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One of the inherent weaknesses of the EEG signal processing is noises and artifacts. To overcome it, some methods for prediction of
epilepsy recently reported in the literature are based on the evaluation of chaotic behavior of intracranial electroencephalographic
(EEG) recordings. These methods reduced noises, but they were hazardous to patients. In this study, we propose using Lyapunov
spectrum to filter noise and detect epilepsy on scalp EEG signals only. We determined that the Lyapunov spectrum can be
considered as the most expected method to evaluate chaotic behavior of scalp EEG recordings and to be robust within noises.
Obtained results are compared to the independent component analysis (ICA) and largest Lyapunov exponent. The results of
detecting epilepsy are compared to diagnosis from medical doctors in case of typical general epilepsy.

1. Introduction

Since the discovery of the human electroencephalographic
(EEG) signals by Hans Berger in 1923, the EEG has been the
most commonly used instrument for clinical evaluation of
brain activity, classification epileptic seizures or no epilepsy,
schizophrenia, sleep disorder, mental fatigue, and coma.

There were many researches on EEG in the world. An
EEG signal is a measurement of currents that flow during
synaptic excitations of the dendrites of many pyramidal
neurons in the cerebral cortex. When brain cells (neurons)
are activated, the synaptic currents are produced within the
dendrites. This current generates a secondary electrical field
over the scalp measurable by EEG systems. They are captured
by multiple-electrode EEG machines either from inside the
brain, over the cortex under the skull, or certain locations
over the scalp and can be recorded in different formats.

Today, the epilepsy is important problem in the public
healthy and everyone should be specially interested in it
because its effects are influenced on the life’s qualities, study,
and working abilities, falling in line with society badly.
Epilepsy is the most common neurological disorder, second

only to stroke. Nearly 60 million people worldwide are
diagnosed with epilepsy whose hallmark is recurrent seizures
[1]. Some 35 million have no access to appropriate treatment.
This is either because services are nonexistent or because
epilepsy is not viewed as a medical problem or a treatable
brain disorder.

Most traditional analyses of epilepsy, based on the EEG,
are focused on the detection and classification of epileptic
seizures. Among them, the best method of analysis is
still the visual inspection of the EEG by a highly skilled
electroencephalographer. However, with the advent of new
signal processing methodologies based on the mathematical
theory, there has been an increased interest in the analysis of
the EEG for prediction of epileptic seizures.

To detect spike, Gotman and Wang [2] defined 5 states
(active wakefulness, quiet wakefulness, desynchronized EEG,
phasic EEG, and slow EEG) and designed one method for
automatic state classification. Then, they designed proce-
dures for identification of nonepileptic transients (eye blinks,
EMG, alpha, spindles, vertex sharp waves) by measuring
parameters such as relative amplitude, sharpness, and dura-
tion of EEG waves. This method is sensitive to various
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artifacts. In attempts to overcome that artifacts, Dingle et al.
[3] developed a multistage system to detect the epileptiform
activities from the EEGs. In another approach, Glover et al.
[4] used a correlation-based algorithm that was attempted
to reduce the muscle artefacts in multichannel EEGs. So,
approximately 67% of the spikes can be detected. By incorpo-
rating both multichannel temporal and spatial information,
and including the electrocardiogram, electromyogram, and
electrooculogram information into a rule-based system [5], a
higher detection rate was achieved. Artificial neural networks
(ANNs) have been used for seizure detection by many
researchers [6, 7]. To predict epilepsy, Zhu and Jiang [8]
tracks the time evolution of the slow wave energy bigger than
some preset threshold from scalp EEGs. The results from
four generalized epileptic patients demonstrate that pre-
seizure transition phases of several minutes can be identified
clearly by their linear predictor. Among recent works, time-
frequency (TF) approaches effectively use the fact that the
seizure sources are localized in the time-frequency domain.
Most of these methods are mainly for detection of neural
spikes [9] of different types. The methods are especially
useful since the EEG signals are statistically nonstationary.

One of tendencies to predict seizure is nonlinear meth-
ods. The brain is assumed to be a dynamical system, since
epileptic neuronal networks are essentially complex nonlin-
ear structures and a nonlinear behavior of their interactions
is, thus, expected. So, these methods have substantiated
the hypothesis that quantification of the brain’s dynamical
changes from the EEG might enable prediction of epileptic
seizures, while traditional methods of analysis have failed
to recognize specific changes prior to seizure [1]. These
include reduction in correlation integrals during the ictal
state (Lerner, 1996) [10] and decrease in signal complexity
during seizures. In 1998, Le Van Quyen et al. [11] contributed
a new measurement in prediction seizure which they called
“correlation density”. Then, this group has introduced newer
nonlinear techniques, such as the “dynamical similarity
index” [12, 13], which measures similarity of EEG dynamics
between recordings taken at distant moments in time. Jerger
et al. [14] and Jouny et al. [15] used two methods, one
of which, Gabor atom density, estimates intracranial EEGs
in terms of synchrony and complexity. In another other
approach, Esteller et al. [16] introduced parameter of average
energy of EEG signal. They demonstrated that when seizure
happens, there were bursts of complex epileptiform activity,
delta slowing, subclinical seizures, and gradual increases in
energy in the epileptic focus. Harrison et al. [17] measured
the amount of energy in EEG signal and its averaged power
within moving windows.

Iasemidis introduced ideas of chaotic in predicting
seizure. In 1988 and 1990, Iasemedis et al. [18] published the
first of a number of prominent articles describing another
nonlinear measure for predicting seizures, primarily the
largest Lyapunov exponent, for characterizing intracranial
EEG recordings [19]. The lowest values of Lyapunov occur
during the seizure but they are still positive denoting the
presence of a chaotic attractor. Then, this group introduced
an efficient version of the Largest Lyapunov Exponent
(Lmax) named Short-Term Maximum Lyapunov Exponent

(STLmax) and proved the relationship between the temporal
evolution of Lmax and the development of epileptic seizures
[20].

Most of these studies for prediction of epilepsy are based
on intracranial EEG recordings. These methods faced main
challenge. This is hazardous to the patient, especially the
children. The scalp EEG is the most popular recording
in Hospitals. But the scalp signals are more subject to
environmental noise and artifacts than the intracranial EEG,
and the meaningful signals are attenuated and mixed in
their way via soft tissue and bone. So, the tradition methods
such as the Kolmogorov entropy or the Lyapunov exponents,
may be affected by the after mentioned two difficulties
and, therefore, they may not distinguish between slightly
different chaotic regimes of the scalp EEG [21]. There are
many researchers to be interested in this problem. They tried
to applied tradition nonlinear measurement to scalp EEG.
This is the approach followed by Hively and Protopopescu
[22]. They proposed a method based on the phase-space
dissimilarity measures (PSDMs) for forewarning of epileptic
events from scalp EEG. Iasemidis et al. [23], using the
spatiotemporal evolution of the short-term largest Lyapunov
exponent, demonstrated that minutes or even hours before
seizure, multiple regions of the cerebral cortex progressively
approach a similar degree of chaoticity of their dynamical
states. They called it dynamical entrainment. This method
has also been shown to work well on scalp-unfiltered EEG
data for seizure predictability. In 2006, a research group
of Saeid Sanei developed a novel approach to quantify the
dynamical changes of the brain using the scalp EEG by means
of an effective block-based blind source separation (BSS)
technique to separate the underlying sources within the brain
to overcome problems of noises and artifacts. Their methods
are promising but their results also faced noises and artifact
[1].

Here, we are only interested in applying the Lyapunov
exponent for scalp EEG to predict epilepsy. Like previ-
ous methods, the main problem to apply the Lyapunov
exponents for scalp EEG is noises. We executed combined
ICA method and Lyapunov exponent by Rosenstein. In
addition, we also find improvements of Lyapunov spectrum
in estimating the Lyapunov exponent so that it can be more
robust, especially with respect to the presence of noise in the
EEG.

This paper is organized as follows. In Section 2, we
describe the algorithms for filtering, estimating that the
Lyapunov exponent, especially Lyapunov spectrum, consid-
ered as an optimization model for estimating Lyapunov
exponents is presented. In Section 3, the EEG recording
procedure is explained and the results are compared with the
other methods. Conclusions are provided in Section 4.

2. Materials and Methods

2.1. Materials. The experimental data were derived from
the Hospital 115 in Ho Chi Minh City, Vietnam using a
Galileo EEG machine (EBNEURO, Italy) and divided into
three groups: seizures (8 files), brain function disorder due
to epilepsy or transform (7 files), nonseizure (15 files).
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2.2. Preprocessing. Frequencies of EEG signals are less
than 100 Hz. In addition, most recordings present a 50-
Hz frequency component contaminating several electrodes.
Therefore, the signals need to be lowpass filtered to elim-
inate this frequency component and other high-frequency
components generally produced by muscular activity. A
Butterworth filter of order 10 with a cutoff frequency of
45 Hz is used [1]. Within this range of frequencies, we still
have the complete information about the signals.

2.3. Independent Component Analysis (ICA) [24, 25]. After
the preprocessing step, the scalp EEG is still contaminated
by noise and artifacts such as eye blinks. Independent com-
ponent analysis (ICA) is an effective method for removing
artifacts, especially eye blinks, and separating sources of the
brain signals from these recordings. ICA methods are based
on the assumptions that the signals recorded on the scalp are
mixtures of time courses of temporally independent cerebral
and artifactual sources, that potentials arising from different
parts of the brain, scalp, and body are summed linearly at the
electrodes, and that propagation delays are negligible.

2.4. Lyapunov Exponents. The EEG recorded from one site is
inherently related to the activity at other sites. This makes the
EEG a multivariable time series. Generally, an EEG signal can
be considered as the output of a nonlinear system, which may
be characterized deterministically. Methods for calculating
these dynamical measures from experimental data have been
published [26]. Among them, Lyapunov exponent is one
of parameters to measure chaos of a nonlinear dynamical
system and characterizes the spatiotemporal dynamics in
electroencephalogram (EEGs) time series recorded from
patients with temporal lobe epilepsy. Wolf et al. [27]
proposed the first algorithm for calculating the largest
Lyapunov exponent. But the Wolf algorithm only estimates
the largest Lyapunov exponent and the first few nonnegative
Lyapunov exponents, not the whole spectrum of exponents.
It is sensitive to noises of time series as well as to the
degree of measurement or unreliable for small data sets.
So, Iasemidis et al. presented algorithm of estimating the
short-term largest Lyapunov exponent, which is a modified
version of the program proposed of Wolf. This modification
is necessary for predicting seizure (small data segments of
epileptic data). Besides, there were many improvements in
estimating the Lyapunov exponent of many researchers in
the world such as Eckmann et al. [28], Brown et al. [29],
and Rosenstein et al. [30]. Here, we also used the algorithm
of Rosenstein because of its advantages. The Rosenstein
algorithm is fast, easy to implement, and robust to changes
in the following quantities: embedding dimension, size of
data set, reconstruction delay, and noise level. Furthermore,
one may use the algorithm to calculate simultaneously the
correlation dimension. Thus, one sequence of computations
will yield an estimate of both the level of chaos and the system
complexity.

2.5. The Rosenstein Algorithm [30]. The first step of our
approach involves reconstructing the attractor dynamics

from a single time series. We use the method of delays
since one goal of our work is to develop a fast and easily
implemented algorithm. The reconstructed trajectory, X, can
be expressed as a matrix where each row is a phase-space
vector. That is,

(i) vector Xi in phase space:

xi = (x(ti)), x(ti + τ), . . . , x
(
ti +

(
p − 1

)∗ τ
)
, (1)

where τ is the lag or reconstruction delay, p is the embedding
dimension, and ti ∈ [1,T − (p − 1)τ]

(i) from the definition of λ1 given in theory d(t) =
C exp(λ1t), we assume that the jth pair of nearest
neighbors diverge proximately at a rate given by the
largest Lyapunov exponent:

dj(i) ≈ Cje
(i·Δt), (2)

where Cj is the initial separation. By taking the logarithm of
both sides of (2), we have

lndj(i) ≈ lnCj + λ1(i · Δt). (3)

Equation (3) represents a set of approximately parallel
lines (for j = 1, 2, . . . ,m), each with a slope roughly
proportional to λ1. The largest Lyapunov exponent is easily
and accurately calculated using a least-squares fit to the
“average” line defined by

y(i) = 1
Δt

〈
lndj(i)

〉
, (4)

where 〈·〉 denotes the average over all values of j. This pro-
cess of averaging is the key to calculating accurate values of
λ1 using small, noisy data sets. Note that in (3), Cj performs
the function of normalizing the separation of the neighbors,
but as shown in (4), this normalization is unnecessary for
estimating λ1. By avoiding the normalization, the current
approach gains a slight computational advantage over the
method by Sato et al. [31].

2.5.1. The Lyapunov Spectrum [32]. Another way to view
Lyapunov exponents is the loss of predictability as we look
forward in time. If we assume that the true starting point x0
of a time series is possibly displaced by an ε, we know only
the information area I0 about the starting point. After some
steps, the time series is in the information area at time t, It.
The information about the true position of the data decreases
due to the increase of the information area. Consequently,
we get a bad predictability. The largest Lyapunov exponent
can be used for the description of the average information
loss; λ1 > 0 leads to bad predictability [32]. While there is
a method which is applicable to many dimensional chaos
to extract physical quantities from experimentally obtained
irregular signals is Lyapunov spectrum [33]. It estimates
the spectrum of several Lyapunov exponents (including
positive, zeros, and even negative ones). This is necessary
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for quantifing many physical quantities, especially for com-
plicating EEG signals. Besides, in EEG processing, a main
problem is noises and artifacts. There are many researches
about processing EEG, especially removing noises to predict
epilepsy. But most of reports only solved part of problems
and faced some difficulties. Here, we will describe a method
of Lyapunov spectrum which is shown to behave well in
the perturbation of certain parameter values, but slightly
sensitive in the presence of noise, good accuracy with great
easy. It is suitable to prediction seizure.

Let us consider an observed trajectory x(t), which can be
considered as a solution of a certain dynamical system:

ẋ = F(x) (5)

defined in a d-dimensional phase space. On the other
hand, the evolution of a tangent vector ξ in a tangent space
at x(t) is represented by linearizing (5):

ξ̇ = T(x(t)) · ξ, (6)

where T = DF = ∂F/∂x is the Jacobian matrix of F. The
solution of the linear nonautonomous (6) can be obtained as

ξ(t) = Atξ(0), (7)

where At is the linear operator which maps tangent vector
ξ(0) to ξ(t). The mean exponential rate of divergence of the
tangent vector ξ is defined as follows:

λ(x(0), ξ(0)) = lim
t→∞

1
t

ln

∥
∥ξ(t)

∥
∥

∥
∥ξ(0)

∥
∥ , (8)

where ‖ · · · ‖ denotes a norm with respect to some Rie-
mannian metric. Furthermore, there is a d-dimensional basis
{ei} of ξ(0), for which λ takes values λi(x(0)) = λ(x(0), ei).
These can be ordered by their magnitudes λ1 ≥ λ2 · · · ≥ λn,
and are the spectrum of Lyapunov characteristic exponents.
These exponents are independent of x(0) if the system is
ergodic.

Algorithm 1. Let {xj} ( j = 1, 2, . . .) denote a time series of
some physical quantity measured at the discrete time interval
Δt, that is, xj = x(t0 + ( j − 1)Δt). Consider a small ball of
radius ε centered at the orbital point xj , and find any set of
points {xki} (i = 1, 2, . . . ,N) included in this ball, that is,

{
yi =

{
xki − xj |

∥
∥
∥xki − xj

∥
∥
∥ ≤ ε

}}
, (9)

where yi is the displacement vector between xki and xj .
We used a usual Euclidean norm defined as follows:
‖w‖ = (w2

1 + w2
2 + · · · + w2

d)
1/2

for some vectors w =
(w1,w2, . . . ,wd). After the evolution of a time interval τ =
mΔt, the orbital point xj will proceed to xj+m and neigh-
boring points {xki} to {xki+m}. The displacement vector yi =
xkj − xj is thereby mapped to

{
zi
}
=
{
xki+m − xj+m |

∥
∥
∥xki − xj

∥
∥
∥ ≤ ε

}
. (10)

If the radius ε is small enough for the displacement
vectors {yi} and {zi} to be regarded as good approximation

of tangent vectors in the tangent space, evolution of yi to zi

can be represented by some matrix Aj , as follows:

zi = Aj y
i. (11)

The matrix Aj is an approximation of the flow map At

at xj in (7). Let us proceed to the optimal estimation of
the linearized flow map Aj from the data sets {yi} and {zi}.
A plausible procedure for optimal estimation is the least-
square-error algorithm, which minimizes the average of the
squared error norm between zi and Aj yi with respect to all
components of the matrix Aj as follows:

min
Aj

S = min
Aj

1
N

N∑

i=1

∥
∥∥zi − Aj y

i
∥
∥∥

2
. (12)

Denoting the (k, l) component of matrix Aj and applying
condition (12), one obtains d × d equations to solve
∂S/∂akl( j) = 0. One will easily obtain the following
expression for Aj :

AjV = C, (Vkl) = 1
N

N∑

i=1

yik yil,

(Ckl) = 1
N

N∑

i=1

Zik yil,

(13)

where V and C are d×d matrices, called covariance matrices,
and và yik and Zik are the k components of vectors yi and zi,
respectively. If N ≥ d and there is no degeneracy, (13) has a
solution for akl( j).

Now that we have the variational equation in the tangent
space along the experimentally obtained orbit; the Lyapunov
exponents can be computed as

λi = lim
n→∞

1
nτ

n∑

j=1

ln
∥
∥
∥Aje

j
i

∥
∥
∥, (14)

for i = 1, 2, . . . ,d, where Aj is the solution of (13), and {e ji }
(i = 1, 2, . . . ,d) is a set of basis vectors of the tangent space at

xj . In the numerical procedure, choose an arbitrary set {e ji }.
Operate with the matrix Aj on {e ji }, and renormalize Aje

j
i to

have length 1. Using the Gram-Schmidt procedure, maintain
mutual orthogonality of the basis. Repeat this procedure for
n iterations and compute (14). The advantage of the present
method is now clear, since we can deal with arbitrary vectors
in a tangent space and trace the evolution of these vectors.
In this method, these vectors are not restricted to observed
data points, in contrast with the conventional methods. The
feature allows us to compute all exponents to good accuracy
with great easy.

3. Results and Discussions

Signals are firstly preprocessed by Butterworth filter of order
10 with a cutoff frequency of 45 Hz to remove noise 50 Hz
and high-frequency components. Filtered signals were then
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Figure 1: A scalp EEG recording of 21 minutes containing a general epilepsy. (a) The 5-second EEG segment at the preictal of frontal seizure
was recorded by the scalp electrodes before removing noises. (b) EEG signal (5 s) during the seizure. (c) The result of (b) after being filtered
by Butterworth filter of order 10 with a cutoff frequency of 45 Hz. (d) The signals obtained after applying the proposed ICA algorithm to the
same segment (c).

analyzed by Independent Component Analysis (ICA) to get
main components for comparison purposes. Quantifying the
changes in the brain dynamics was carried out by nonlinear
methods such as estimating the largest Lyapunov exponent
λ1 and the Lyapunov spectrum was also used to evaluate
chaotic behavior of scalp EEG recordings.

Figures 1(a)–1(d) show the results obtained for a scalp
EEG recording of 21 minutes containing a general epilepsy.
In Figure 1(a), the 5-second EEG segment at the preictal
of frontal seizure was recorded by the scalp electrodes
before removing noises. At second 817, there are series of
high-frequency, repetitive spikes, polyspike-slow waves. The
preseizure was clearly discernible in the scalp electrodes,
around second 817, and the seizure state lasted until the
second 871 (Figure 1(b)). The signals are contaminated by
noises and artifacts but the seizure is discernible. Figure 1(c)
is result of Figure 1(b) after being filtered by Butterworth
filter of order 10 with a cutoff frequency of 45 Hz. Figure 1(d)
shows the signals obtained after applying the proposed ICA
algorithm to the same segment in Figure 1(c). The IC4,
IC9, and IC10 are sources of noise EEG while the seizure
components are in remaining ICs.

Figures 2(a) and 2(b) are Lyapunov profiles over time of
IC6 and IC7. Both these ICs showed that, during the seizure
from second 817 to 871, the Lyapunov exponents start
decreasing, and at about second 847, Lyapunov exponents
drop to minimum. The seizure can easily be detected from
the lowest values of Lyapunov exponent. It is period of
second 817 to 871. These results are suitable to points
recorded in Figure 1. Besides, Figures 2(c) and 2(d), the
Lyapunov profiles of IC6 and IC7 obtained by observing the
Lyapunov profiles from second 500 to second 1000, show that
λ1 starts decreasing approximately 2 mins before the onset
of seizure. Therefore, the Lyapunov profiles of ICs after be
analyzed Independent Component can help doctors not only
to detect but also to predict early seizures for 2 minutes
before the seizure occurs.

Figures 3(a) and 3(b) are the Lyapunov spectrum profiles
of IC6 and IC7 of the same data. The maximum drop
of Lyapunov coefficients occurs around 847, where seizure
happens. It means that Lyapunov spectrum can be used to
detect seizure accurately. Moreover, observing a period of
5 minutes of the preseizure-seizure, we can see that all the
Lyapunov coefficients decrease approximately two minutes
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Figure 2: The Lyapunov exponent’s profiles over time of IC6 and IC7. (a) and (b) are the largest Lyapunov exponent’s profiles over time
of IC6 and IC7. (c) and (d) are the largest Lyapunov exponent’s profiles of IC6 and IC7 obtained by observing the Lyapunov profiles from
second 500 to second 1000.

before the seizure happened. This helps the doctors to
predict seizure. These results clearly show that the proposed
ICA algorithm successfully separates the seizure signal (long
before the seizure) from the rest of the sources, noise,
and artifacts within the brain. Both the largest Lyapunov
exponents and Lyapunov spectrum can be combined with
ICA methods to quantify the changes in brain dynamic for
diagnosing epilepsy and have brought good results.

Figures 4(a) and 4(b) are the Lyapunov profiles of the
channels 8 and 11, respectively. Most channels show a
minimum drop in the value of λ1 around second 720, while
preseizure-seizure onset interval which occurs at second
817 to second 871 has maximum peaks of the Lyapunov
coefficient. Therefore, none of the channels is able to detect
and predict seizure. Moreover, the scalp EEG after filtering
0.5–45 Hz was contaminated by a high-frequency activity

that causes fluctuations of for the entire recording. So,
estimating only the largest Lyapunov coefficient of scalp EEG
without ICA showed that mentioned features cannot detect
the seizure.

The detection could be improved by examining the
Lyapunov spectrum with other λ parameters. Figures 5(a)
and 5(b) are Lyapunov spectrums of the channels 8 and 11
after being filtered 0–45 Hz. The Lyapunov coefficients start
decreasing around second 800 and reach minimum around
second 890. There is the interval in that pre-seizure and onset
seizure occur. Moreover, minimum drop of λ1 is not as clear
as these of other Lyapunov coefficients. This result showed
that the Lyapunov spectrum can detect seizure for noiseful
scalp EEG when the largest Lyapunov coefficient method
cannot. This is an advantage for processing scalp EEG in
practical cases in Hospital.
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Figure 3: The Lyapunov spectrum profiles of IC6 and IC7 of the same data.
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Figure 4: The largest Lyapunov exponent’s profiles of channels 8 and 11, respectively.

Figures 6(a) and 6(b) show scalp EEG recordings of 21
minutes containing a general epilepsy. In Figure 6(a), the 5-
second EEG segment at the pre-seizure of frontal seizure was
recorded by the scalp electrodes before removing noises from
second 679 to 684. We can see the complexity of the signal
decreased and the shape of sin. Then the period of seizure
occurs with signs of paroxysmal depolarization, and the
waveform becomes much more complicated. Seizure ends at
second 724. These signals are filtered by Butterworth filter
of order 10 with a cutoff frequency of 45 Hz and then are
analysed by ICA method to separate the seizure signal (long

before the seizure) from the rest of the sources, noise, and
artifacts within the brain. While ICs bring seizure signs, the
Lyapunov exponents are estimated.

Figures 7(a) and 7(b) illustrate the changes in the
smoothed λ1 for IC5 brings seizure signal obtained by
the lagest Lyapunov exponent and Lyapunov spectrum
method, respectively. λ1 starts decreasing at second 600,
approximately 2 minutes before the onset of seizure, and
drops minimum around second 725. The experiment results
showed that ICA algorithm successfully separates the seizure
signal and the combination of ICA and the Lyapunov
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Figure 5: The Lyapunov spectrum of channels 8 and 11.
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Figure 6: The scalp EEG recordings of 21 minutes containing a general epilepsy. (a) The 5-second EEG segment at the pre-seizure of frontal
seizure. (b) EEG signal (5 s) during the seizure.

exponent method can help the doctors not only detect but
also predict the epilepsy. This is an effective combination not
only in removing the noises for processing the EEG signal but
also quantifying the changes of brain changes as well.

Figures 8(a) and 8(b) are Lyapunov profiles of channels 9
and 10. The values λ1 have large fluctuations that can be due
to the presence of the noises and artifacts. More over, there
are no clear drops of λ1 before, in and after seizure happens.
It means that the maximum Lyapunov is sensitivity to noises
and it cannot detect epilepsy with quite noisy EEG. This
can be caused by the description of the average information

loss of λ1. As mentioned previously, the detection could be
improved by examining the Lyapunov spectrum with other λ
parameters.

Figures 9(a) and 9(b) are Lyapunov spectrums of the
channel 9 and 10 after being filtered 0–45 Hz. The Lyapunov
coefficients start decreasing around second 700 and reach
minimum around second 725. There is the interval in that
pre-seizure and onset seizure occurs. The minimum of value
λ1 is used for detecting seizure. Moreover, values of λ1 in
both channels have peaks when time of seizure happens. This
showed that estimating the spectrum of several Lyapunov
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Figure 7: The changes in the Lyapunov exponent for IC5. (a) The smoothed λ1 of IC5. (b) The Lyapunov spectrum of IC5.
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Figure 8: The largest Lyapunov exponent’s profiles of channels 9 and 10.

exponents (including positive, zeros, and even negative
ones) is necessary for quantifing many physical quantities,
especially for complicating EEG signals.

For the sets of the scalp EEG (see Table 1), 8 cases of
general epilepsy were not only detected but also replaced
by the combination of ICA and the Lyapunov exponent
(includes the largest Lyapunov exponent and the Lyapunov
spectrum) method. It means that ICA algorithm successfully
separates the seizure signal within the brain. Both the largest
Lyapunov exponents and Lyapunov spectrum can quantify
the nonlinear changes in brain dynamic. Besides, all 8 data
sets showed that the Lyapunov spectrum can detect the
seizure while the largest Lyapunov exponent cannot do this
for the scalp EEG without analysing ICA. This result should
be an advantage for processing EEG signal.

4. Conclusions

A proposal for the estimation of Lyapunov spectrum profiles
from EEG to diagnose the epilepsy has been presented. The
results of the experiments clearly show that the proposal
carried out advantages than the combination of ICA and
the largest Lyapunov exponent method. The ICA algorithm
successfully separated the seizure signal from the rest of the
sources, noise, and artifacts within the brain and the largest
Lyapunov exponent evaluated the chaotic behavior of the
EEG signals. Lyapunov spectrum is considered as a robust
and general method to process EEG signal to detect epilepsy.
The results obtained for the estimated source are similar to
diagnosis from medical doctors in case of typical general
epilepsy.
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Figure 9: The Lyapunov spectrum of channels 9 and 10.

Table 1: Characteristics of the recordings (obtained in the Depart-
ment of Clinical neurophysiology at Hospital 115 in Vietnam).

Type of
epilepsy

No. of patients
Males/females

Age ranges
Recording

length ranges
(mins)

No. of
electrodes

General
epilepsy

7/1 30–45 20–30 22
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