨiΨ j ,ΨL

〉

−
14∑

j=0

14∑

i=0

ρiSj(t)
〈
ΨiΨ j ,ΨL

〉
− μ

14∑

i=0

Si(t)〈Ψi,ΨL〉

−
14∑

j=0

14∑

i=0

γiSj(t)
〈
ΨiΨ j ,ΨL

〉

+
14∑

j=0

14∑

i=0

εiOj(t)
〈
ΨiΨ j ,ΨL

〉

+
14∑

j=0

14∑

i=0

βiSj(t)
〈
ΨiΨ j ,ΨL

〉

− 2
14∑

j=0

14∑

i=0

14∑

k=0

βiSj(t)Ok(t)
〈
ΨiΨ jΨk,ΨL

〉

−
14∑

j=0

14∑

i=0

14∑

k=0

βiSj(t)Sk(t)
〈
ΨiΨ jΨk,ΨL

〉

−
14∑

j=0

14∑

i=0

14∑

k=0

βiOj(t)Ok(t)
〈
ΨiΨ jΨk,ΨL

〉
.

(9)

Equations (8) and (9) are a nonlinear system of ordi-
nary differential equations in the unknowns O0(t),O1(t),
. . . ,O14(t) and S0(t), S1(t),. . . ,S14(t). This system (auxiliary
system) will be solved numerically using an explicit Runge-
Kutta method. Usually the quantities of interest are the first
and second moments. The first moment, or expectation, is
given, as we have mentioned by S0(t) and O0(t). N0(t) is
calculated by 1− S0(t)−O0(t). The calculation of the second
moment (variance) will be given in the next section.

4. Sensitivity Analysis: Polynomial
Chaos-Based Sobol’ Indices

A sensitivity analysis is also performed in order to quantify
the output uncertainty due to the randomness in each of the
transmission parameters. Polynomial chaos-based Sobol’s
indices are used. This method is based on the decomposition
of the variance of the output as a sum of contributions of
each input variable, or combinations thereof see [28, 29].

In order to compute the sensitivity indices based on
the polynomial chaos expansions of the output stochas-
tic processes it is necessary to consider the coefficients
of these expansions, that is, N0(t),N1(t), . . . ,N14(t), S0(t),
S1(t), . . . , S14(t), and O0(t),O1(t), . . . ,O14(t). Indeed, only
elementary mathematical operations are needed to compute
Sobol’s indices from these expansion coefficients.

The idea behind the construction of polynomial chaos-
based Sobol’s indices is simple: once the polynomial chaos
representation of the output stochastic process is available
(the expansion coefficients are known, i.e., the solution of
system (9) is known), the response expansion coefficients are
simply gathered according to the dependency of each basis
polynomial, square-summed and normalized. For example,
the polynomial chaos-based Sobol’s index which explains
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Figure 1: Prevalence prediction for obese subpopulation in the
region of Valencia. Note that t = 0 correspond to year 2000 (the first
week) and (•) are the obesity prevalence known by health surveys
[19].

the influence of the parameter β on the stochastic process
O(t;w), SUβ, can be computed as follows:

SUβ(t).

= O2
1(t) Var(Φ1(ξ1(w))) + O2

5(t) Var(Φ2(ξ1(w), ξ1(w)))
Var(O(t))

.

(10)

Note thatΦ1(ξ1(w)),Φ2(ξ1(w), ξ1(w)) are the orthogonal
polynomials involved in the definition of the parameter (in
this case, parameter β) and O2

1(t),O2
5(t) are the coefficients

of the chaos expansion of the process O(t;w) related to the
orthogonal polynomials defined by ξ1(w): the random vari-
able used to define β(w). Taking into account that ξ1(w) ∼
U[−1, 1], Var(Φ1(ξ1(w))) and Var(Φ2(ξ1(w), ξ1(w))) are
computed. The value of the total variance, Var(O(t)), can be
calculate from the coefficients expansion obtained with the
system of differential equations (8) and (9). In this case, for
O(t) the variance is as follows:

Var(O(t)) =
14∑

i=1

O2
i (t)∗Var(Ψi). (11)

Note that numerator in (10) is a polynomial function
depending on all random variables ξi(w) related to random
transmission parameters which we are analyzing, β, and only
on them.

5. Results

5.1. Numerical Simulations. Figure 1 shows the results
obtained for the obese sub-population using Legendre chaos.
O0(t) is shown as a dotted line. In this and the next figures,
we also plot the standard deviation interval, that is, plot the
curves O0(t) ± √Var(O(t)), S0(t) ± √Var(S(t)), and N0(t) ±√

Var(N(t)), respectively. Note that for a fixed value of t,
[O0(t) − √Var(O(t)), O0(t) +

√
Var(O(t))], for example, is a

confidence interval in the sense known.
Figure 2 describes the overweight and normal weight

prevalence for the next few years (until t = 800, year 2015).
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Figure 2: Prevalence prediction for overweight and normal-weight
subpopulation in the region of Valencia. Note that t = 0 correspond
to year 2000 (the first week) and (•) are the obesity prevalence
known by health surveys [19]. (a): Overweight population. (b):
Normal-weight population.

S0(t) and N0(t) are also shown as dotted lines. Some of the
numerical values represented in Figures 1 and 2 are presented
in Table 3.

We can observe that polynomial chaos approach quan-
tifies the output uncertainty due to the randomness in the
input parameters. The definition of the output confidence
interval by second-order moment evaluation allows us to
predict the epidemic evolution with more accuracy than in
deterministic approach. As it is described in [18], we can
note how the obesity epidemic in the region of Valencia,
Spain, is increasing. Table 4 shows the outcomes with
fixed parameters and allows us to compare these outcomes
with predictions performed by polynomial chaos approach
(Table 3).

5.2. Sensitivity Analysis. Figure 3 shows the influence of
parameters β, γ, ε, and ρ, respectively, in the prediction
of obese population. Looking at γ contribution, it is clear
that the epidemic evolution (i.e., variations of O(t)) depends
on transit from overweight population to obese population.
Therefore, if we assume that transmission parameters which
lead to larger variations in the output (obesity prevalence
in the next few years) define better options to control the
obesity epidemic, we can conclude that prevention strategies
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Figure 3: Influence of transmission parameters uncertainty on obesity epidemic prediction. Polynomial chaos-based Sobol indices. (a) β
influence on obese population, SUβ; (b) γ influence on obese population, SUγ ; (c) ε influence on obese population, SUε; (d) ρ influence on
obese population, SUρ.

Table 3: Evolution of excess weight population for the next
few years. Predictions are shown by standard deviation intervals.
Additionally, mean values are presented.

Year Overweight population Obese population

2010 36.51% 13.16%

t = 520 [33.54%, 39.49%] [8.13%, 18.18%]

2011 36.52% 13.18%

t = 572 [33.33%, 39.70%] [7.96%, 18.39%]

2015 36.54% 13.21%

t = 780 [33.52%, 40.51%] [7.36%, 19.05%]

Table 4: Evolution of excess weight population for the next few
years using deterministic model (1) and parameter values shown
in Table 1.

Year Overweight population Obese population

2010 37.86% 15.20%

2011 37.99% 15.52%

2015 38.14% 15.92%

related to overweight population can be an optimal policy to
address the epidemic.

6. Conclusions

In this paper, we have shown the possibilities of polynomial
chaos related to epidemiological models. It is shown how
polynomial chaos can be a useful tool to consider the
effects of randomness on the evolution of the epidemics
and to perform sensitivity analysis (by polynomial chaos-
based Sobol’s indices) in order to propose optimal policies
to control epidemics.

As an example, we have studied an obesity model. As
it is usual in social epidemic models, the transmission
parameters involved in these types of mathematical model
cannot be determined exactly, and it is necessary to introduce
randomness. In this work, randomness in the transmission
parameters is considered, and the resulting system of random
coefficient differential equations has been solved approxi-
mately using the method of polynomial chaos.

We have shown how the application of polynomial
chaos approach to an epidemiological model allows us to
determine the epidemic evolution with more realism than
in deterministic approach. Since in this case, it is possible
to define a confidence interval to the epidemic evolution.
Additionally, taking into account this approach, sensitivity
analysis (an useful tool for policy makers and healthy
planners) is easy to perform. Sensitivity indices based on
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polynomial chaos expansion may be computed with no
additional cost.

To the best of our knowledge, this work is one of the first
applications of polynomial chaos approach to epidemiologi-
cal models based on ordinary differential equations although
evidences detected make the method a good candidate to be
employed in the study of epidemics.

References

[1] H. W. Hethcote, “Mathematics of infectious diseases,” SIAM
Review, vol. 42, no. 4, pp. 599–653, 2000.

[2] D. Burg, L. Rong, A. U. Neumann, and H. Dahari, “Mathemat-
ical modeling of viral kinetics under immune control during
primary HIV-1 infection,” Journal of Theoretical Biology, vol.
259, no. 4, pp. 751–759, 2009.

[3] M. Suh, J. Lee, H. J. Chi et al., “Mathematical modeling of
the novel influenza a (H1N1) virus and evaluation of the
epidemic response strategies in the Republic of Korea,” Journal
of Preventive Medicine and Public Health, vol. 43, no. 2, pp.
109–116, 2010.

[4] T. Soong, Probabilistic Modeling and Analysis in Science and
Engineering, Wiley, New York, NY, USA, 1992.

[5] B. Oksendal, Stochastic Differential Equations, Springer, Hei-
delberg, The Netherlands, 6th edition, 2003.

[6] N. Metropolis and S. Ulam, “The Monte Carlo method,”
Journal of the American Statistical Association, vol. 44, no. 247,
pp. 335–341, 1949.

[7] G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Appli-
cations, Springer, New York, NY, USA, 1995.

[8] M. Grigoriu and T. Soong, Random Vibration of Mechanical
and Structural Systems, Prentice Hall, 1993.

[9] T. Soong, Random Differential Equations in Science and
Engineering, Academic Press, New York, NY, USA, 1973.

[10] D. Xiu and G. Em Karniadakis, “The Wiener-Askey polyno-
mial chaos for stochastic differential equations,” SIAM Journal
on Scientific Computing, vol. 24, no. 2, pp. 619–644, 2003.

[11] D. Stanescu and B. M. Chen-Charpentier, “Random coef-
ficient differential equation models for bacterial growth,”
Mathematical and Computer Modelling, vol. 50, no. 5-6, pp.
885–895, 2009.

[12] R. W. Walters, L. Huyse et al., “Uncertainty quantification
for fluid mechanics with applications,” ICASE Report 2002-1,
NASA Langley Research Center, Hampton, Va, USA, 2002.

[13] D. Xiu and G. E. Karniadakis, “Modeling uncertainty in
flow simulations via generalized polynomial chaos,” Journal of
Computational Physics, vol. 187, no. 1, pp. 137–167, 2003.

[14] E. Tornatore, S. M. Buccellato, and P. Vetro, “Stability of a
stochastic SIR system,” Physica A, vol. 354, no. 1–4, pp. 111–
126, 2005.

[15] C. E. Dangerfield, J. V. Ross, and M. J. Keeling, “Integrating
stochasticity and network structure into an epidemic model,”
Journal of the Royal Society Interface, vol. 6, no. 38, pp. 761–
774, 2009.

[16] S. B. Caldwell, “Microsimulation: theory and practice,” IHS-
Journal, vol. 6, pp. 135–147, 1982.

[17] L. Brown and A. Harding, “The new frontier of health and
aged care: using microsimulation to assess policy options,” in
Proceedings of the Quantitative Tools for Microeconomic Policy
Analysis Conference, pp. 217–246, Productivity Commission,
Canberra, Australia, November 2004.

[18] F. J. Santonja, R. J. Villanueva, L. Jódar, and G. Gonzalez-
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