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In our previous study, we have demonstrated that analyzing the skin impedances measured along the key points of the dermatomes
might be a useful supplementary technique to enhance the diagnosis of spinal cord injury (SCI), especially for unconscious and
noncooperative patients. Initially, in order to distinguish between the skin impedances of control group and patients, artificial
neural networks (ANNs) were used as the main data classification approach. However, in the present study, we have proposed two
more data classification approaches, that is, support vector machine (SVM) and hierarchical cluster tree analysis (HCTA), which
improved the classification rate and also the overall performance. A comparison of the performance of these three methods in
classifying traumatic SCI patients and controls was presented. The classification results indicated that dendrogram analysis based
on HCTA algorithm and SVM achieved higher recognition accuracies compared to ANN. HCTA and SVM algorithms improved
the classification rate and also the overall performance of SCI diagnosis.

1. Introduction

The diagnosis of spinal cord injury (SCI) by neurological
examination technique depends mainly on the experience
of medical doctor and hence may lead to nonobjective
ways of assessment [1]. In this technique, doctors assess the
patient’s symptoms, which may comprise of loss of motor
or sensory function. McDonald and Sadowsky [2] reported
that assessment should include mental status, cranial nerves,
motor, sensory and autonomic systems, coordination, and
gait. Patient symptoms may include extreme pain or pressure
in the neck, head, or back; loss of sensation in the hand,
fingers, feet, or toes; partial or complete loss of control over
any part of the body and much more. Since this tradi-
tional technique requires continuous feedback, it has some
limitations especially for noncooperative and unconscious

patients. For clinical applications, such as monitoring the
treatment and rehabilitation processes following a surgery,
a more quantitative and objective way for the diagnosis
of spinal cord injury is required. In recent years, some
encouraging investigations have been carried out for this
purpose by assessing the thermal [3] and electrical per-
ception threshold [4, 5]. However, these techniques require
patient’s feedback, hence cannot be effectively used for non-
cooperative and unconscious patients. Roehl et al. [6] exam-
ined the temperature difference on the skin surface by eval-
uating the thermographic imaging, and they concluded that
thermography could be prospectively used as a supplement
to existing diagnostic measures for SCI.

Recently we have suggested a new method, which can
eliminate the patient-feedback dependency for the diagnosis
of SCI in a quantitative manner [7]. This technique, which
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was based on the artificial neural networks (ANN) [8–10],
could distinguish between skin impedances of control sub-
jects and patients satisfactorily. In the present study, by using
alternative algorithms, it was aimed to improve the diagnos-
ing performance of the proposed method. To achieve this
goal, in addition to ANN, support vector machine (SVM)
and dendrogram-based hierarchical cluster tree analysis
(HCTA) approaches were also used as alternative methods
for the classification of the impedance values.

SVM is a supervised machine-learning algorithm based
on a statistical learning theory approach for solving data clas-
sification and pattern recognition problems [11]. Although
the fundamental concept of SVM was established in the
late seventies [12], this method began to be widely used
in the mid of nineties (for review, see [13]). In biomedical
applications, this technique is frequently employed [14–16].

Dendrogram-based cluster analysis was first appeared in
the study of Sneath and Sokal [17]. In this analysis method,
data (objects) are divided into groups (clusters) that share
common characteristics [18]. HCTA is one of the types of
the cluster analysis, which is basically based on calculating
the distances between data and finally grouping them into
a hierarchical cluster tree (dendrogram) according to these
distances. In biology, clustering analysis has been especially
used to find groups of genes that have similar functions [18].

2. Methods

2.1. Experimental Procedure. The impedance data analyzed
in this study were previously collected for another reported
study, hence a detailed explanation of the experimental
protocol can be found in [7]. However, for the sake of com-
pleteness, a condensed form of the experimental procedure
was given below.

2.1.1. Subjects. Patients with traumatic SCI and control
subjects aged between 18 and 55 years were included in the
study. Duration of injury of the patients varied from three
to twenty years. Initially, they were all evaluated by history
and physical examination according to The International
Standards for Neurological Classification of SCI, American
Spinal Injury Association (ASIA), and International Spinal
Cord Society (ISCoS) [1]. All procedures were approved
by the Ethical Committee of Cerrahpasa Medical Faculty,
Istanbul University.

Skin impedances of the key points between C3 and S1
were measured in 15 control subjects and 15 patients with
SCI (13 paraplegics and 2 tetraplegics) bilaterally (Figure 1).
The impedances were measured in all dermatomes except C2
(due to hair), L1-3, and S2-5 (because of the refusal of the
control subjects). According to the aforementioned booklet
of ASIA and ISCoS, 10 pairs of key muscles and 28 pairs of
key points were evaluated and finally the neurological level,
completeness, and classification of SCI were determined. For
the patients, inclusion criteria were determined as traumatic
SCI and both gender; however, the exclusion criteria were
determined for patients with any other neurological disorder
than SCI and also nontraumatic SCI.
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Figure 1: Location of the some of the sensory key points.
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Figure 2: Impedance data obtained from representative control,
paraplegic, and tetraplegic subjects.

2.1.2. Skin Impedance Measurement. In order to simulate the
worst case condition, skin was not prepared artificially by
abrasion or cleaning with alcohol before the measurements.
Two self-adhesive electrodes were placed on the skin for
each key point, and an AC signal (2 V, 200 Hz) was applied
by means of a signal generator. The electrodes were placed
on either side of the sagittal plane of the body. A portable
multimeter was situated between one of the electrodes and
signal generator, and the current level was recorded. The
other output of the signal generator was connected to
the electrode, which was not fixed to the multimeter. All
experiments were performed by using electrocardiography
(ECG) type electrodes (Unomedical, Unilect). The distance
between the centers of the electrodes was 3 cm. In order
to prevent the deterioration of adhesiveness of electrodes,
which can eventually affect the skin-electrode impedance,
each electrode was used once. In Figure 2, representative data
obtained from control, paraplegic and tetraplegic subjects
can be seen.
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2.2. Artificial Neural Networks. Neural Networks are mathe-
matical models inspired by the human brain. These models
consist of processing layers, where each node in a given input,
hidden or output layers represent a neuron of that layer. They
possess ability to approximate any arbitrary input-output
mapping function, by learning like backpropagation and
adapting parameters to training data and ability to generalize
new testing data even from a lack of statistical knowledge
about the input data [9]. Learning process of the ANN occurs
at the synaptic junctions between the neurons of the input
layer and the neurons of the output layer [8].

Dimension of the structure of an ANN considerably
affects its classification performance. It is well accepted that
networks with large dimensions (large number of hidden
layers and neurons) do not always improve the accuracy of
the classification process [19]. Moreover, neural networks
with large dimensions do not converge easily and may be
very time-consuming during the training process. However,
small networks may fall into a local error minimum and
subsequently learning from training data may not be opti-
mal. In this study, since a three layer network (two hidden
layers) can approximate any nonlinear function [20], we used
two hidden layers in the network model. We determined
the numbers of neurons per layer by grid search. In the
network structure, one input layer, two hidden layers, and
one output layer have 27, 16, 6, and 1 neurons, respectively.
The input array was constituted from the mean values of skin
impedances of the left-and right-side key points according to
sagittal plane and target array was constituted from array of
ones (denotes patients) and zeros (denotes subjects).

Transfer function is used mainly for the calculation of
weight factor between neurons during the training process.
In our case, we used log-sigmoid transfer function, since
its output range (0 to 1) is ideal to output Boolean values.
Backpropagation feed-forward algorithm was chosen for the
training process, because it has been proven to be a robust
algorithm for difficult connectionist learning problems [21].
Backpropagation algorithm is an extension of the least mean
square learning algorithm and is widely used in adaptive
signal processing. The weights are adjusted at each step to
reduce the gradient of the cost function [8, 9]. Number of
the epoch was limited to 500 for the learning stage of the
network.

We built a matrix of training including skin impedance
values measured from control and patient subjects. Each row
corresponds to a measured skin impedance values, and each
column corresponds to a subject. Once we trained the ANN,
we classified test subjects including both patient and control
subjects disjointed from training set. We then measured
performance of ANN on the test subjects. During the
training and testing phase, we implemented 10-fold cross-
validation technique which is based on shuffling sample
vectors among training and testing space randomly [22].
This method aims to maximize the amount of data that can
be used for training to ensure a model that will generalize
well to unseen data. In this technique, the impedance
data set (30 subjects) was divided into 10 subsets; each
subset consisted of three subjects. Training of the ANN was
repeated 10 times. Each time, a single subset was retained as

the validation impedance data for testing, and the remaining
nine subsets (27 subjects) were used as training data. After
cross-validation was completed for all of the subjects, means
of the 10 classification results were computed.

2.3. Support Vector Machines. This method is a kernel-
based classification technique that is based on the margin-
maximization principle that minimizes an upper bound on
the expected loss (risk) using observed data [23, 24]. In this
method, the goal is to estimate the influence of an input
measurement X ∈ {�x1,�x2, . . . ,�xn} variable on an output
classification variable Y ∈ {y1, y2, . . . , yn} to find an optimal
predictor f : X → Y , that is, a kernel function. In our case,
n was defined as 30, since we have 30 subjects.

The SVM algorithm finds the decision boundary func-
tion as a linear combination of high-dimensional support
vectors, which are acquired from training pair of examples
from a sample space Sn = (�x1, y1), . . . , (�xn, yn′) ∈ X × Y ,
(independent and identically distributed) values from an
unknown probability distribution, where n′ = 27 which
corresponds to training sample size. This value denotes size
of subset of all cases satisfying (n′ < n = 30) for training
set. Each vector comprised of 21 dimensional skin impedance
values corresponding to a patient or healthy subject.

The hyperplane can classify two classes in SVM machines
when we set kernel function and regularizing parameter C
appropriately. If dist+ and dist− are becoming the shortest
distances to this separating hyperplane bordering two classes,
then the margin of the separating hyperplane becomes
|dist+ − dist−|. The shortest distance and the normal
direction (orthogonal) to the hyperplane are related to each
other. �w is the 21-dimensional weight vector which is a
function of the distance, dist+ = dist− = 1/‖�w‖. Maximizing
the margin means minimizing the term ‖w‖/2, which shows
the best classification success between patients and healthy
subjects.

Every training example z = (�xi, yi) consisted of a vector
including the impedance values of key points xi ∈ �21,
and a discrete classification label value (binary classification),
which corresponded to two groups (patients (−1) and con-
trols (1)). Our goal was to predict the label value ŷi ∈ {−1, 1}
using other test set which included a mixture of vectors
with two states. In the training stage, we had previously
done searching for an optimal hyperplane, which maximizes
margin and minimizes errors with known corresponding
labels y ∈ {−1, 1} included in the training set. In testing
phase, kernel function led to predict the patients and control
subjects.

The effectiveness of SVM depends mainly on the selec-
tion of the kernel, the kernel parameters, and regularization
parameterC. In our case, we selected the radial basis function
kernel (Gaussian kernel), because it is very flexible and can
adapt in complexity to fit the training data. The Gaussian
kernel parameter, σ , determines the area of influence of the
support vector over the data space. Regularization parameter,
C, controls the tradeoff between margin maximization and
error minimization. In order to find the optimal values for
the kernel parameter and regularization parameter, we used
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cross-validation and grid search. After grid search, we
obtained σ as 0.1 and C as 10.

To be able to compare the performances of ANN and
SVM in equivalent conditions, 10-fold cross-validation tech-
nique used for ANN was also employed for SVM.

2.4. Dendrogram Analysis Based on Hierarchical Cluster
Tree Analysis. In our specific case, hierarchical cluster tree
analysis is a way to create groups of subjects in such a way that
the skin impedance values of subjects in the same cluster are
very close in magnitudes, and the skin impedance values of
subjects in different clusters are quite different. Hierarchical
clustering analysis divides whole tree into lower branches
(leaves) as necessary.

In our study, we established a hierarchical evaluation
structure [25] in a tree T , which can be considered as a
clustering process for grouping different objects together.
The root of the dendrogram denotes the entire data set
including control and patient groups. This hierarchical tree
consists of many U-shaped lines connecting patients and
control subjects. The height of each U represents the distance
between the two objects being connected. This method
builds up a hierarchical classification in a bottom-up way
from leaves up to the roots of the tree ordering with a
distance matrix D. The distance matrix contains dissimilarity
values among pair of individuals (patients and control
subjects) Ω = {�x1,�x2, . . . ,�xn} ∈ T .

In the first step, since we initially did not know which
individual belongs to either patient or control subject class,
we initialized all 15 patients and 15 control subjects with
singleton clusters (sets with exactly one element) which
means that we had a total of 30 clusters with each cluster
containing just single patient or control subject as for all
�x ∈ Ω, {�x} ∈ T at the very beginning. In other words, we
formed subtrees {�x1}, {�x2}, . . . , {�x30}. Then, we computed

the Euclidian distances D({�xi}, {�xj}) =
√

(�xi −�xj)(�xi −�xj)T
(∀i, j = 1, 2, . . . , 30 and i /= j) between those singleton
clusters. Once the proximity between subjects has been
computed, we linked pairs of subjects that are close together
into clusters made up of two subjects (binary clusters). We
then linked these newly formed subjects to each other and to
other subjects to create bigger clusters until all the subjects in
the original data set are linked together in a hierarchical tree.
Since it was aimed to observe the natural divisions that exist
among links between subjects, we did not apply a clustering
threshold.

3. Results

Since the ANN and SVM methods require cross-validation
analysis, statistical significance analysis was only performed
between the classification results of ANN and SVM (in
our case, “classification result” refers to as percent of cases
in which the different computational algorithms correctly
predict whether or not an individual has a SCI). One-
way ANOVA was used to analyze the statistically significant
difference between means of the classification results of ANN
and SVM. However, HCTA does not require training and
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Figure 3: Mean and standard deviation (SD) of the magnitudes of
the skin impedance values of all subjects.

Table 1: Classification results of the patients and control subjects
obtained using ANN, SVM, and HCTA.

ANN SVM HCTA

Phase I (paraplegic +
tetraplegic + control)

73.3% 78.5% 83.3%

Phase II (paraplegic + control) 76.6% 100% 85.7%

Results of the ANN and SVM approaches shown in this table are the
mean values obtained from 10-fold cross-validation. Statistically significant
difference between means of the classification results of ANN and SVM was
found only for Phase II.

cross-validation processes, that is, data set is evaluated as
a whole rather than divided into subsets for training and
testing phases. Therefore, there is no need to calculate an
average of the validation result. For this reason, it cannot be
performed a statistical significance analysis for HCTA. The
level of significance was preset for all statistics at P = 0.05.

Mean and standard deviation (SD) of the magnitudes of
the skin impedances of all subjects (controls and patients)
are denoted in Figure 3. No statistically significant difference
between mean impedance values of controls and patients was
found.

Since the number of the tetraplegics (only two patients;
due to the inconvenient and difficult situations in measuring
the skin impedances of tetraplegics) was much smaller
than that of the paraplegics in the patient group, two
different data sets were utilized during the data classification
process. In doing so, it was intended to observe the effect of
insufficient number of tetraplegics on the classifying results.
The classification process, in which all the subjects were
included, is referred to as Phase I (control + paraplegics +
tetraplegics) and the other process, in which only control and
paraplegic groups were included, is referred to as Phase II
(control + paraplegics).

The average success rate of the classification results of
the ANN and SVM was obtained as 73.3% and 78.5% for
Phase I, respectively (Table 1). For Phase II, means of the
classification results of the ANN and SVM were obtained
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Figure 4: Mean and standard deviation (SD) of the classification results of ANN and SVM for (a) Phase I (paraplegic + tetraplegic + control)
and (b) Phase II (paraplegic + control) ( ∗P < 0.05).

11 14 18 10 9 3 6 30 12 19  5 15 13 1 2 4 7 22 8 23 20 26 27 29 16 21 28 24 17 25

0

20

40

60

80

100

120

140

160

Case labels

R
es

ca
le

d 
di

st
an

ce
 c

lu
st

er
 c

om
bi

n
e

Cluster of
patients

Cluster of
controls

(a)

9 12 16 8 7 3 28 10 17 5 13 11 1 2 4 6 20 14 19 26 22 15 23 18 24 25 27 21

0

20

40

60

80

100

120

140

160

Case labels

R
es

ca
le

d 
di

st
an

ce
 c

lu
st

er
 c

om
bi

n
e

Cluster of
patients

Cluster of
controls

(b)

Figure 5: Dendrogram diagrams indicating the relationship between patients with SCI and control subjects (a) Phase I. Patients with SCI
(paraplegics + tetraplegics) are denoted by 1–15 and control subjects are denoted by 16–30. (b) Phase II. Patients with SCI (only paraplegics)
are denoted by 1–13 and control subjects are denoted by 14–28.

as a rate of 76.6% and 100%, respectively. In addition,
classification results of HCTA were 83.3% and 85.7% for
Phase I and Phase II, respectively.

A comparison of the classification performances of ANN
and SVM in diagnosing SCI is presented in Figure 4. In
Phase I (Figure 4(a)) and Phase II (Figure 4(b)), means of
the validation results obtained by SVM are higher than
those obtained by ANN. A statistically significant difference
between validation results of ANN and SVM was found for
Phase II, but not for Phase I.

The dendrogram can be described as a graphical rep-
resentation of the results of hierarchical cluster analysis.
Dendrograms of the HCTA are given for Phase I and Phase
II in Figure 5. In this figure, numbers along the horizontal
axis and along the vertical axis represent the indices of
the subjects (patients and controls) in the original data set

and Euclidean distance between the skin impedances of the
connected subjects, respectively. In Figure 5(a), patients with
SCI (paraplegics + tetraplegics) and control subjects are
denoted by the numbers 1 to 15 and 16 to 30, respectively. In
Figure 5(b), patients with SCI (only paraplegics) are denoted
by the numbers 1–13, and control subjects are denoted by the
numbers 14 to 28.

As shown in Figure 5(a), for Phase I, 25 out of 30 subjects
fell in the correct clusters (83.3%), whereas 5 out of 30
subjects (viz., 18, 30, 19, 22, and 8) fell in the wrong cluster.
As shown in Figure 5(b), for Phase II, 24 out of 28 subjects
fell in the correct cluster (85.7%), whereas 4 out of 28
subjects (viz., 16, 28, 17, and 20) fell in the wrong cluster.

In order to allow visualization of the classification per-
formances of the three algorithms, confusion matrices were
given in Tables 2(a)–2(f). Each column of the matrices
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Table 2: (a) Confusion matrix of ANN for Phase I. (b) Confusion
matrix of ANN for Phase II. (c) Confusion matrix of SVM for Phase
I. (d) Confusion matrix of SVM for Phase II. (e) Confusion matrix
of HCTA for Phase I. (f) Confusion matrix of HCTA for Phase II.

(a)

Predicted class

Control subject Patient subject

Actual class
Control subject 11 4

Patient subject 4 11

(b)

Predicted class

Control subject Patient subject

Actual class
Control subject 11 4

Patient subject 3 10

(c)

Predicted class

Control subject Patient subject

Actual class
Control subject 12 3

Patient subject 4 11

(d)

Predicted class

Control subject Patient subject

Actual class
Control subject 15 0

Patient subject 0 13

(e)

Predicted class

Control subject Patient subject

Actual class
Control subject 11 4

Patient subject 1 14

(f)

Predicted class

Control subject Patient subject

Actual class
Control subject 11 4

Patient subject 0 13

represents the instances in the predicted class, while each
row represents the instances in the actual class. All correct
classifications are located in the diagonal of the tables.

4. Discussion

In our case, hierarchical clustering analysis utilized all
available patient and control data in two steps. Initially, it
calculated the distance between pair of subjects, which were
selected and grouped together according to their impedance
values. Later on, similar groups were selected and joined
together, which led new and bigger groups. This process
continued until all subjects were selected and attached to part
of the tree. In our case, the tree had two major branches,
which were formed by patients and healthy subjects. This

new approach extracted patients and healthy subjects sat-
isfactorily from an unlabeled set without invoking patient
feedback. Dendrogram analysis does not require cross-
validation; hence, it is computationally efficient.

ANN and SVM require some design parameters which
are actually not known a priori. In case of SVM, if the
regularization parameter is not selected properly, it might
cause overfitting or underfitting. In case of ANN, dimension
of network structure, initial weights, number of iterations,
transfer function, and learning rate affect the accuracy of the
classification considerably [19]. There have been numerous
studies on the determination of the optimum neural network
structure; however, a consensus on a certain approach to
determine the best structure has not been reached [26].
These parameters could be estimated from cross-validation
technique; however, it needs extra time and risk. In contrast
to ANN, SVM algorithm automatically selects its model
size [27]. Moreover, SVM training always finds a global
minimum, whilst ANN optimization is often susceptible
to local minima [13]. In addition to these advantages of
SVM over neural networks, Shawe-Taylor and Cristianini
[28] indicated more key features of SVM, such as the use
of kernels, the sparseness of the solution, and the capacity
control obtained by optimizing the margin.

Validation results obtained by using SVM were in agree-
ment with those obtained by ANN. In both cases, rates of
diagnosis of SCI with success were higher for Phase II
than those for Phase I. The reason for this difference in
the validation rates of Phase I and Phase II stems from
the lack of the sufficient number of tetraplegic subjects.
The performance of the algorithms used in classifying the
patients with SCI and controls depends considerably on the
number of subjects used as input in the training stage. ANN
showed a modest increase in percentage accuracy from Phase
I to Phase II. On the other hand, SVM showed a much larger
increase in accuracy when the tetraplegic patients are absent
because a multilayer neural network classifier suffers from
the existence of multiple local minima solutions, whereas
SVM is formulated as a quadratic programming problem and
hence SVM training always finds a global minimum [13].

The results showed that HCTA and SVM algorithms
improved the classification rate and also the overall perfor-
mance. For Phase I, hierarchical clustering analysis achieved
higher recognition accuracy compared to ANN and SVM
systems; however, for Phase II, SVM showed the best
classification performance.

Since the neurological examination technique used in the
diagnosis of the SCI is mostly subjective, an objective and
accurate technique would be a very important improvement
for clinical applications. The suggested quantitative method
in which the skin impedances were classified using the hier-
archical clustering or SVM is a quite simple, noninvasive, and
nonexpensive method. A multimeter, a frequency generator,
ECG electrodes and a computer are sufficient to perform
this technique. Moreover, measurement and analysis of the
impedance do not require patient feedback, which ensures
this technique to be applicable as a more objective method,
especially for unconscious and noncooperative SCI patients.



Computational and Mathematical Methods in Medicine 7

It is concluded that the proposed skin impedance test
based on SVM or HCTA can be used as a supplement to
neurological and radiological examinations to enhance the
diagnosis of SCI. For future studies, measurements of
skin impedance of acute patients are planned. Also, other
distinctive parameters, such as skin temperature [6], for
diagnosing patients with SCI injury among healthy people,
can be taken into account together with skin impedance.
Such a combination of these distinctive parameters might
improve the accuracy of the diagnosis of SCI.
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and A. Heilmann, “New, non-invasive thermographic exami-
nation of body surface temperature on tetraplegic and para-
plegic patients, as a supplement to existing diagnostic mea-
sures,” Spinal Cord, vol. 47, no. 6, pp. 492–495, 2009.

[7] S. S. Karamehmetoglu, M. Ugur, Y. Z. Arslan, and D. Palamar,
“A quantitative skin impedance test to diagnose spinal cord
injury,” European Spine Journal, vol. 18, no. 7, pp. 972–977,
2009.

[8] Y. Z. Arslan, M. A. Adli, A. Akan, and M. B. Baslo, “Prediction
of externally applied forces to human hands using frequency
content of surface EMG signals,” Computer Methods and
Programs in Biomedicine, vol. 98, no. 1, pp. 36–44, 2010.

[9] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2008.

[10] P. J. G. Lisboa, “A review of evidence of health benefit from
artificial neural networks in medical intervention,” Neural
Networks, vol. 15, no. 1, pp. 11–39, 2002.

[11] V. Vapnik, Statistical Learning Theory, John Wiley and Sons,
New York, NY, USA, 1998.

[12] V. Vapnik, Estimation of Dependences Based on Empirical Data,
Springer Verlag, New York, NY, USA, 1982.

[13] C. J. C. Burges, “A tutorial on support vector machines for
pattern recognition,” Data Mining and Knowledge Discovery,
vol. 2, no. 2, pp. 121–167, 1998.

[14] I. El-Naqa, Y. Yang, M. N. Wernick, N. P. Galatsanos, and R. M.
Nishikawa, “A support vector machine approach for detection

of microcalcifications,” IEEE Transactions on Medical Imaging,
vol. 21, no. 12, pp. 1552–1563, 2002.

[15] W. S. Noble, “What is a support vector machine?” Nature
Biotechnology, vol. 24, no. 12, pp. 1565–1567, 2006.

[16] H. L. Chen, B. Yang, G. Wang, J. Liu, Y. D. Chen, and D. Y. Liu,
“A three-stage expert system based on supportvector machines
for thyroid disease diagnosis,” Journal of Medical Systems. In
press.

[17] P. H. A. Sneath PHA and R. R. Sokal, Numerical Taxonomy—
The Principles and Practice of Numerical Classification, W. H.
Freeman, San Francisco, Calif, USA, 1973.

[18] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to Data
Mining, Prentice Hall, New York, NY, USA, 2006.

[19] T. Kavzoglu, “Determining optimum structure for artificial
neural networks,” in Proceedings of the 25th Annual Technical
Conference and Exhibition of the Remote Sensing Society, pp.
675–682, Cardiff, Wales, UK, 1999.

[20] D. Nguyen and B. Widrow, “Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights,” in Proceedings of the International Joint
Conference on Neural Networks, vol. 3, pp. 21–26, San Diego,
Calif, USA, 1990.

[21] R. Hecht-Nielsen, “Theory of the backpropagation neural
network,” in Proceedings of the International Joint Conference
on Neural Networks. San Diego, CA , USA, 1990, pp. 593–605,
Washington, DC, USA, 1989.

[22] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Proceedings of
the 14th International Conference on Artificial Intelligence, pp.
1137–1143, San Mateo, Calif, USA, 1995.

[23] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273–297, 1995.

[24] B. Schölkopf, S. Mika, C. J. C. Burges et al., “Input space versus
feature space in kernel-based methods,” IEEE Transactions on
Neural Networks, vol. 10, no. 5, pp. 1000–1017, 1999.
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