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Machine learning has become a powerful tool for analysing medical domains, assessing the importance of clinical parameters,
and extracting medical knowledge for outcomes research. In this paper, we present a machine learning method for extracting
diagnostic and prognostic thresholds, based on a symbolic classification algorithm called REMED. We evaluated the performance
of our method by determining new prognostic thresholds for well-known and potential cardiovascular risk factors that are used to
support medical decisions in the prognosis of fatal cardiovascular diseases. Our approach predicted 36% of cardiovascular deaths
with 80% specificity and 75% general accuracy. The new method provides an innovative approach that might be useful to support
decisions about medical diagnoses and prognoses.

1. Introduction

Machine learning (ML) disciplines provide computational
methods and learning mechanisms that can help gen-
erate new knowledge from large databases. Applications
of ML are useful for constructing approaches to solving
problems of classification, prediction, recognition patterns,
and knowledge extraction, where the data take the form
of a set of examples, and the output takes the form of
prediction of new examples [1, 2]. In this sense, ML can
provide techniques and tools that help solve diagnostic and
prognostic problems in medical domains, where the input
is a dataset with characteristics of the subjects, and the
output is a diagnosis or prognosis of a specific disease [3].
Although diagnosis and prognosis are relatively straight-
forward ML problems, clinical decision-making using ML
applications is not yet widely used by the medical com-
munity [4], because such a complex task requires not only
accuracy, but also the confidence of physician specialists
about the functional use of ML approaches in the medical
field.

To successfully implement an ML application in prob-
lems related to clinical decisions, it is necessary to consider
some specific requirements [4, 5]. For example, the predic-
tion of disease progression is generally associated with the
evolution of certain risk factors; in the case of some chronic
diseases (e.g., cancer, cardiovascular diseases, and diabetes),
the risk factors include nonchangeable characteristics, such
as age or gender. The use of such nonchangeable qualities
to predict the onset of a disease might not be as useful
for avoiding evolution of the disease, because currently
there is no medical treatment for modifying these biological
characteristics. Thus, ML applications usually focus on
changeable qualities, which make the prognostic task more
difficult and complex.

Another important aspect to consider is the need to
obtain interpretable approximations, in order to provide
medical staff with useful information about the given
problem. This is typically achieved using symbolic learning
methods (e.g., decision trees and rules systems), which
allow decisions to be explained in an easily comprehensible
manner. However, the use of a symbolic learning algorithm
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to obtain a more comprehensible model frequently sacrifices
accuracy in the prediction.

Another problem that often hinders high overall perfor-
mance in the analysis of medical datasets is that generally
these exhibit an unbalanced class distribution [6], which
include a majority or negative class of healthy people (normal
data) and a minority or positive class of sick people (the
important class) with higher cost of erroneous classification.
The latter usually has a higher rate of misclassification,
because the performance of standard ML algorithms tends to
be overwhelmed by the majority class, ignoring the minority
class examples and obtaining results with acceptable accuracy
and specificity (healthy subjects diagnosed correctly), but
low sensitivity (sick subjects diagnosed correctly).

In addition to developing ML approaches that result
in good overall performance and provide medical staff
with interpretable prognostic information, providing the
ability to support decisions and to reduce the number of
medical tests for a reliable prognosis are also desirable. A
measure of reliability of the diagnosis or prognosis is also
important, because this would give medical staff sufficient
confidence to put the new approach into practice. On the
other hand, it is also desirable to have an approach that
can provide reliable predictions based on a small amount
of information about the patient, because collection of that
information is often expensive, possibly subject to privacy
issues, time consuming, and possibly harmful to the patient
[4].

The present study focused on the implementation of a
ML method to support medical decisions in the prognosis
of fatal cardiovascular diseases, which are ranked among the
top ten in the global disease burden [7]. The goal was to solve
previously identified problems, through interdisciplinary
work that included the collection and preprocessing of data
from an ambulatory blood pressure (ABP) monitoring study
[8], the implementation of a current ML algorithm with
specific application to medical diagnosis and prognosis [9],
and the identification of new prognostic thresholds for risk
factors of cardiovascular mortality.

2. Methods

2.1. Ambulatory Blood Pressure Monitoring. Currently avail-
able ABP monitors are fully automatic and portable devices
(Figure 1) that can record BP for 24 hours or longer, while
patients go about their normal daily activities [10]. This BP
measurement technique provides a better estimate of risk in
an individual patient than the traditional method, because
it removes variability among individual observers, avoids
the “white coat” effect (the transient but variable elevation
of BP in a medical environment) [11] and the “masked
hypertension” (normotensive by clinic measurement and
hypertensive by ambulatory measurement) [12] and includes
the inherent variability of BP [13]. Detailed descriptions of
the ABP measurement methods are provided in previous
reports of the Maracaibo Aging Study (MAS) [8, 14, 15].

2.2. Subjects. The MAS is an ongoing population-based,
longitudinal study that includes 2500 subjects older than

Figure 1: Ambulatory blood pressure monitoring procedure.

55 years, residing in the Santa Lucia County, Maracaibo,
Venezuela. All participants underwent extensive clinical and
laboratory examinations and randomly selected individuals
also underwent ABP monitoring. Informed consent was
obtained from the subjects who agreed to participate, and
from a close family member when doubts existed about the
competence of the subject. The ethical review board of the
Institute of Cardiovascular Diseases of the University of Zulia
approved the protocol.

2.3. Cardiovascular Risk Factors. The leading global risk
factor for mortality is high BP, which is responsible for 13%
of deaths globally. Eight changeable risk factors (alcohol use,
tobacco use, high BP, high body mass index, high cholesterol,
high blood glucose, low fruit and vegetable intake, and
physical inactivity) account for 61% of cardiovascular deaths.
Combined, these same risk factors account for over three
quarters of ischaemic heart disease, the leading cause of death
worldwide [16].

However, investigators continue to look for new and
emerging risk factors for cardiovascular disease. Recent ABP
monitoring studies using a novel variability index [14]
reported significant relationships between high BP variability
(BPV) and cardiovascular outcomes [17–19]. BPV is a multi-
faceted phenomenon, influenced by the interaction between
external emotional stimuli, such as stress and anxiety, and
internal cardiovascular mechanisms that can vary from
heartbeat to heartbeat. However, the complexity of BPV
makes analysis difficult, and its independent contribution as
a predictor of cardiovascular outcomes is not yet clear [20].
The present study aimed to identify new prognostic thresh-
olds of risk factors for cardiovascular mortality, including
high BP (the most significant cardiovascular predictor) and
abnormal BPV (a potential independent predictor).

To estimate 24-hour BP level, we computed the weighed
mean of valid BP readings (WBP) using the time interval
between successive valid measurements as weighting factors
[18]. In the case of BPV over 24 hours, we calculated the
Average Real Variability (ARV) index [14] using (1):

ARV = 1
∑
wk

n−1∑

k=1

wk × |BPk − BPk−1|, (1)

where n is the number of valid BP readings, k ranges from 1
to n−1, and wk is the time interval between BPk and BPk−1.
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Figure 2: Machine learning method proposed.

2.4. Machine Learning Approach. We implemented an inter-
disciplinary ML method that encompassed all stages of
knowledge extraction from databases (data preprocessing,
attribute selection, data mining, and knowledge extraction),
to examine the application of ML to support clinical
decisions (Figure 2).

To improve the accuracy of predictions for affected
subjects (positive class), we used the Rule Extraction for
MEdical Diagnosis (REMED) algorithm [9], a symbolic one-
class classification approach that implements internal bias
strategies during the learning process [21]. REMED employs
three main procedures in the knowledge extraction process:
(1) selection of attributes, (2) selection of initial partitions,
and (3) construction of classification rules.

First, REMED attempts to select the best combination of
relevant attributes, using a simple logistic regression model.
This is a standard method of analysis in medical research
that uses the odds ratio metric [22] to determine if there is
a significant association (P < 0.01) between a considered
attribute and the positive class. REMED then begins to build
initial partitions (exclusionary and exhaustive conditions)
to maximize sensitivity and maintain acceptable accuracy
without significantly decreasing specificity. Finally, REMED

uses the respective partitions for each selected attribute to
construct a system of rules that includes m conditions (one
for each selected attribute) in the following way:

If Condition 1 <relation> p1

and Condition 2 <relation> p2

and Condition j <relation> pj and · · · · · · · · ·
and Condition m <relation> pm

then class = 1

Else class = 0,

where <relation> is either ≥ or ≤ depending on whether j
is positively or negatively associated with the positive class
through pj (partition for attribute j).

To avoid overfitting during the training and testing phase,
REMED implements the k-fold cross validation technique,
which is based on randomly shuffling sample vectors among
training and testing spaces [23]. REMED also maintains the
approximate imbalance of the original dataset through the k
iterations.

2.5. Data Preprocessing and Attributes Selection. Based on
current medical guidelines [24], we only included partic-
ipants that had ABP recordings of good technical quality.
Therefore, subjects with <40 BP readings during the 24-
hour ABP period were excluded. Systolic BP readings
values >260 mmHg or <70 mmHg, and diastolic BP readings
>150 mmHg or <40 mmHg were considered outliers or
erroneous values and discarded. The treatment of missing
values was addressed with predictive techniques, specifically
multiple linear regression analysis considering medical crite-
rions.

Only continuous and changeable attributes were con-
sidered in the knowledge extraction process. Continuous
attributes have a higher degree of uncertainty than discrete
attributes, because discrete attributes are usually binary in
the clinical environment (e.g., smoker versus nonsmoker),
and their associations with specific diseases are almost always
well known. We also excluded age, which is a nonchangeable
attribute. The attributes considered in the initial ML analysis
were body mass index (BMI), serum cholesterol level, 24-
hour heart rate, and systolic and diastolic 24-hour WBP and
ARV.

3. Results

3.1. Dataset. The minable dataset was composed of 551
observations with 7 attributes, with only 43 missing values
(1.1%) in the serum cholesterol attribute. The missing data
were estimated from the regression slope on sex and age,
according to the criteria of physician specialists. The sample
included 374 women (67.8%) and 170 patients (30.9%)
undergoing treatment with antihypertensive drugs (Table 1).
The average number of BP readings was 65.1 (5th to
95th percentile = 51.5−77.5), indicating good quality ABP
recordings. Mean age was 67.1 ± 8 years. At enrolment, 61
participants (11.1%) had a history of cardiovascular disease;
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Table 1: Baseline characteristics.

Frequency in percent
or median

Demographic variables

Men, % (n) 32.1 (177)

Age, years 67.1± 8

Race, % (n)

Mixed 73.1 (404)

Caucasian 22.2 (122)

African-Venezuelan 4 (22)

Natives 0.5 (3)

Use of antihypertensive drugs, % (n) 30.9 (170)

Use of anti-diabetic drugs, % (n) 11.1 (61)

History of cardiovascular disease, % (n) 11.5 (63)

Diagnosis of diabetes mellitus, % (n) 18.1 (100)

Lifestyle, physical and lipid factors

Smoking current status, % (n) 15.6 (86)

Drinking current status, % (n) 31.6 (174)

Body max index, kg/m2 27.1± 5.6

Total serum cholesterol, mmol/L 5.5± 1.3

24-hour ambulatory measurements

Systolic blood pressure, mm Hg 133.8± 16.6

Diastolic blood pressure, mm Hg 76.1± 10

Heart rate, bpm 73.7± 9.8

100 (18.1%) had a history of diabetes mellitus, of whom 59
(59%) were undergoing diabetes treatment; 86 (15.6%) were
current smokers; 174 (31.6%) reported intake of alcohol.
The average total cholesterol level was 5.5 ± 1.3 mmol L−1,
and BMI averaged 27.1 ± 5.6 kg m−2. Mean 24-hour systolic
WBP was 133.8±16.6 mmHg, and diastolic WBP was 76.1±
10 mmHg. Average heart rate was 73.7± 9.8 bpm.

The median follow-up period was 7.1± 3.7 years (5th to
95th percentile = 1.7−12.3 years). Only the participants that
died from cardiovascular diseases (n = 61) were classified
as positive examples. Cardiovascular mortality included 10
strokes and 51 cardiac deaths for a high event rate of 15.5 per
1000 person-years. The imbalance ratio between the positive
(affected) and negative (unaffected) class was approximately
of 1 : 9.

3.2. Machine Learning Process

3.2.1. Selection of Attributes. Using the simple logistic regres-
sion model, REMED found only two attributes significantly
associated with the positive class: systolic WBP (P =
0.008) and ARV (P = 0.0001). However, other well-known
cardiovascular risk factors, such as serum cholesterol level,
BMI, and diastolic WBP [16, 25], were considered in further
analyses.

3.2.2. Rule System. To provide medical staff with more infor-
mation and comprehensible models, we used REMED to

Table 2: Confusion matrix of REMED predictions.

Predictive class

Positive Negative

Actual class
Positive 22 39

Negative 98 392

Table 3: Performance of classifiers.

Classifiers Sensitivity Specificity Accuracy

If systolic ARV ≥ 9.6
then 1 Else 0

55.7% 60.4% 59.9%

If systolic WBP ≥ 134.6
then 1 Else 0

52.5% 58.8% 58.08%

If systolic ARV ≥ 9.6
and systolic WBP ≥ 137
then 1 Else 0

36.1% 80.0% 75.1%

If systolic ARV ≥ 9.6
and systolic WBP ≥ 138.6
and cholesterol ≥ 5.5
then 1 Else 0

8.2% 93.3% 83.8%

If systolic ARV ≥ 10.4
and systolic WBP ≥ 139.8
and BMI ≥ 27.3
then 1 Else 0

9.8% 93.3% 84.0%

If systolic ARV ≥ 9.6
and systolic WBP ≥ 137
and diastolic WBP ≥ 78.4
then 1 Else 0

22.9% 87.5% 80.4%

Naı̈ve Bayes 11.48% 95.92% 86.57%

build several simple rule systems, which included individual
and combined predictions of the more significant attributes
(systolic WBP and ARV), as well as the combined predictions
with the additional risk factors.

3.3. Performance. The confusion matrix from the predictions
of the system rule, combining only high systolic ARV and
WBP and using 10-fold cross-validation, indicated that
REMED performed at 0.36 sensitivity, correctly diagnosing
more than 35% of the cardiovascular deaths (Table 2).
REMED focuses on improving sensitivity over specificity,
because in the case of medical diagnosis/prognosis, the cost
of misclassification of false negatives (FN, i.e., sick subjects
diagnosed incorrectly) is higher than that of false positives
(FP, healthy subjects diagnosed incorrectly), because more
specific medical tests could discover the FP error, but an FN
could cause a life-threatening condition and possibly lead
to death [26]. Additionally, to compare the performance of
our approach in terms of reliable prediction, we selected
from the WEKA framework [2] the ML approach that
better performed with our dataset: the Naı̈ve Bayes classifier,
which is one of the most effective and efficient classification
algorithms and has been successfully applied to many
medical problems [27, 28]. The performance of all classifiers
is showed in Table 3.
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4. Discussion

Use of the REMED algorithm selecting only the more
significant attributes provided some of the desired features
for solving medical diagnosis/prognosis problems: (1) good
overall performance for imbalanced datasets, with 36.1%
of sensitivity, 80% specificity, and 75.1% general accuracy;
(2) comprehensible prognostic information, based on a rule
system with a high degree of abstraction (only one rule to
predict positive class examples, independent of the number
of instances and initial attributes); (3) the ability to provide
the medical staff with sufficient confidence to use the rule
system in practice, because it was based on attributes with
high confidence levels (>99%), estimated with a standard
method of medical analysis; (4) the ability to reduce the
number of medical tests necessary to obtain a reliable
diagnosis/prognosis, because a simple logistic regression
model was used to select attributes strongly associated with
the specific disease.

The ML approach generated a new prognostic threshold
for cardiovascular mortality: systolic WBP ≥ 137 mmHg,
which is lower than the currently proposed by hypertension
guidelines (≥140 mmHg) and in agreement with recent ABP
studies [29, 30], but with the advantage that our analysis
was fully automated and had a smaller sample. Moreover,
our ML approach generated a new prognostic threshold
for abnormal systolic ARV (≥9.6 mmHg). Together, these
new thresholds could provide improved predictions of
cardiovascular mortality.

Both systolic WBP and ARV were independent predictors
of cardiovascular mortality, performed >50% of sensitivity,
but sacrificed significantly in specificity and general accuracy
(≤60%). The addition of other well-known cardiovascular
risk factors decreased considerably the accuracy in the
prediction of affected subjects (<23%). Therefore, the use of
logistic regression for the selection of significant attributes
(>99%) could be an effective strategy in this stage of ML
analysis in medical datasets.

Undoubtedly, one of the most important goals of the
application of ML in the medical field is to generate new
knowledge, providing the medical community with tools to
develop novel points of view about any given problem. In
our case, for example, although previous medical studies
determined possible ranges of a low and high BPV measured
whit ARV through statistical methods (median and quartiles
analysis) [17, 18], our work is pioneer proposing a prognostic
threshold for abnormal systolic ARV (≥9.6 mmHg). This
threshold has a good performance as an independent a
composed predictor of fatal cardiovascular events. The use
of this threshold should facilitate new fields of investigation
regarding BPV and its prognostic relevance.

We do not claim that our ML analysis using REMED
is the ultimate solution for medical diagnosis/prognosis
problems from unbalanced datasets, because it is necessary to
implement modifications that improve REMED’s predictive
capacity in terms of sensitivity (≥50%) without significantly
deteriorating its specificity. However, we obtained better
results than the Naı̈ve Bayes classifier (11.48%), which is
considered as a benchmark algorithm that in any medical

domain has to be tried before any other advanced method
[27]. Therefore, we believe that our approach could improve
performance in these medical tasks, and increase the confi-
dence of the medical community in the use of ML approaches
to support clinical decisions.
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