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We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by
metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage
degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The
coupling of this set of molecules is represented by reaction-diffusion equations with parameters in the Turing space, creating a
stable spatiotemporal pattern that leads to the formation of the trabeculae present in the spongy tissue. Experimental evidence has
shown that the MMP13 regulates VEGF formation, and it is assumed that VEGF negatively regulates MMP13 formation. Thus, the
patterns obtained by ossification may represent the primary spongiosa formation during endochondral ossification. Moreover, for
the numerical solution, we used the finite element method with the Newton-Raphson method to approximate partial differential
nonlinear equations. Ossification patterns obtained may represent the primary spongiosa formation during endochondral ossifi-
cation.

1. Introduction

Most of the long bones of the mammals skeletal system are
developed from a process called endochondral growth [1–
4]. This process ends with the gradual production of bone
from cartilage tissue during fetal development and postnatal
growth. The process of ossification occurs from a hyaline
cartilage tissue mold, which has a similar shape to the bone
in a mature stage. The cartilage tissue molds are formed
through the condensation of mesenchymal cells [5] followed
by their differentiation into chondrocytes (cells that produce
and maintain cartilage matrix) and secretion of typical
components of the extracellular matrix of cartilage [6]. Once
the mold of cartilage is formed, it is invaded initially in its
center and then at each end by a mixture of cells that give
rise to the appearance of primary and secondary centers
of ossification, respectively, [7–9]. The ossification centers
invade the cartilage gradually until it is completely replaced

by bone tissue, except the articular surfaces. In this way,
and eventually the bones reach their skeletal maturity [10].
The processes of endochondral development, growth, and
elongation of the bones are made by the continuous addition
of cartilage and subsequent replacement by bone tissue.

During the chondrocytes differentiation process, the
matrix composition changes dramatically through the pro-
duction of other components such as collagen type X, the
expression of metalloproteinases, and subsequent calcifica-
tion. At the same time the blood vessels invade the calcified
cartilage bringing osteoblasts which build immature bone.
Chondrocytes in the growth plate are subjected to the influ-
ence of excess extracellular factors including systemic and
soluble local factors, as well as, extracellular matrix compo-
nents. Several studies [9, 11–13] provide evidence that the
proliferation of chondrocytes in the growth plate is under the
control of a local closed loop that depends on the spatial and
temporal location; and that mainly involves the molecular
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signals synthesized by chondrocytes: parathyroid hormone-
related peptide (PTHrP), Indian hedgehog (Ihh), transform-
ing growth factor (TGFβ), bone morphogenetic proteins
(BMPs), vascular endothelial growth factor (VEGF), matrix
metalloproteinase type 9, known as gelatinase-B (MMP9),
and the transcription factor RUNX2. They interact together
in a feedback loop to regulate the rate at which chondrocytes
leave the proliferative zone, differentiate hypertrophic cells
and give way to immature bone formation [10, 11, 14]. The
inappropriate balance in the expression of these molecules
along with the ones that encode the collagens and other
growth factors have been subject of studies as possible causes
of impaired bone formation by the endochondral ossification
mechanism [15–17].

The process of endochondral ossification has been stud-
ied for several years, and different models have been devel-
oped in silico, verified by histological reports, and in vivo
experiments, which have tried to explain the process of bone
formation through this mechanism [7–9, 13, 14, 18–21]. For
example, Courtin et al. [18] in their work performed the
comparison between the sequence of morphological events
involved in embryonic bone formation and spatiotemporal
characteristics of self-organization generated by a reaction-
diffusion model related to the metabolism of the periosteal
bone mineralization. In that article, 3D structures are
obtained (by computer simulation) with a close resemblance
to the primary internal architecture of the periosteum of long
bones. The hypothesis of Courtin et al. is based on the role
of self-organization of mineralization of bone metabolism,
which gives rise to a well-organized space architecture. Sub-
sequent research such as those by Garzón-Alvarado et al. [7–
9, 22] have raised different hypotheses about the interaction
of mechanical, cellular, and molecular factors that lead to the
formation of secondary ossification centers in the epiphyses
of long bones, and it also helped the development and bone
growth and the primary bone formation. These hypotheses
suggest that biological processes and interactions between
different factors can be represented using mathematical
models, where the chemical feedback among molecular
reagent factors through reaction-diffusion mechanisms may
explain the stable spatial patterns found in the origin of the
secondary ossification centers and in the formation of carti-
lage canals. As far as the authors know, no research has been
conducted on the action of different cellular, mechanical,
and molecular factors on the development and production
of primary spongiosa architecture during the endochondral
ossification process, which is the basis for the production of
trabecular bone. Similarly, there are no biochemical models
involving reaction-diffusion systems with Turing instabilities
and reaction equations based on the Schnakenberg model,
that allow enlarge the knowledge and understanding of the
development in the primary stage of the trabecular bone.

Therefore, this paper presents a hypothesis on the deve-
lopment of trabecular bone architecture. Starting from the
assumption that the interaction of two molecular factors
expressed by hypertrophic chondrocytes which through
a reaction-diffusion mechanism generate a stable spatial-
temporal pattern. This patterns lead to the formation of
trabeculae present in the primary spongiosa tissue. This is the

first model that attempts to explain the formation of primary
spongiosa, which serves as the basis for defining a complete
model of trabeculae formation at an early stage of skeletal
development.

2. Molecular Mechanisms Present in
the Endochondral Ossification

2.1. Molecular Factors. The sequential changes in the behav-
ior of chondrocytes in the growth plate are highly regulated
by systemic factors and the production of local factors.
Growth hormone (GH) and thyroid hormone are systemic
factors involved in endochondral ossification that regulate
the behavior of the chondrocytes. GH is a peptide hormone-
based protein that stimulates growth, cell reproduction and
tissue regeneration. It is an important regulator of longitu-
dinal bone growth [23]. The main effect of GH on chon-
drocytes, it is to stimulate their proliferation [24]. However,
thyroid hormone is considered another systemic regulator of
bone growth, and it stimulates production of collagen type II
and X and alkaline phosphatase (ALP), which act as markers
of bone mineralization.

On the other hand, local factors act as receptors to
carry out intracellular signaling and selective activation of
transcription factors of chondrocytes, such as insulin-like
growth factors (IGF), which act as a local mediator of the
effects of GH on cartilage growth. These factors are essen-
tial for embryonic skeletal development [25, 26], and in
chondrocyte proliferation and/or hypertrophy. Parathyroid
hormone-related peptide (PTHrP) is expressed by perichon-
drial cells at the initial stage of the chondrocytes prolifer-
ation. The PTHrP diffuses out of its place of production
to act on cells carrying the receptor PTH/PTHrP [27]. The
PTHrP keeps chondrocytes in a proliferative state and
prevents hypertrophy [28]. The Indian Hedgehog (Ihh) is a
local factor produced by the expression of prehypertrophic
chondrocytes that stimulates the proliferation of chondro-
cytes and inhibits its hypertrophy. [14]. The Ihh stimulates
osteoblastic differentiation of mesenchymal cells, which is
essential for the formation of the periosteum surrounding
the zone of hypertrophic chondrocytes. The formation of the
periosteum precedes the formation of primary ossification
center and it is maintained through its expansion [13, 29].
Bone morphogenetic proteins (BMPs) are another local fac-
tor. These are members of the transforming growth factor
beta (TGFβ superfamily), which is capable of inducing
strongly immature bone formation, cartilage, and connective
tissue [30]. Finally, within the local factors, there is the vascu-
lar endothelial growth factor (VEGF), which stimulates the
process known as angiogenesis and acts as a vasodilator by
increasing vascular permeability [31]. VEGF acts on vascular
endothelial cells through specific tyrosine kinase membrane
receptors, thereby regulating functions such as proliferation,
differentiation, and migration of chondroblasts, osteoblasts,
and osteoclasts [14]. During chondrocytes hypertrophy in
the growth plate, VEGF is released and the extracellular
matrix surrounding the hypertrophic cells, which begin the
process of calcification. Then the extracellular matrix is
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invaded by blood vessels which provide nutrients and attract
osteoblasts and osteoclasts that help the formation of the
trabecular bone [32].

Transcription factors are mostly specific to a particular
cell lineage and act as growth regulators of cell differen-
tiation. They are predominantly expressed during skeletal
development and its main function is to control cell prolifer-
ation or differentiation [33]. The transcription factor Runx2
is also called Cbfa1/Osf2/AML3/Til1/PPB2αA and is an
essential protein in the differentiation of chondrocytes and
osteblasts as well as the morphogenesis of the skeletal system
[34]. The Runx2 controls bone mineralization of growing
bones by stimulating osteoblast differentiation, promoting
chondrocyte hypertrophy, and contributing to the migration
of endothelial cells and vascular invasion. The Runx2 is
expressed by chondrocytes in the early stages of hypertrophy
and is maintained until terminal hypertrophic differentiation
[35].

2.2. Regulation of Cartilage Matrix Degradation during Endo-
chondral Ossification. The increase in cell volume experien-
ced by the chondrocytes submitted to hypertrophy requires
the degradation of the matrix that surrounds these cells.
Moreover, the invasion of the ossification front requires an
extensive (but selective) degradation of cartilage transverse
columns surrounding the hypertrophic cells in the final state
[10, 28]. There have been several studies to identify the
proteolytic enzymes responsible of these events of matrix
degradation and the cells responsible for its synthesis [36–
38]. These studies have emphasized on the enzymes capable
to degrade the two major protein components of the
cartilage matrix, collagen type II and aggrecan. Within the
growth plate is expressed selectively MMP13 by hypertrophic
chondrocytes, which degrades collagen fibers and aggrecan
[38, 39].

The MMP13 expression by chondrocytes is a prerequire-
ment for the invasion of the growth plate by blood vessels,
osteoclasts, and osteogenic cells. Therefore, these cells cannot
enter in the empty gaps created by the death of hypertrophic
chondrocytes until it degrades the septa of the cavities by the
MMP13 [10]. Blood vessels invade the growth plate at the
same time that the osteoblasts do it, which are necessary for
the establishment of the primary ossification center. Thus, in
the absence of MMP13 most of the cartilage matrix is not
removed and there is no cell invasion in the bone marrow
or bone matrix deposition in the remaining cartilage. The
vascular invasion of the growth plate is facilitated by the vas-
cular endothelial growth factor (VEGF), which is expressed
by chondrocytes, and regulated with the hypertrophy under
the control of Runx2 [10, 11]. On the other hand, the VEGF
in the endochondral ossification, increases bone formation
and decreases bone resorption [40, 41], indicating that VEGF
regulates the production of MMP13.

3. Materials and Methods

3.1. Hypothesis Required for the Development of Primary Spon-
giosa Using Reaction-Diffusion Systems. The main hypothesis

of this paper is based on the existence, within the endochon-
dral ossification process, of the controlled interaction of two
signaling molecules that diffuse and react chemically in the
cartilage extracellular matrix, to carry out the formation of
primary spongiosa from the growth plate. Accordingly, we
assume the existence of a reaction-diffusion system where
two primary molecules are involved, such as VEGF and
MMP13, which can lead to a stable pattern in time and unsta-
ble in space, similar to the patterns present in the structure
of the trabecular bone during endochondral ossification.

The presence of MMP13, which is released by hypertro-
phic chondrocytes, allows the degradation of cartilage matrix
components (collagen and aggrecan) and leads to vascular
invasion and ossification front [10, 36, 37]. This vascular
invasion is facilitated by the presence of VEGF expressed
by hypertrophic chondrocytes [31, 40, 42]. This means that
when MMP13 and VEGF exist in all regions of the epiphyseal
cartilage, having a high concentration of VEGF, there will
be an adequate control of the invasion of endothelial cells,
osteoclasts, chondroclasts, and osteoblasts, which are present
in the primary ossification development [40]. Similarly, in
those areas where there is a high concentration of MMP13,
it will completely degrade the cartilage, giving rise to the
trabecular bone architecture. Last statements are supported
on Hiltunen et al. [43] studies. In their work it was injected a
saline solution containing VEGF in the distal femur of white
rabbits. Their results demonstrate that VEGF induces bone
formation by increasing osteoblast activity and decreasing
the resorption process. The resorption process is produced
by both osteoclasts in bone and metalloproteinases (MMPs)
in the growth plate. Therefore, it can be supposed that in the
development of the architecture of the primary spongiosa,
there must exist a regulation of MMP13 by the VEGF (inhi-
bitory mechanism). So, it stops the degradation of the carti-
lage and begins the invasion front of ossification.

3.2. Model Description. The regulatory process proposed in
this model is outlined in Figure 1, and it is based on an acti-
vator-substrate system (also called exhaustion model) (see
Appendix A). The process indicates that there is a control
loop between VEGF (activating factor) and the MMP13
(substrate), where the VEGF is self-activated and inhibits the
production of MMP13 stopping the degradation process and
giving a way to the mineralization of the remaining cartilage
matrix [40]. On the other hand, we assume that the MMP13
is self-inhibited, but enables the production of VEGF, thereby
this loop is called positive feedback system. The VEGF helps
vascular invasion and bring with it the osteogenic cells
that allow the construction of the primary spongiosa. The
MMP13 allows the degradation of the cartilage matrix and
the subsequent invasion of the cartilage by the ossification
front.

The regulatory mechanism is modeled by reaction-diffu-
sion equations. The reaction term (synthesis of soluble extra-
cellular factors) is considered dependent on the concen-
tration of the reactants and the presence of hypertrophic
chondrocytes. According to this, the hypothesis is based on
the origin of the patterns presented in the primary spongiosa.
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Figure 1: Control system of the molecular process. VEGF: vascular
endothelial growth factor; MMP13: matrix metalloproteinase 13,
the figure shows the ratio of the molecular signals produced by
the hypertrophy of chondrocytes. The solid lines mean activation,
dotted lines inhibition, continuous curved lines self-activation, and
dotted curved lines self-inhibition.

It could correspond, from a mathematical point of view,
to the patterns that occur in the Turing space when two
chemical reactants interact.

The definition of the relationships shown in Figure 1 can
be quantified by means of equations which provide local
changes of the extracellular soluble factors and the produc-
tion rate of bone:

∂SVEGF

∂t
= CCH

(
α1−μSVEGF +γ0S

2
VEGFSMMP13

)

+ DVEGF∇2SVEGF,

(1a)

∂SMMP13

∂t
= CCH

(
α2−γ0S

2
VEGFSMMP13

)

+ DMMP13∇2SMMP13,

(1b)

∂cBone

∂t
= η

SnVEGF

SnVEGF +Snumbral
· Tr

a

Tr
a+tr

, (1c)

where CCH is the concentration of hypertrophic chondro-
cytes, SVEGF, SMMP13 represent the concentrations of VEGF
and MMP13, respectively. The remaining terms are model
parameters. α1 and α2 are terms that quantify the production
of each molecular factor by hypertrophic chondrocytes, μ is
a constant that quantifies inhibition of the VEGF production
by it excess, γ0 regulates the nonlinear interaction between
the concentration of MMP13-VEGF quantifying the concen-
tration or molecular inhibition of each molecular factor, and
DVEGF and DMMP13 are the diffusion coefficients of VEGF
and MMP13, respectively. In the biological interpretation
of the above equations the term γ0S

2
VEGFSMMP13 represents

the nonlinear activation of SVEGF (production of VEGF by
the presence of MMP13) and the nonlinear consumption of
SMMP13 (by the presence of VEGF). Equation (1c) represents
the activation of bone production rate by the presence of
high amounts of VEGF, which is regulated as time goes on.

In this equation cBone indicates the production of bone per
unit of volume due to the concentration and distribution of
VEGF within the domain. η is a constant that regulates the
production of bone over time, SnUmbral represents the value
of the concentration of VEGF with which begins the process
of ossification, Ta is the time required for the process of
cartilage calcification, and tr represents the time that limits
the production of bone.

3.3. Solution of the Reaction-Diffusion Equations System Using
the Finite Element Method. To solve the set of ((1a), (1b), and
(1c)), we used the finite element method, with tetrahedral
elements. Due to the nonlinearity of the terms included in
the model, we used the Newton-Raphson method to solve
the problem of time evolution of the concentration of VEGF
(SVEGF) and MMP13 (SMMP13). The time integration was per-
formed using the trapezoidal rule.

3.3.1. Weak Formulation. Let ((1a), (1b), and (1c)) be rewrit-
ten as

∂SVEGF

∂t
−CCH

(
α1−μSVEGF +γ0S

2
VEGFSMMP13

)

−DVEGF∇2SVEGF=0,

∂SMMP13

∂t
−CCH

(
α2−γ0S

2
VEGFSMMP13

)

−DMMP13∇2SMMP13= 0,

∂cBone

∂t
−η SnVEGF

SnVEGF +Snumbral
· Tr

a

Tr
a+tr

=0.

(2)

Using weighted residuals, the system of (2) takes the form

∫

Ω
w1

(
∂SVEGF

∂t
− CCH

(
α1 − μSVEGF + γ0S

2
VEGFSMMP13

)

−DVEGF∇2SVEGF

)
dΩ = 0,

∫

Ω
w2

(
∂SMMP13

∂t
− CCH

(
α2 − γ0S

2
VEGFSMMP13

)

−DMMP13∇2SMMP13

)
dΩ = 0,

∫

Ω
w3

(
∂cBone

∂t
− η

SnVEGF

SnVEGF + Snumbral
· Tr

a

Tr
a + tr

)

dΩ = 0,

(3)

where Ω represents the domain of the problem which is lim-
ited by the boundary Γ. w1, w2, and w3 are weight functions.
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Using Green’s theorem and weakening the system of (3), the
residue of the problem is given by

rSVEGF =
∫

Ω
w1

∂SVEGF

∂t
dΩ−

∫

Ω
w1CCHα1dΩ

+
∫

Ω
w1CCHμSVEGFdΩ

−
∫

Ω
w1CCHγ0S

2
VEGFSMMP13dΩ

+
∫

Ω
DVEGF∇w1∇SVEGFdΩ

−
∫

Γ
w1DVEGF(∇SVEGF · n)dΓ = 0,

rSMMP13 =
∫

Ω
w2

∂SMMP13

∂t
dΩ−

∫

Ω
w2CCHα2dΩ

+
∫

Ω
w2CCHγ0S

2
VEGFSMMP13dΩ

+
∫

Ω
DMMP13∇w2∇SMMP13dΩ

−
∫

Γ
w2DMMP13(∇SMMP13·n)dΓ = 0,

rCBone =
∫

Ω
w3

(
dcBone

dt

−η SnVEGF

SnVEGF +Snumbral
· Tr

a

Tr
a+tr

)

dΩ=0.

(4)

Defining null flow conditions on the contour of the prob-
lem, the border-related terms in (4) are canceled, so the resi-
due is expressed as

rSVEGF =
∫

Ω
w1

∂SVEGF

∂t
dΩ−

∫

Ω
w1CCHα1dΩ

+
∫

Ω
w1CCHμSVEGFdΩ

−
∫

Ω
w1CCHγ0S

2
VEGFSMMP13dΩ

+
∫

Ω
DVEGF∇w1∇SVEGFdΩ = 0,

rSMMP13 =
∫

Ω
w2

∂SMMP13

∂t
dΩ−

∫

Ω
w2CCHα2dΩ

+
∫

Ω
w2CCHγ0S

2
VEGFSMMP13dΩ

+
∫

Ω
DMMP13∇w2∇SMMP13dΩ = 0,

rCBone =
∫

Ω
w3

(
∂cBone

∂t
−η SnVEGF

SnVEGF +Snumbral
· Tr

a

Tr
a + tr

)

dΩ=0.

(5)

To discretize the finite element solution we use approach-
ing functions written as a linear combination of orthogonal
functions as shown in the following:

SeVEGF = NvSVEGF,

SeMMP13 = NmSMMP13,

ceBone = NccBone,

(6)

where Nv, Nm, and Nc represent the shape functions which
depend only on the space used for the formulation, SVEGF

and SMMP13 are the values of SVEGF and SMMP13 in the nodal
points, and the superscript e indicates the discretization of
the finite element variable. For the weighting functions we
used the Bubnov-Galerkin formulation, indicating that the
functions w take the same form of approximation functions
N.

Substituting (6) in (5), we obtain the residual vector in its
discrete form (7), where reVEGF, reMMP13 and reCBone

are residue
vectors for each equation and ∇N is the gradient vector of
the approximation functions

reSVEGF
=
∫

Ω
NT ∂S

e
VEGF

∂t
dΩ

−
∫

Ω
NTCCHα1dΩ +

∫

Ω
NTCCHμS

e
VEGFdΩ

−
∫

Ω
NTCCHγ0

(
SeVEGF

)2
SeMMP13dΩ

+
∫

Ω
DVEGF∇NT∇SeVEGFdΩ,

reSMMP13
=
∫

Ω
NT ∂S

e
MMP13

∂t
dΩ−

∫

Ω
NTCCHα2dΩ + NT

+
∫

Ω
w2CCHγ0

(
SeVEGF

)2
SeMMP13dΩ

+
∫

Ω
DMMP13∇NT∇SeMMP13dΩ,

reCBone
=
∫

Ω
NT

(
∂cBone

∂t

−η SnVEGF

SnVEGF + Snumbral
· Tr

a

Tr
a + tr

)

dΩ.

(7)

Using the time discretization equation based on the
Crank-Nicolson equations, the equations in (7) are trans-
formed into the following:
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reSVEGF
=
∫

Ω
NT S̃

e
VEGF − SeVEGF

Δt
dΩ + α

⎛

⎜
⎝

∫
ΩDVEGF∇NT∇S̃eVEGFdΩ−

∫
Ω NTCCHα1dΩ +

∫
Ω NTCCHμS̃

e
VEGFdΩ

− ∫Ω NTCCHγ0

(
S̃eVEGF

)2
S̃eMMP13dΩ

⎞

⎟
⎠

t+Δt

+ (1− α)

⎛

⎝

∫
ΩDVEGF∇NT∇SeVEGFdΩ−

∫
Ω NTCCHα1dΩ +

∫
Ω NTCCHμS

e
VEGFdΩ

− ∫Ω NTCCHγ0
(
SeVEGF

)2
SeMMP13dΩ

⎞

⎠

t

,

reSMMP13
=
∫

Ω
NT S̃

e
MMP13 − SeMMP13

Δt
dΩ + α

⎛

⎜
⎝

∫
ΩDMMP13∇NT∇S̃eMMP13dΩ−

∫
Ω NTCCHα2dΩ + NT

+
∫
Ωw2CCHγ0

(
S̃eVEGF

)2
S̃eMMP13dΩ

⎞

⎟
⎠

t+Δt

+ (1− α)

⎛

⎝

∫
ΩDMMP13∇NT∇SeMMP13dΩ−

∫
Ω NTCCHα2dΩ + NT

+
∫
Ωw2CCHγ0

(
SeVEGF

)2
SeMMP13dΩ

⎞

⎠

t

,

reCBone
=
∫

Ω
NT c̃Bone − cBone

Δt
dΩ−

(∫

Ω
NTη

SnVEGF

SnVEGF + Snumbral
· Tr

a

Tr
a + tr

dΩ

)t+Δt

−
(∫

Ω
NTη

SnVEGF

SnVEGF + Snumbral
· Tr

a

Tr
a + tr

dΩ

)t

,

(8)

where S̃eVEGF and S̃eMMP13 are the nodal values SeVEGF and
SeMMP13 evaluated over time t + Δt. α is a parameter charac-
teristic of the integration method.

Using (8) is possible to determine each of the terms of the
tangent stiffness matrix, as shown in the following:

∂reSVEGF

∂S̃eVEGF

= 1
Δt

∫

Ω
NTNdΩ

+α

(∫
ΩDVEGF∇NT∇NdΩ +

∫
Ω CCHμNTNdΩ

− ∫
Ω NTNCCHγ02

(
S̃eVEGF

)
S̃eMMP13dΩ

)

,

∂reSVEGF

∂S̃eMMP13

= − α
∫

Ω
NTNCCHγ0

(
S̃eVEGF

)2
dΩ,

∂reSMMP13

∂S̃eVEGF

= α
∫

Ω
NTNCCHγ02

(
S̃eVEGF

)
S̃eMMP13dΩ,

∂reSMMP13

∂S̃eMMP13

= 1
Δt

∫

Ω
NTNdΩ

+ α
(∫

Ω
DMMP13∇NT∇NdΩ

+
∫

Ω
NTNCCHγ0

(
S̃eVEGF

)2
dΩ
)

,

∂reCBone

∂c̃Bone
= 1

Δt

∫

Ω
NTNdΩ.

(9)

The nodal values SeVEGF and SeMMP13 in time t + Δt can
be approximated by the iterative algorithm of Newton-
Raphson, as described in (10). In this equation, ΔSeVEGF and

ΔSeMMP13 represent the difference of the nodal values in two
consecutive iterations

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂reSVEGF

∂S̃eVEGF

∂reSVEGF

∂S̃eMMP13

∂reSMMP13

∂S̃eVEGF

∂reSMMP13

∂S̃eMMP13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

ΔSe
VEGF

ΔSeMMP13

⎤

⎥
⎦ = −

⎡

⎢
⎣
reVEGF

reMMP13

⎤

⎥
⎦. (10)

3.4. Numerical Implementation. The set of ((1a), (1b), and
(1c)) were implemented and solved numerically using the
finite element method with a Newton-Raphson scheme. The
two examples given were solved in a laptop of 4096 MB and
800 MHz processor speed. Computer simulation was carried
out in an incremental iterative scheme that allows solving,
computationally, the evolution of both the concentration of
molecular factors (SVEGF, SMMP13) and the production of
immature bone. Initially the growth plate is assumed as a
structural matrix with an initial concentration of chondro-
cytes in a hypertrophic stage 65.000 cell/mm3. The initial
concentrations of VEGF and MMP13 are distributed ran-
domly in the growth plate, with a disturbance of 10% on the
steady-state, the concentration is given by (SVEGF, SMMP13) =
(1.0, 0.9) [ng/mL] [43] (see Appendix A). The selection of
random initial conditions around the steady state is similar
to the event of molecular expression of the hypertrophic
chondrocytes in an area of ossification. The flow condition
for each molecular factor in the boundary is assumed to be
null, this is because these conditions are assumed periodic
over the domain. The parameter values used are shown in
Tables 2(a) and 2(b), the justification of all the parameters
used in the illustrated examples is given in Appendix B.
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4. Results and Discussion

To verify the potential of the proposed model in predicting
the primary spongiosa architecture, two numerical tests were
conducted in a three-dimensional cubic element with a
length of 0,22 mm. This is an average length of a minimal
element of the trabecular bone in postmineralized fetal stage,
as presented by Ruimerman et al. [44] in their work of
modeling and adaptation of trabecular bone. The parameters
of the reaction-diffusion model were selected in order to
obtain structures with a periodicity in accordance with the
one present in the trabecular bone [28, 44, 45]. In the
finite element mesh we employed 17.756 nodes and 16.625
tetrahedral elements. In all the simulations we used incre-
mental steps of Δt = 0.1 therefore this means that the
simulation time is measured in seconds and every step Δt in
the biological process corresponds to 7 seconds.

As a result of chemical interaction between the two
molecular factors (reactants) and by the numerical results it
was determined spatial patterns stable over time. The con-
centration of molecular factors in the cartilage and the action
of the diffusive processes allows the formation of a pattern
that is replicated throughout the domain. The architecture of
the primary spongiosa obtained by the proposed RD model
depends on the parameters used in ((1a), (1b), and (1c)) (see
Tables 2(a) and 2(b)), so you can get structures with wave
number (2,2,2) as shown in Figure 2 and with wave number
(4,2,2) in Figure 3 (see Appendix B). The wave numbers
allow either to define or to condition the frequency and
distribution of the number of pores in a specific direction
[9, 22, 46]. The appearance of either microstructure of the
primary spongiosa, depends on the location of the parame-
ters in the reaction diffusion equation ((1a), (1b), and (1c))
in the space of Turing. The location of certain points in this
space, determine spatial patterns as shown in the results of
this article.

The results in Figure 2 show the formation of two half-
waves in each of the x, y, and z, directions, while Figure 3
shows the formation of four half-waves in the x direction and
2 half-waves in the y and z directions, respectively. Figures
2(b), 2(c), 3(b), and 3(c) show the results for the organi-
zation of VEGF and MMP13 after the stabilization of the
reaction-diffusion process, note that in the areas of greatest
concentration of VEGF is produced cartilage calcification
and in areas of greatest presence of MMP13 degradation
occurs (empty space).

From the reaction-diffusion mechanism, it can be deter-
mined the change in the concentration of VEGF and MMP13
for each time step, as shown in Figure 4. The concentrations
of VEGF (SVEGF) and MMP13 (SMMP13) within the cartilage
evolve according to its diffusivity, its interaction, and its
expression by the hypertrophic chondrocytes. So, the VEGF
and the MMP13 are concentrated in high amounts in specific
areas of the growth plate, allowing the formation of regular
patterns similar to what happened in different biological
models [9, 47–51].

The architecture of the primary spongiosa in a cubic ele-
ment of length 0.44 mm is shown in Figure 5. In this figure
we can observe the regular patterns for two different wave

modes (2,2,2) and (4,2,2). Likewise, it details the advance
in the front of ossification in different time steps, allowing
the invasion of the cartilage by osteogenic cells that produce
degradation and calcification. This will promote the forma-
tion of primary trabeculae, which subsequently undergo the
bone remodeling processes, product of the stress distribution
on bone tissue.

The development of primary spongiosa has been the
subject of study in recent years, but there is no clarity about
the biological and mechanical factors affecting its formation.
It was found that the structure of the trabecular tissue from
its beginning (fetal age) to adulthood has different patterns in
its formation, as well as, a variation in the trabecular density
product of the bone remodeling process and the effect of
mechanical loads. The proposed model assumes that the
formation of patterns is due to the interaction through a
reaction-diffusion system of two molecules (VEGF, MMP13)
during endochondral ossification. The results presented
show that the patterns self-organize along the domain used,
as shown in Figures 2, 3, and 5. These structures represent
the architecture of the primary spongiosa considering only
biochemical effects. The results obtained in this work can be
compared to the structure used by Ruimerman et al. [44],
which, show self-organized repetitive patterns that serve as
the basis for the maintenance and adaptation of mature
trabecular structure.

The production of molecular factors that act as activator-
substrate by the differentiation of prehypertrophic chondro-
cyte, are not necessarily the only factors expressed by these
chondrogenic cells, which probably affect considerably the
process of ossification, even the chondrocytes are not the
only cells that act in this process. However, the proposed
model only focuses on the formation of primary spongiosa
architecture and not the entire calcification process, in which
bone cells also operate as osteoclasts and osteoblasts. In the
complete calcification process the model should not only
incorporate chemical influences (bioregulatory model) but
also involves loads and restrictions at the boundary (mechan-
ical effects) as well as additional biochemical factors that
must be taken into account. For example, Ruimerman et al.
[44], Jang and Kim [52], Renders et al. [53], and Coelho
et al. [54] have proved in their works that mechanical factors
play an important role in the development, adaptation, and
maintenance of the trabecular bone structure. Moreover,
from the viewpoint of the biochemical factors, works such
as those of Brouwers et al.[14] have evaluated the potential
of three growth factors, PTHrP, Ihh, and VEGF, that interact
and regulate the tissue differentiation and development of a
long bone.

Much has been learned in recent years about the cellular
and molecular mechanisms that guide the different events
which allow the production of immature bone through
endochondral ossification mechanism [6, 10, 11, 14, 19, 27,
31, 33, 45, 55–58]. Nevertheless, there are still concerns about
the relationship and interaction of different events to allow
ossification and endochondral growth.

In this paper we presented a bioregulatory model
based on a set of reaction-diffusion equations to predict the



8 Computational and Mathematical Methods in Medicine

0.912
0.91
0.908
0.906
0.904
0.902

0.898
0.896
0.894
0.892
0.89
0.888
0.886

0.9

SMMP13

z

yx

(a) (b) (c)

SVEGF

1.03
1.025
1.02
1.015
1.01
1.005

0.995
0.99
0.985
0.98
0.975

1

Figure 2: (a) Architecture of the primary spongiosa obtained by the proposed R-D model with a wave number (2,2,2). (b) Spatial distri-
bution of VEGF concentration at the end of the ossification process. (c) Spatial distribution of MMP13 concentration at the end of the
ossification process.
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Figure 3: (a) Architecture of the primary spongiosa obtained by the proposed R-D model with a wave number (4,2,2). (b) Spatial distri-
bution of VEGF concentration at the end of the ossification process. (c) Spatial distribution of MMP13 concentration at the end of the
ossification process.

formation of primary spongiosa architecture. The applica-
tion of the reaction-diffusion model with parameters in the
Turing space is an area of constant work and controversy in
biology. Garzón-Alvarado et al. [8, 9, 22, 46], Courtin et al.
[18] and Cramping and Maini [47], used in their researches
reaction-diffusion models to simulate different biological
processes, finding in their results, that the use of these
systems may explain many complex biological phenomena
where pattern formation is a constant variable.

5. Conclusions

In this paper we presented the development of a biochemical
model involving reaction-diffusion systems with instabilities
in the Turing space. This model attempts to explain the gen-
eration of primary spongiosa in the process of endochondral
ossification, an event that is not yet fully understood, due

to the amount of biological, mechanical and biochemical
effects that are present. The model involves the controlled
interaction of two important molecular factors, such as
VEGF and MMP13, present in the development and bone
formation.

The work presented in this paper illustrates and supports
the validity of the reaction-diffusion models to describe the
processes occurring during a complex event of pattern for-
mation in bone biology. From the results presented, it can
be concluded that the chemical feedback between the two
reactants molecular factors (activator-substrate) could be an
explanation from a set of possible factors that determine
the complex spatial patterns found in the origin of the
architecture of the primary spongiosa. However, it is clear
that these results have been obtained with a mathematical
model based on assumptions and simplifications that should
be discussed.
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Figure 4: Temporal evolution of the concentration of VEGF (SVEGF) by the reaction-diffusion mechanism. (a) Wave mode (2,2,2). (b) Wave
mode (4,2,2).

(a)
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Figure 5: Primary spongiosa architecture produced by the interaction of VEGF and MMP13 by means of a reaction-diffusion mechanism.
(a) Architecture generated by the use of a wave mode (2,2,2). (b) Architecture generated by the use of a wave mode (4,2,2). The blue areas
represent ossified cartilage, and the red areas represent unossified cartilage.

The hypothesis presented suggests that the origin of the
primary spongiosa is internally controlled by cartilage cells.
This is achieved through two biochemical reagents, VEGF
and MMP13. These are not the only factors acting in the
endochondral ossification, there are many others, among
which count Ihh, PTHrP, Runx2, BMP, [10, 11, 14, 31] and

likely influence similarly to the trabecular bone formation.
Until now there has been a great effort to fully understand the
role of each of these substances, how they interact and what
processes they regulate. It is possible that VEGF-MMP13 are
not the factors that control the entire process of endochon-
dral ossification, but the existence of an activator-substrate
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mechanism ensures high stability for the development of this
biological process. By the other side, the hypothesis raised
is based entirely on the cycle of bone formation through
the endochondral ossification mechanism, as presented in
[6, 10, 28]. Afterwards, in the bioregulatory model (see
Figure 1) it is taken the MMP13 as an agent responsible for
the degradation of cartilage septa and as a promoter of the
activation of VEGF, which fosters vascularization of the
cartilage and subsequent calcification. However, we do not
discard the possibility of a new bioregulatory model where
it considers the counter case presented. This indicates that
the activation of MMP13 may be produced by the action of
VEGF, suggesting that cartilage degradation initially requires
vascular invasion, as presented in the work of Pufe et al. [59].

In the development of the model it is assumed for the ini-
tial conditions that the activating factor is released by hyper-
trophic chondrocytes, as well as the substrate; however, the
type of spatial instability obtained is independent of the
initial conditions. Nevertheless, this model is very stable and
robust with respect to the initial conditions and the range of
parameters.

Finally, despite all the limitations and simplifications, the
proposed mathematical model is able to reproduce in detail
the architecture of the primary spongiosa, allowing variation
in porosity and thickness of the trabeculae. The proposed
model will serve as the basis for the formation of the secon-
dary spongiosa architecture, from the bone remodeling pro-
cess, observing the action of bone cells and the different
mechanical effects that determine the orientation of the
trabeculae.

Appendices

A. Reaction-Diffusion Equations

Turing [60] proved, theoretically, that a chemical system of
reaction diffusion could spontaneously, evolve in a heteroge-
neous spatial pattern from a uniform initial state in response
to infinitesimal perturbations [51, 59]. His model is a system
of two special partial differential equations, which are known
as the two components of a reaction-diffusion system. In the
most general case where several components are present the
system has the form:

∂ui
∂t
= Di∇2ui + fi(u1,u2, . . . ,um), x ∈ Ω, t ≥ 0, (A.1)

where the unknown functions ui(x, t) can be interpreted as
a reagent of concentration, the term Di∇2ui describes the
diffusion reagent and fi is a smooth function (usually poly-
nomial or rational in ui) that describes a non-linear chemical
interaction between the reagents. Ω refers to the bounded
domain and in the system operates some initial boundary
conditions. Turing also introduced some key concepts such
as an activator and an inhibitor, so it was assumed that cellu-
lar states are discrete and can be modified by special chemical
reagents.

It is known that for two components of a reaction-
diffusion system, the Turing instability, which leads to the

formation of patterns [60], it is possible to find it for two
types of systems characterized by the signs of the stability
matrix (Jacobian) in a positive homogeneous stationary
system. The signs of the coefficients of the linearized dynamic
system around a fixed point, namely the defined curves by the
functions f (u, v) = 0 and g(u, v) = 0 in the plane u − v, for
a system of two chemical components, are cut in the point
(u0, v0), contain relevant information on the mechanisms of
destabilization of the homogeneous solution. It can be shown
that when the signs of the stability matrix are given by

J ≡
(
fu fv
gu gv

)

=
(

+ +
− −

)

︸ ︷︷ ︸
Tipo I

o

(
+ −
+ −

)

︸ ︷︷ ︸
Tipo II

.
(A.2)

It is possible to find a Turing instability if the reaction
rates and diffusion coefficients allow the fixed point (u0, v0)
to be stable to small homogeneous perturbations, and be
able to become unstable to inhomogeneous perturbations,
these conditions can be summarized mathematically by four
inequalities:

fu + gv < 0,

fu gv − fvgu > 0,

d fu + gv > 0,

(
d fu + gv

)2 ≥ 4d
(
fugv − fvgu

)
,

(A.3)

where d represents the nondimensional coefficient of the
diffusivities d = Dv/Du. These inequalities are based on
the linear stability analysis, that is, from the study of the
eigenvalues (λ) of the linearized dynamics.

The stability matrix indicates what type of Turing insta-
bility can be found, for the case presented in this paper, the
matrix corresponds to type 1 which identifies a reaction-
diffusion system activator-substrate.

According to (A.1), for a reaction-diffusion system of two
components, we have

∂u

∂t
= D1∇2u + f (u, v),

∂v

∂t
= D2∇2v + g(u, v),

(A.4)

where we have the following terms of reaction:

f (u, v) = a− u + u2v, g(u, v) = b − u2v. (A.5)

For the point of equilibrium, we have

f (u, v) = 0,

g(u, v) = 0.
(A.6)

The Jacobian (stabilization matrix) is given by

J =

⎡

⎢
⎢
⎢
⎣

∂ f

∂u

∂ f

∂v

∂g

∂u

∂g

∂v

⎤

⎥
⎥
⎥
⎦
. (A.7)
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Therefore,

∂ f

∂u
= 2uv − 1,

∂ f

∂v
= u2,

∂g

∂u
= −2uv,

∂g

∂v
= −u2.

(A.8)

For a steady point (u0, v0), we have f (u, v) = 0 and
g(u, v) = 0; therefore, u and v are given by

u = a + b,

v = b

(a + b)2 .
(A.9)

Replacing (A.9) into (A.8), we have

∂ f

∂u
= 2b

a + b
− 1,

∂ f

∂v
= (a + b)2,

∂g

∂u
= −2b

a + b
,

∂g

∂v
= −(a + b)2.

(A.10)

Taking a = 0.1 and b = 0.9 [9] and replacing in (A.10),
we have

∂ f

∂u
= 0.8,

∂ f

∂v
= 1,

∂g

∂u
= −1.8,

∂g

∂v
= −1.

(A.11)

Therefore, the stability matrix takes the following struc-
ture of signs:

J ≡
(
fu fv
gu gv

)

=
(

+ +
− −

)

. (A.12)

Indicating that the substance u is self-activated and inhi-
bits the substance v, while, the substance v is self-inhibited
and activates the substance u, forming an activator-substrate
system.

B. Estimation of the Values for the Parameters

The set of ((1a), (1b), and (1c)) corresponds to a coupled
system, where the equations that correspond to the molec-
ular factors (1a) and (1b) are extended reaction-diffusion

equations, similar to a Turing system, which has a control-
led diffusion due to instabilities. For (DVEGF,DIhh /= 0), the
controlled diffusion by instabilities appear for some combi-
nation of parameters [9, 47, 61], this defines a domain in
the parameters space called Turing space. To get a Tur-
ing space is necessary a linear stability analysis of the
reaction-diffusion system on the homogeneous solution,
which is obtained by forcing (∂SVEGF/∂t)(DVEGF = 0) =
0 and (∂SMMP13/∂t)(DMMP13 = 0) = 0, and leads to
(S∗VEGF, S∗MMP13) = ((α1 + α2)/μ ,α2μ2/γ0(α1 + α2)2). The
linear analysis allows you to find the spatial patterns of the
linearized solution and the range of parameters that ensure
the emergence of such specific patterns [61]. Therefore, the
solution can be expressed as (SVEGF, SMMP13) = (u+S∗VEGF, v+
S∗MMP13), where u and v are small perturbations in each
molecular factor, respectively. From (1a) and (1b) the results
of the linear analysis allow to write the following inequalities:

CCH
(
2γ0S

∗
VEGFS

∗
MMP13−γ0S

∗
VEGF−μ

)
<0,

C2
CH

(
γ0S

∗2

VEGF

(
μ−2γ0S

∗
VEGFS

∗
MMP13

)

+2γ0
2S∗

3

VEGFS
∗
MMP13

)
> 0,

CCH

(
DMMP13

(
2γ0S

∗
VEGFS

∗
MMP13−μ

)

−DVEGFγ0S
∗2

VEGF

)
> 0,

C2
CH

(
DMMP13

(
2γ0S

∗
VEGFS

∗
MMP13−μ

)−DVEGFγ0S
∗2

VEGF

)2

· · ·−4DVEGFDMMP13C
2
CH

(
γ0S

∗2

VEGF

× (μ−2γ0S
∗
VEGFS

∗
MMP13

)

+2γ0
2S∗

3

VEGFS
∗
MMP13

)
> 0.

(B.1)

These inequalities define a domain in the parameter
space, known as the Turing space, where the uniform steady
state (S∗VEGF, S∗MMP13) is linearly unstable.

If we express (1a) and (1b) in a nondimensional form
(Schnakenberg equation) and as a function of small pertur-
bations of the molecular factors (SVEGF, SMMP13), respectively,
through (u, v), we can obtain

∂u

∂t
= γ

(
a− u + u2v

)
+∇2u,

∂v

∂t
= γ

(
b − u2v

)
+ d∇2v,

(B.2)
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Table 1: Vibration modes for the nondimensional model of Schak-
enberg with a = 0.1, b = 0.9,T = 1, and L = 0.22 mm.

d γ a b Wave mode

8,6123 346,3578 0,1 0,9 (2,2,2)

8.5736 700,4675 0,1 0,9 (4,2,2)

where the parameters can be identified for the two models
and their relationship:

a = α1

μ

√
γ0

μ
,

b = α2

μ

√
γ0

μ
,

d = DMMP13

DVEGF
,

T = L2

DVEGF
,

γ = L2

DVEGF
μCCH,

SVEGF = SMMP13 =
√

μ

γ0
,

(B.3)

where T is the characteristic time of the biological process
and L is the characteristic length of the dimensional model.
Therefore, defining (γ,d, a, and b) it is possible to obtain
the eigenvalues and eigenvectors of the set of (B.3) and from
them, the different spatial patterns corresponding to different
wave numbers.

In the case of the proposed dimensional model it is nec-
essary to define the nondimensional parameters (L,DVEGF,
DMMP13,CCH,μ, γ,α1, and α2). To estimate these values, we
consider for this work some experimental evidence:

(i) The typical concentration of VEGF in human tissue
is SVEGF = SMMP13 = 1 ng/mL [43].

(ii) The study domain is a cubic three-dimensional ele-
ment of side L = 0, 22 mm [44].

(iii) Concentration of hypertrophic chondrocytes in the
proximal femoral epiphysis is CCH = 65000 cells/
mm3 [8].

(iv) The coefficient of diffusivity for VEGF is 6, 9 ×
10−5 mm2/s [14].

To reproduce the patterns present in the primary tra-
becular bone architecture with the proposed model, it is
necessary that all parameters are in the Turing space and that
they satisfy the restrictions (A.3). Therefore, taking the values
for SVEGF, L, and DVEGF, and the set of values for γ, d, a, and
b [8, 22] (see Table 1) that satisfy the restrictions of Turing,
and using the relations of (24), we get the set of values to be
used for the solution of ((1a), (1b), and (1c)) (see Tables 2(a)
and 2(b)).

Table 2: (a) Set of values for the process of ossification of the
growth plate a = 0.1, b = 0.9, γ = 346,3578, and d = 8,6123. (b) Set
of values for the process of ossification of the growth plate a = 0.1,
b = 0.9, γ = 700,4675, and d = 8,5756.

(a)

Parameter Value Units

μ 0,6562 mm3/cell day

γ0 6,56 (1011) mm9/cell day g2

α1 6,56 (10−8) g/cell day

α2 5,91 (10−6) g/cell day

DMMP13 5,9 (10−4) mm2/s

T 11,7 Minutes

(b)

Parameter Value Units

μ 1,327 mm3/cell day

γ0 1,327 (1012) mm9/cell day g2

α1 1,327 (10−7) g/cell day

α2 1,19 (10−6) g/cell day

DMMP13 5,9 (10−4) mm2/s

T 11,7 Minutes
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