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Of interest is the accurate and robust delineation of vessel center-lines for complete arterial tree structure in coronary angiograms
which is an imperative step towards 3D reconstruction of coronary tree and feature-based registration of multiple view angiograms.
Most existing center-line tracking methods encounter limitations in coping with abrupt variations in local artery direction and
sudden changes of lumen diameter that occur in the vicinity of arterial lesions. This paper presents an improved center-line tracing
algorithm for automatic extraction of coronary arterial tree based on robust local features. The algorithm employs an improved
scanning schema based on eigenvalues of Hessian matrix for reliable identification of true vessel points as well as an adaptive
look-ahead distance schema for calculating the magnitude of scanning profile. In addition to a huge variety of clinical examples, a
well-established vessel simulation tool was used to create several synthetic angiograms for objective comparison and performance
evaluation. The experimental results on the accuracy and robustness of the proposed algorithm and its counterparts under difficult
situations such as poor image quality and complicated vessel geometry are presented.

1. Introduction

In recent years, the utilization of computerized technologies
in cardiovascular examinations has introduced a great deal
of precision and speed to the diagnosis of coronary artery
disease (CAD). In most of the vascular analysis applications,
fast and accurate delineation of the arterial center-lines is
a major prerequisite which provides a basis for subsequent
image analysis steps. The aim of this study is to develop an
efficient algorithm for producing a skeleton representation
of whole coronary arterial tree. This is typically performed
by either a pixel-based segmentation method followed by a
skeletonization of the segmented image or direct exploratory
center-line extraction in which coronary arterial segments
are extracted through a recursive artery tracking algorithm.
The objective of the first approach is to produce a separable
representation of the foreground and background that

entails a broad range of vessel enhancement or feature
extraction methods such as matched/nonlinear filtering [1,
2], morphological filtering [3], eigenvalues of Hessian matrix
[4], hysteresis thresholding [5], pixel classification methods
[6], and many others. Unfortunately, most of these methods
produce a large number of unconnected clusters of pixels
instead of a single connected arterial tree, especially when the
images contain nonuniform illumination.

As opposed to the tedious and error-prone pixel
based segmentation approach, exploratory tracing methods
directly extract the features of interest, circumventing low
level processing of every pixel in the image. These algorithms
are based on sequential searches through examining a small
number of pixels that are close to the vasculature which
results in efficient extraction of pixels located on the medial
axis of the arterial segments. Several properties such as
producing useful partial results, upon the occurrence of
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Figure 1: The general schema of the center-line extraction proce-
dure.

a deadline, and their computational efficiency make them
attractive for real-time, live, and high resolution processing.
Figure 1 depicts a general schema of the artery tracing
approach followed by most existing methods in the literature.
This schema is an iterative process to delineate a sequence of
center-line points for each vessel segment. The steps of the
process can be described as follows.

(i) Initialization. The initialization step provides prelim-
inary information for starting the tracing procedure.
The information typically includes the location of
the starting point, the initial direction of the vessel,
and distances between the starting point and the left
and right boundaries. In manual or semiautomatic
algorithms, the location of the seed point and the
initial direction are manually defined by the user.
In case of fully automatic center-line extraction,
however, a valid seed point is selected from a set of
validated seed points provided by an automatic seed
point detection algorithm.

(ii) Estimation. At the initial point pk with directions
�uk, the location of the next center-line point pk+1 is
estimated simply by linear extrapolation in equation
of the form:

pk+1 = pk + α�uk+1, (1)

where parameter α is a step size and determines
the distance between the current point and the
next point. Since an exploratory search produces

a sequence of connected pixels, this distance is filled
by a set of intermediary points to connect the two
end points using a straight line drawing algorithm
[7]. In some algorithms the step size is determined
in a self-adaptive manner which yields more accurate
results in comparison with the case that the tracing
algorithm uses a fixed value for the step size, for
example, [8].

(iii) Updating the Tracing Direction. The extrapolation
equation uses the vessel direction calculated only
at the current center-line point and does not take
into account the vessel geometry at the estimated
next point. Hence, the estimated tracing direction
�uk+1 is not always accurate and needs to be updated
according to the local geometric and intensity-based
information at the site of estimated next point. The
idea of updating the preliminary estimate for the
vessel direction has been suggested by many known
tracing methods [8–10]. The idea is to refine the
first estimate of the vessel direction by adjusting the
location of the estimated next point based on its
distances from the nearest boundary points.

(iv) Tracking. In this step the tracing algorithm verifies
the stopping conditions and repetitious traces and
collects information about vessel intersections and
branching or crossover points. If the estimated point
is still located inside the vessel and the current vessel
segment has not already been traced, it returns to the
“Estimation” step to collect the subsequent center-
line points; otherwise the tracking is terminated and
a new trace is started from the next validated seed
point.

(v) Filtering the Small or Disconnected Segments. Accord-
ing to the application and required output, the
tracing sequences which are smaller than a certain
threshold and/or do not have any intersections
with other segments are considered as false traces
and are removed from the tracing result. In some
applications, the operator can be given the ability
to complete the tracing results by adding new seed
points or deleting false traces.

(vi) Curve Smoothing. Many well-known tracing algo-
rithms produce jaggy or indented center-line due
to their coarse angular quantization [9, 11–13]. In
the sequel, they require a curve smoothing step to
enhance the accuracy of the tracing results at the cost
of more computation.

Different tracing algorithms vary primarily in their
mechanism to estimate the next center-line point and local
orientation of the arterial segment. Bolson et al. [14] pro-
posed a method based on geometric properties of the vessel
structures in the image. By manually defining the starting
point and an initial direction, the algorithm estimates a new
center-line point position and orientation by using a T-
shaped structure which is rotated to find the best location for
the next center-line point. Another representative algorithm
for geometric-based vessel tracing approaches is proposed by
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Sun [10] that is the basis of many successful QCA systems.
Instead of using directional filters or T-shape structure, their
method was based on recursive sequential tracking of the
vessel’s center-line with the assumption of geometric and
densitometric continuity of the arteries in each incremental
section. Their algorithm employs an iterative process with
two extrapolation-update stages. In the first stage, an initial
guess for the location of the next center-line point is
made, assuming rectangular pattern for intensity profile
defined perpendicular to the initial vessel direction. Then,
the previous estimation is corrected by defining another
profile at the new center-line point to find the point between
two detected edges. Despite its accuracy and robustness,
there are some major drawbacks with the Sun’s algorithm.
Specifically, the algorithm uses matched filtering mechanism
for identification of new center-line points in vessel cross-
sectional density profiles which performs inefficiently when
arterial segments with nonuniform intensity distribution
are encountered. Moreover, their edge detection method is
based on identification of roll-off points using pure intensity
values; this can cause their method to have difficulties in
coping with situations such as sudden changes in path-line
orientation and vessel diameters [15].

In another study, Haris et al. [16] proposed a recursive
tracking algorithm based on circular template analysis and
appropriate model of the vessels. Although they showed that
their method is very robust and outperforms its predecessors
in terms of handling bifurcations and vessel crossings, it
heavily depends on the vessel center-line and contour points
detected at the artery tree approximation stage which may
fail to detect all of the arterial segments in poor quality
angiogram images. These drawbacks are stemmed from
calculating the vessel direction merely based on the local
geometric features extracted from the arteries and neglecting
inherent intensity and contrast variations between the two
corresponding edge points at the same coronary segment. Xu
et al. [8] proposed a method to improve the Sun’s algorithm
by combining it with a ridge based method proposed by
Aylward and Bullitt [17]. In their method, the vessel direction
is calculated based on a weighted combination of geometrical
topology information obtained from Sun’s algorithm and
intensity distribution information obtained from Hessian
matrix calculation in Aylward’s method. They also proposed
a self-adaptive look-ahead distance schema to increase the
accuracy of the algorithm for extracting highly curved
segments, and a dynamic size search window to cope with
situations where two arteries are overlapped. Yet, some of the
problems originated from Sun’s algorithm are still remained
unsolved, causing Xu’s algorithm to deal with deviations
at the site of severe stenoses. Also, there are many other
recently published artery tracing algorithms in the literature.
However, most of them have been developed for different
applications or image modalities such as ophthalmic artery
images [18] and CT angiography [19, 20].

The above mentioned limitations have motivated us
to propose an improved algorithm which incorporates a
semicircular vesselness profile for robust identification of
next center-line point in the sequential tracking process. It
uses reliable features to discriminate between the true vessel

points and the points that do not coincide with arterial
segments in the angiogram. In fact, instead of using pure
intensity values to identify the true vessel points, it takes
advantage of a feature image based on the eigenvalues of the
Hessian matrix. Each pixel in the feature image represents a
vesselness measure which associates the likelihood of being a
vessel point to the corresponding pixel in the original image,
allowing the tracing algorithm to robustly identify the center-
line path along the arteries. In addition, an adaptive schema
for magnitude of the search profile is incorporated to avoid
divergence and premature termination of the tracing process.

The remainder of this paper is organized as follows: a
complete explanation of our proposed method is presented
in Section 2. In Section 3, the experiments conducted for
parameter tuning are described and the results are presented.
It also includes the experimental results obtained from com-
parative performance evaluation. Finally, Section 4 contains
the conclusion and our decision for the future work.

2. The Proposed Algorithm

The focus of this study is to propose a robust and accurate
algorithm for automatic extraction of complete coronary
arterial tree from angiogram images. Toward this aim, a two
step solution for fully automatic vessel center-line tracing
algorithm is employed which is comprised of two main steps:
automatic seed point detection and center-line extraction. In
this study, we present those aspects of the tracing approach
necessary to extract the center-line of the arterial segments;
we do not discuss the details of seed point detection and
validation steps as they are previously described in the
literature [9, 13, 21].

2.1. Seed Point Detection. In the fully automatic tracing
algorithms, the final output of the algorithm highly depends
on the initial points that are provided for the tracing
algorithm to start its process. In this work, we used our
previously published method for fully automatic seed point
detection [21] due to its capability to provide optimal
balance between the accuracy of the validation procedure
and the computational efficiency. To avoid pixel by pixel
processing, the seed point detection algorithm samples the
image by defining a sparse grid over the image and searching
for the edge pixels along the horizontal and vertical lines.
The number of grid lines determines the number of edge
pixels where the grid lines cut across the vessel segments.
The searching process involves identification of candidate
boundary points by convolving the profile produced by each
grid line with the first derivative of 1D Gaussian low-pass
filter. Due to computational efficiency considerations, a 1D
kernel of the form [1, 2, 0,−2,−1]T is considered as a discrete
approximation of the continuous filter. By convolving this
kernel with the intensity values along each grid line, local
peak values of the filter response are identified and collected
within a small neighborhood distance. Figure 2 illustrates the
result of boundary point collection process in an example
angiogram.
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(a) (b)

Figure 2: (a) Grid search for boundary points and (b) enlarged view of the box region in (a) showing the candidate boundary points without
grid lines.

In the validation procedure, the collected boundary
points are verified against a set of rules which are defined
to discriminate between the actual seed points and mis-
detections. The algorithm incorporates the symmetry of
geometric properties of the gradient vectors calculated at
each candidate boundary point and its neighbors. After the
false candidates are removed, the locations of center-line seed
points are estimated by calculating the mid-point between
the validated seed points and their corresponding point on
the opposite edge. Also, the initial direction of the vessel can
be represented by a unit vector perpendicular to the gradient
vector which is calculated at the validated boundary point.
It should be noted that the space between the grid lines is
chosen to be much smaller than the longitude of the smallest
arterial segments. Hence, the seed point detection algorithm
may produce more than one seed point for each single
segment which results in repetitious traces. To avoid this
problem, an efficient mechanism is applied before validating
each candidate seed point to prevent the assignment of a seed
point to a previously traced segment; see Section 2.5.

2.2. Estimation. Once a reliable seed point is selected, the
next step (so-called the estimation step) is to determine the
exact location of the next center-line point. This necessitates
the identification of true vessel points in a certain neigh-
borhood of the selected seed point. However, X-ray images
suffer from a high level of noise, nonuniform background,
and existence of many image artifacts which make the task
more difficult to perform. Among many vessel enhancement
(and extraction) approaches proposed to overcome these
difficulties, the outputs of vessel enhancement methods that
are based on eigenvalues of Hessian matrix exhibit more
attractive properties for our case. The first reason is that,
instead of producing a logical value for each pixel (to show
whether or not it is located on a vessel), these methods
assign a continuous vesselness value to each pixel allowing
the algorithm to identify true vessel point by finding the

maximum vesselness value from a set of candidate next
points in a small area surrounding the pixel. The second
reason is that the innate computational characteristics of
the eigenvalues of Hessian matrix allows for calculating the
vesselness value based on local intensity information at each
individual pixel in the image. This eliminates the need for
low-level pixel processing for the whole image. The Hessian
matrix at a given point p is represented by:

H
(
p
) =

[
Ixx
(
p
)

Ixy
(
p
)

Iyx
(
p
)

Iyy
(
p
)

]

, (2)

where Iuv(p) denotes the second-order spatial derivative of
the image at point p, calculated by convolving the input
image with the second-order derivative of the 2-D Gaussian
function at a certain scale σ . According to [4], the eigenvalues
and eigenvectors of Hessian matrix can be used to extract
the principal directions of the local second-order variations
at the vessel points. The two-dimensional Hessian matrix
has two eigenvalues λ1 and λ2 and their corresponding
eigenvectors v1 and v2. The eigenvalues are assumed to be
ordered such that:

|λ1| ≥ |λ2|. (3)

In coronary angiograms, vessels appear darker than the
background. Thus, if we consider the input image I(x,y) as a
3D curvature surface, the vessel center-lines are represented
by intensity valleys. Hence, for a given center-line point the
eigenvector which corresponds to the stronger eigenvalue,
that is, v1, reflects the direction of the stronger curvature
within the small neighborhood around the center-line
which is perpendicular to the vessel’s long axis. Since the
eigenvectors are orthogonal, the second eigenvector, that is,
v2, is parallel with the direction of the vessel. Based on the
above considerations, the vessel points can be identified by
examining the eigenvalues λ1 and λ2 as follows:

Vessel Point
(
p
)
: λ1 > 0, λ2 ≈ 0. (4)
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However, this condition may also be met for some non-
vessel points due to noise or line-like background structures.
To obtain more deterministic criteria, Frangi, et al. [4]
developed a multi-scale vesselness function which provides
a value between zero and one for each point at a certain
scale. We are interested in the 2-D version of their function
which combines the measures of the curvature strength and
the ratio of λ1 and λ2 to a single value measure as follows:

V
(
p, σ

) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if λ1 < 0,

exp

(

− R2
B

2β2
1

)[

1− exp

(

− S2

2β2
2

)]

, otherwise,

(5)

where S =
√
λ2

1 + λ2
2 is the second-order structureness

which accounts for the strength of the local contrast and
RB = |λ1|/|λ2| is the blobness measure which differen-
tiates between the tube-like and blob-like structures. The
parameters β1 and β2 determine the sensitivity of the filter
to the measures RB and S, respectively. In this study, the
optimal values of β1 and β2 are obtained based on the image
characteristics.

2.2.1. Estimating the Vessel Direction. Since there is a wide
range of blood vessel diameters in each angiogram, it is
required to calculate the vessel resemblance values at various
scales and combine them to obtain a single-valued metric.
The combination process simply selects the scale which yields
the maximum value of function V at a given point p:

σmax
(
p
) = argmax

σ
V
(
p, σ

)
. (6)

The selected scale is then used for selecting the resemblance
value and the best estimate of the vessel direction as follows:

Vopt
(
p
) = V

(
p, σmax

)
, (7)

ϕopt
(
p
) = ∠

[
v2
(
p, σmax

)]± π. (8)

Due to its computational complexity, this multi-scale calcu-
lation is considered as a major drawback of this vesselness
function, since the core function V only calculates the
measure of vessel resemblance at a single scale. In our
case, however, the vessel diameter, estimated for the current
center-line point, can be used to calculate an appropriate
range of discrete scales for the vesselness function, obviating
the need for time-consuming calculations for various scales
[22].

2.2.2. Semicircular Scanning Profile. In order to find a reliable
next point, the value of the vesselness function is calculated
for the pixels in a small neighborhood around the current
known point pk where superscript k indicates the kth
iteration of the algorithm. For this purpose, a semicircular
scanning profile is defined which samples the vesselness
measure for neighboring pixels around point pk within a
certain radius rk. The semicircular scanning profile (Sr) is
mathematically described as:

Sr
(
θ, pk

)
= V

(
pk + rk�e

(
ûi + θ

))
, −π

2
≤ θ ≤ π

2
, (9)

where ûi is the angle between the current tracing direction

and the x-axis and �e(ûi + θ) = [cos(ûi + θ) sin(ûi + θ)]
T

is
a unit vector with direction ∠(ûi + θ). The radius rk, that
is, the look-ahead distance, is adapted to the current vessel’s
half width Rk (the adaptation schema is described later in
this section). Specifically, the value of the vesselness function
V (as well as the vessel direction ϕopt) is calculated at each
point on the semicircular search area.

This scanning profile schema has been adopted by many
other methods including square scanning profiles [23–25]
and complete circumferential profile functions [16, 26]
which proved to be useful in providing a uniform look-
ahead distance in all directions. Nevertheless, the proposed
method employs a semicircular scanning profile instead
of a complete circle, employed by the previous methods,
to avoid unwanted backward tracing and to maintain the
computational efficiency. The proposed scanning profile
schema is similar to the method proposed by Schrijver [26].
The main difference between the two methods is that the
Schrijver’s method suggests the use of a single seed point
as a starting point for recursive artery tracing algorithm.
He described several conditions in which his seed point
detection technique fails to provide a reliable seed point and
the user intervention is required for manual selection of the
initial seed point. As a consequence of using a single seed
point, the scanning process requires relying on confidence
scores and many threshold values to choose the potential
tracing directions from several candidates for tracing the
whole arterial tree. These difficulties make their algorithm
unsuitable for real-time tracing applications.

2.2.3. Selecting the Correct Vessel Point. Figure 3 shows the
scanning profile drawn at current point pk to find the next
point q at distance rk from point pk. In the process of
finding the next point qk, the following situations can be
distinguished.

Correct Vessel Point. If a given point qa is on the vessel,
it can be recognized by a local maximum of the scanning
profile. However, since some local maximum points may not
coincide with the arteries in the image, another criterion
should also be verified. Specifically, if the point qa is on the
vessel, the direction of the vessel segment between points
pk and qa is parallel to the direction field estimated by
the second eigenvector of the Hessian matrix calculated at
point qa, that is, ϕopt(qa) in (8). Furthermore, the direction
field calculated at point qa involves vectors with similar
directions.

Nonvessel Point. A large part of the scanning profile is
occupied by non-vessel points, for example, point qb, at
which the value of the vesselness function is small and their
neighboring points constitute a nonuniform direction field.

Points That Belong to a Vessel Branch. The values of scanning
profile Sr also attain a local maximum at point qc. In
addition, the direction of the vessel segment between points
pk and qc is also parallel to the vessel direction ϕopt(qc).
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Figure 3: Different situations in finding the next point qk on the
semicircle scanning profile defined for the current point pi and
tracing direction ûk on a vessel segment. The small arrows indicate
the direction fields estimated by the eigenvector of the Hessian
matrix.

Therefore, the algorithm should select one point between qa
and qc. The objective is to select the main vessel segment
based on the minimum difference between the angle of
current tracing direction ûk and the directions calculated by
connecting point pk to each of the two candidate points qa
and qc. In this situation, the algorithm marks the current
point as a bifurcation point and adds point qc and its initial
direction to the list of validated seed points to start a new
trace in the next iteration.

Points That Belong to a Neighboring Vessel. Similar to the
points that belong to a bifurcation segment, the points
that coincide with a neighboring vessel constitute a local
maximum in the scanning profile. However, as can be seen
in Figure 3, the difference between the vessel direction ϕopt

at point qd and the direction of the vessel segment between
points pk and qd indicate that it is very unlikely that the
points pk and qd lie on the same vessel. In addition, if small
values are chosen for radius rk, the problem of jumping
between the vessels can be greatly avoided.

Figures 4(b) and 4(c) show the vesselness values and
vessel directions of the pixels on the profile drawn at a
bifurcation point in the example angiogram in Figure 4(a).
It can be seen that the vesselness graph has two major local
maximum for the vessel points located on the main segment
and the branching artery. Further, Figure 4(c) illustrates two
sets of uniform directions for points 10–26 and 41–50 which
correspond to the points of the lobes in Figure 4(b).

It should be noted that the response of the vesselness filter
is decreased at the site of branching points. However, since
the global shape of the vesselness filter is of main concern
and not its exact values, this does not affect the performance

of the algorithm. Furthermore, if the current centerline point
is on the branching point, the range of scales used to calculate
the vesselness values for the branching segments is sufficient
to identify the local maximum points on the branches.

2.3. Updating the Tracing Direction. Starting from the cur-
rent center-line point pk and its initial values of direction �uk
and radius Rk, a semicircular scanning profile is established
to find the first estimate of the next vessel point denoted by
qk0 as described in the previous section. Given the next point
qk0, the first estimate of vessel direction is calculated based on
the geometric direction of the vector that connects the point
pk to the point qk0 as follows:

�uk0 =
pk − qk0∥
∥∥pk − qk0

∥
∥∥

, (10)

where ‖ · ‖ denotes the magnitude of a vector. In most cases,
this direction provides an accurate estimate of the vessel
direction. Nevertheless, a new estimate is made by adjusting
the location of qk0 such that it is located in the middle of
local edges. As shown in Figure 5, to find the middle point,
two linear density profiles PL and PR are drawn at point qk0
perpendicular to the direction �uk0. Then, two edge points ekL
and ekR are detected by any edge detection algorithm such as
finding the roll-off point based on signal and background
levels of intensity values [10], directional low-pass filters
[27], weighted sum of first and second derivatives of gray
values [23], and many others.

However, our interest is to find the edges based on
contribution of more than one pixel to detect the vessel
borders in the original image. Therefore, the edges are
identified by finding the maximum value of the local gradient
magnitude (contrast) calculated for each point on the
profiles PL and PR as follows:

ekL = argmax
(
|∇xm| +

∣∣
∣∇ym

∣∣
∣
)

,

m ∈ PL ={1, 2, . . . ,w},
(11)

where |∇xm| + |∇ym| is an estimate of gradient magnitude
at the mth pixel location on the scan profile PL and w is the
length of the search profiles which is adapted to the current
vessel radius Rk. Since the radius of the semicircular scan
profile satisfies our need for defining a search window that
sufficiently spans the vessel width, the value of parameter w is
chosen to be equal to radius rk. The calculation of right edge
point ekR is the same as for ekL, thus its equations are omitted
for the sake of brevity. After calculating the location of local
edge points ekL and ekR, the location of next center-line point
can be updated as follows:

qk1 =
⎡

⎢
⎣

qkx

qky

⎤

⎥
⎦ =

⎡

⎢
⎣

qk0x

qk0y

⎤

⎥
⎦ +

1
2

⎡

⎢
⎣

ekL − ekR · �uk0x
ekR − ekL · �uk0y

⎤

⎥
⎦. (12)

Once the next point qk1 is identified, the current vessel
radius R is updated. Then, the next step is to update the vessel
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Figure 4: (a) A semicircular profile (in red) and its starting point indicated by the small arrow. (b) The graph of the vesselness values
calculated for the points of semicircular profile drawn in (a). (c) The direction values of eigenvector v1 (based on four-quadrant inverse
tangent) calculated for the points on the semicircular profile drawn in (a).

direction vector according to the updated next point qk1 as fo-
llows:

�uk+1 = �uk1 =
pk − qk1∥
∥∥pk − qk1

∥
∥∥
. (13)

2.4. The Schema for Adaptation of Step Size. The final
position of the next center-line point is determined based
on the position of the current point and the value of
the step size α. An important challenge is to select an
appropriate value for α. Since thin and small vessels are
naturally more flexible and tortuous than the large ones, the
tracing algorithm should take smaller steps to describe them
with larger number of points. One solution is to take the
radius of the scanning profile rk as the step size to control
the distance between the current center-line and estimated
next point. As depicted in Figure 6, radius rk should be
greater than the current vessel’s half width Rk because the
semicircular profile should cut across the vessel borders at
distance rk from the current center-line point pk. Therefore,
the radius of the semicircular scan profile rk is calculated

adaptively based on the size of vessel half width at the current
center-line point pk:

rk = ρ ·
[

max
{
Rk,Rk+1

}]
, (14)

where parameter ρ > 1 is a constant factor and Rk and Rk+1

are the vessel’s half width calculated for the current and next
center-line points with superscript k denoting the iteration
number. The term max{Rk,Rk+1} accounts for controlling
the magnitude of the step size when a branching point or
sudden change in the vessel’s radius, that is, high-grade
stenosis, is encountered. As shown in Figure 6, once the
tracing algorithm reaches to a severe stenosis, the vessel’s
half width calculated at the next point is much smaller than
that of the current center-line point. Thus, if this sudden
change is not taken into account, the size of subsequent scan
profiles would not be large enough to surround the vessel
boundaries. In this situation, it is impossible to detect the
two edge points ekL and ekR, resulting in premature algorithm
termination or divergence.

A large difference between the current and previous
estimation of vessel’s radius yields a large scanning profile,
allowing the algorithm to overcome the problem of trac-
ing the high-grade stenosis and handling the branch and
crossover points. On one hand, ρ should be kept relatively
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Figure 5: Geometric representation of the process for updating the
tracing direction: (1) the first next point qk0 is found on semicircular
profile based on maximum vesselness value; (2) the vessel direction
�uk0 is estimated and two linear profiles PL and PR are drawn at qk0
perpendicular to �uk0; (3) two edge points ekL and ekR are detected and
the final position of the next center-line point qk1 is calculated; (4)
the final tracing direction �uk1 is updated according to the updated
center-line point qk1.

pk
Rk

Rk+1

Figure 6: A zoom-in view of a severe stenosis. Estimated scan
profiles are shown for subsequent center-line point in different gray
colors. The most recent profile is represented by dark gray.

small for very large vessels in order to avoid coincidence
with neighboring vessels. On the other hand, large values
of ρ should be selected for small vessel widths, for example,
less than 5 pixels, because significant rounding errors in
calculating rk result in obtaining values that are equal to
estimated vessel half width. The experiment conducted to
find an optimal value for parameter ρ will be explained later
in this paper.

However, as opposed to look-ahead distance rk, the
values of step size α can be less than current vessel radius
because it should account for variations of the vessel direc-
tion. An alternative solution suggests using the difference
between the current and previous vessel directions for adapt-
ing the step size α. Let ωk be the angular difference between
the vessel directions ûk−1 and ûk calculated for previous and
current center-line points pk and pk−1, respectively, that is,

ωk = ∠(|ûk − ûk−1|). The values of ωk represent the change
of local curvature along the current vessel segment such that
when the tortuousness is small, the value of ωk is small, and
vice versa. Therefore, the value of ωk can be used to adopt
the step size based on current estimation of the vessel’s half
width [8]:

αk =
(

1− ωk

π

)

Rk, (15)

where αk denotes the step size calculated adaptively for
kth center-line point. As the value of angular difference
ωk is between 0 and π, the magnitude of the term (1 −
ωk/π)Rk never exceeds the vessel’s half width. The above
equation yields a self-adaptive step size such that the tracing
algorithm takes smaller steps over the highly curved arteries.
Consequently, the proposed schema provides more accurate
tracing results by improving the ability of the tracing
algorithm to keep up with the abrupt direction changes and
coping with complex vessel geometries. The empirical study
for setting the optimal value for ρ will be covered later in this
paper.

2.5. Preventing Repetitious Traces. Starting from each vali-
dated seed point, the tracing process generates a sequence
of vessel center-line points called “center-line segment” in
the form of N-triplets each of which includes the position
of center-line, direction, and local vessel radius as follows:

Tk =
{
pk,�uk,Rk

}
. (16)

As mentioned before, validated seed points can be located
on any point along the vessel. Hence, starting from each
validated seed point, a new center-line segment is created by
tracing the vessel once in direction �uk and once along −�uk.
The results of several traces are stored in a two-dimensional
array of integer values that has the same dimensions as the
original image to maintain the center-line segments in a
single array called “center-line map”.

Initially, the values of all elements in the center-line map
are set to zero. When a new segment is traced, a variable
called “segment number” is incremented by 1. In order
to store a center-line segment, the corresponding pixels in
the center-line image are set to the non-zero value of the
current segment number. This technique allows the tracing
algorithm to prevent repetitious traces. Basically, there are
two situations that should be checked to see if the current
vessel has already been traced.

(i) Before Validating a Seed Point. Before applying the
validation rules to a given seed point, the seed point
detection algorithm should check the center-line map
for the existence of a previously traced segment in a
small neighborhood of the candidate seed point (e.g.,
5 × 5 neighborhood points). The seed point that is
found to be located in the neighborhood of an already
traced segment is ignored and a new seed point is
selected from the collection of the candidate points.

(ii) During the Tracing Process. The center-line image
is also used for the detection of intersecting vessel
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segments. Before calculating the vesselness values
for the pixels on the semicircular scanning profile,
their corresponding pixels in the center-line map are
checked for a non-zero value. Specifically, the pixels
of the scanning profile that encounter a non-zero
value are collected in a candidate list and the nearest
pixel to the current center-line point is considered as
the intersection point. In this situation, all the points
that are located on the straight line which connects
the current center-line point to the intersection point
are added to the current center-line segment and the
current trace is terminated accordingly.

There are two points that should be noted here: (1) if the
length of a traced segment is shorter than a certain threshold
(e.g., less than 20 pixels), the segment is discarded and its
pixels should not be added to the center-line map; (2) the
segments that intersect with themselves are considered as
false traces and should be rejected.

2.6. The Stopping Criteria. The traced segments should be
limited to the points that belong to the arteries in the image.
Accordingly, the tracing algorithm repeats tracing until one
of the following criteria is met.

(i) One or more of the pixels on the scanning profile does
not coincide with the image field.

(ii) No valid vessel point is found in the scanning profile
Sr .

(iii) The current center-line segment intersects a previ-
ously traced segment. This condition is checked for
all the pixels on the straight line that connects the
point pk to pk+1.

(iv) The percent dynamic range (γk) of the vesselness
values of the points in cross-sectional profiles PL and
PR is below a certain threshold.

We assume that the vessel segments have continuous
densitometric features and the percent dynamic range does
not vary significantly along the arteries. Based on this
assumption, the percent dynamic range is computed based
on the vesselness values of the points of cross-sectional
profiles PL and PR, and is constantly monitored in the tracing
process to check if the stopping condition is met [10]. To
calculate the dynamic range of the vesselness measure, the
signal level Sg is determined by the average vesselness values
between the two edge points ekL and ekR in the cross-sectional
profiles PL and PR drawn at point pk+1:

Sg = 1

ekL + ekR + 1

⎧
⎪⎨

⎪⎩

ekL∑

i=1

V(PL[i]) +
ekR∑

i=2

V(PR[i])

⎫
⎪⎬

⎪⎭
, (17)

where ekL and ekR denote the offsets of the edge points on
the cross sectional profiles PL and PR, respectively. Also, the
background level is defined as:

Bk = 1

2w − ekL − ekR − 2

⎧
⎪⎨

⎪⎩

w∑

i=ekL+1

V(PL[i]) +
w∑

i=ekR+1

V(PR[i])

⎫
⎪⎬

⎪⎭
.

(18)

Based on the above definition, the percent dynamic range of
the vesselness measure can be determined by:

γk = Sg− Bk
Bk

· 100%. (19)

The parameter γk is used to detect the situations where
the estimated point is located on the background. In
normal situations, the blood vessels have greater vesselness
values than the background. In case of background tracing,
however, the value of the signal level would be very close to
the background level, resulting in a significant reduction in
the value of γk. Therefore, the fourth stopping criterion is
defined as:

γk ≤ τ, (20)

where τ is a threshold value for percent dynamic which is set
empirically such that the optimum values for performance
measures consistency and discrepancy are achieved.

3. Results and Discussion

The experiments aim at finding optimal settings for param-
eters used in the proposed algorithm, validating the func-
tionality of the proposed algorithm, and demonstrating
the efficiency of the proposed algorithm compared to the
conventional methods by conducting comparative perfor-
mance evaluation. They comprise of two different types of
evaluation studies.

3.1. Simulation Study. In this experiment, the synthetic
images with known center-line positions and tracing direc-
tions are processed by the proposed algorithm. The estimated
results are then compared with the optimal results that are
generated based on a priori data used in the creation of
the synthetic images. This comparison is made to evaluate
the ability of the center-line extraction algorithms to keep
up with producing satisfactory traces in difficult conditions
such as complex vessel geometry and low signal-to-noise
ratio. The purpose of the simulation study is to analyze
the performance of the proposed center-line extraction
algorithm under various geometries of the vessel segment,
different vessel contrast, and different values of signal-to-
noise ratio. For this purpose, a method for generating a
synthetic vessel dataset proposed in Greenspan et al. [15]
is adopted. As shown by the authors, the method is able to
provide an objective way for comparing different center-line
extraction algorithms. Nevertheless, the original method is
modified to generate a wider range of geometric features such
as symmetric and asymmetric lesions, radial dilation of the



10 Computational and Mathematical Methods in Medicine

vessels, and multiple lesions in a single segment. Figure 7
illustrates sample vessel images in the synthetic dataset. The
dataset is composed of the following image groups.

(i) 19 vessels with zero curvature; zero taper or medium
taper value with stenosis.

(ii) 23 knee-type vessels; no stenosis.

(iii) 9 vessels with curvature; with stenosis.

(iv) 9 multiple segment vessels; with stenosis.

(v) 13 multiple segment vessels with multiple stenosis;
zero taper.

(vi) 13 multiple segment vessels with multiple stenosis;
medium taper.

For each image group, four subgroups are generated
by adding white Gaussian noise with different variance
values to each original image, resulting in 344 synthetic
images. The method used to generate synthesized vessels
models the coronary angiogram image based on the 2-D
geometrical representation of the vessel’s projection using
four parameters: vessel taper, percent stenosis, and center-
line curvature and curve length.

3.2. Clinical Examples. The performance of the proposed
algorithm should also be evaluated by comparing the
accuracy of the proposed method with existing methods
when applied to real-world images. It is worth noting that
this experiment requires executing seed point detection
algorithm before the automatic center-line extraction. Since
our interest is to compare the performance of individual
center-line extraction algorithms and not the combination of
seed point detection and center-line extraction algorithms,
the starting points are provided by the same seed point
detection algorithm for all the experiments performed on
the clinical dataset. In this study, the final center-line images
are achieved by executing the seed point detection algorithm
proposed in [21] with the same parameters settings described
in the paper, followed by any one of the opponent center-line
extraction algorithms.

To obtain a set of reliable center-line images as ground
truth data, a set of 315 angiograms were processed by a
modified version of the ground truth estimation method
proposed by Al-Kofahi et al. [11]. The images were randomly
selected from a database of routinely acquired coronary
angiograms with anonymous patient information at UKM
Medical Center. It consists of a wide variety of vessels, with
different types of coronary lesions (types A, B, and C in AHA
classification) and different geometries of vessel segments.
The selected images have spatial resolution 512 × 512 and 8-
bit quantization acquired by a “GE-Innova 2100-IQ” C-arm
system.

This dataset is preprocessed and the vessel center-
lines were manually annotated to obtain reference standard
center-line images. In the first step, the boundaries of arterial
tree in each angiogram are manually traced 5 times by the
same person at different times, ignoring small arteries with
less than 3 pixels wide. This results in five corresponding edge
images for each image in the dataset. Then, the images in

a correspondence set were superimposed on each other such
that the pixel value in the resulting image is a function of
the number of overlapping pixels. This yields average images
with unavoidable discontinuities. To remove the holes and
discontinuities, a morphological closing operator with a 3 ×
3 square identity matrix is used as the structuring element.
In the next step, the boundary images are filled (with white
color) to obtain binary images which illustrate silhouette
of the coronary arterial tree. Finally, the skeletonization
algorithm developed by Zhang and Suen [28] was used
to estimate the location of the true center-line points.
Nevertheless, the resulting center-line images were manually
modified when needed. A set of angiograms and their
corresponding ground truth images are shown in Figure 8.

3.3. Performance Measures. Algorithmic evaluation of cen-
ter-line extraction techniques requires defining a set of per-
formance measures. In this study, the focus is on improving
the robustness of automatic centerline feature extraction
while maintaining an accuracy level similar to the existing
methods. Accordingly, two different types of performance
measures are employed: (1) error estimation measures which
provide quantitative metrics to evaluate the robustness of
the proposed algorithm against difficult morphologies of
the arteries, complex lesions and image degradation which
are characterized by synthetic images; (2) accuracy measures
which are used to assess the ability of the proposed algorithm
in generating accurate tracing results in terms of consistency
of the results with the ground truth skeleton images in the
clinical dataset.

3.3.1. Error Estimation Measures. As mentioned earlier, in
order to create a reliable and accurate synthetic dataset,
the authors developed a vessel generating tool based on the
method described by Greenspan et al. [15]. In their method,
the reference center-line is generated by concatenation of
semicircle curves with different lengths and constant curva-
tures. They defined a parametric equation for the semicircle
curve as a function of curve arc length as follows:

r(l) = r0 +
1
K
r′0 · φ1, (21a)

φ1 =
[

sin(lK) 1− cos(lK)
cos(lK)− 1 sin(lK)

]

, (21b)

where r(l) is a position vector, 0 < l < L is the curve arc length
variable, and L is the total length of the semicircle curve.
Further, parameter r0 is the initial position of the semicircle
and r′0 denotes the tangent at r0. The next semicircle curve
can be attached to the current curve by using the values of
r(L) and r′(L) as its initial definition. Based on the above
formulation, two error estimates are defined as follows.

Normalized Global Distance Error. This error measure
reflects the average radial distance between the points on
the reference center-line and their corresponding points on
the estimated center-line. In order to assure that the two
corresponding points lie on the same curvature radius, the



Computational and Mathematical Methods in Medicine 11

(a) (b) (c) (d)

(e) (f)

Figure 7: Sample vessel images from synthetic dataset, including vessels with different values of taper, curvature, percent stenosis, and
number of stenosis.

closest point technique is not used to find the correspon-
dence between points on the two center-lines. Instead, for a
given point pi on the reference center-line, a corresponding
point q is identified on the estimated center-line that lies on
the profile which is drawn at point pi perpendicular to the
reference center-line, that is, local tangent vector. Therefore,
the normalized global distance error is defined as [15]:

dNorm =

√√
√
√
√

1
N

N∑

i=1

(
d2
i

r2
i

)

, (22)

where di is the radial distance in pixels between the two
corresponding point, ri is the vessel’s radius at point pi and
N is the number of points contributed in calculations. This
formula exhibits more emphasis on the distances where the
vessel’s diameter is small rather than the distances calculated
at vessel areas with large diameter. It is used to evaluate the
algorithms against our main objective which is the accurate
extraction of vessel center-lines including coronary arterial
lesions.

Global Orientation Performance Measure. In addition to
the distance error, orientation distance Oi between the
corresponding points is also computed as the difference
between the corresponding tangents at the selected points.
This performance measure is obtained by calculating the
mean square orientation error as follows [15]:

OMSE =

√
√√
√
√
(

1
N

) N∑

i=1

O2
i , (23)

where Oi is the orientation error in degrees which reflects the
difference between the direction of tangent vectors measured
in degrees at the ith point of the reference center-line. The
traces in which the algorithm fails to cover more than 60% of
the ground truth center-line are considered as divergence.

3.3.2. Accuracy Measures. In order to evaluate the accuracy of
the proposed algorithm, a validation study is conducted on
the accuracy of the tracing results when applied to real world
images. In this study, the accuracy is measured with respect to
ground truth images obtained from the clinical dataset and is
defined based on “discrepancy” and “consistency” measures
described in [11]. Discrepancy measures the quality of
estimating the true location of the center-line points. It
is calculated by computing the average Euclidean distance
between the points of the center-line map produced by the
algorithm and their corresponding points in the ground
truth image.

Let A denote a set of centreline points generated by the
proposed tracing algorithm and G be the set of ground truth
points. Let two subsets Ag ⊆ A and Ga ⊆ G be the points of
sets A and G that have a correspondence in another image.
The correspondence indicates that for each point a in subset
Ag , there is a corresponding point Cg(a) ∈ G such that the
Euclidean distance between the points is less than a particular
number of pixels δ. The correspondence can be described by:

Cg(a) = argmin
g∈G

{∥∥a− g
∥
∥}, (24)

where notation ‖·‖ denotes the Euclidean distance. Similarly,
for each g ∈ Ga there is a corresponding point whose
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Figure 8: Four angiogram images and their corresponding feature images. (a) Original angiogram; (b) average boundary image; (c)
silhouette image; (d) center-line image.

Euclidean distance with g is less than δ and is denoted by
Ca(g). It should be noted that due to the curved nature
of the traces, there is no guarantee to find one-to-one
correspondence between the points in Ag and Ga.

The spatial discrepancy between the center-line map
produced by the proposed algorithm and the center-line
image in the ground truth is defined as follows [11]:

μ = 1

2
∣
∣∣Ag

∣
∣∣

∑

a∈Ag

∥∥
∥a− Cg(a)

∥∥
∥ +

1
2|Ga|

∑

g∈Gga

∥
∥g − Ca

(
g
)∥∥.

(25)

Consistency measures the ability of the algorithm in detec-
tion of true segments characterized by the ground truth
and avoiding false traces. The consistency between two trace
sets is calculated by finding the percentage of points in one

set which has a corresponding point in another set that is
within disk radius δ. Observe that the consistency is a mutual
measure with similar definitions as follows:

αag =
∣
∣
∣Ag

∣
∣
∣

|A| × 100%, (26a)

αga = |Ga|
|G| × 100%. (26b)

The first definition refers to the ability of the tracing algo-
rithm in preventing false traces, while the second definition
indicates the completeness of the tracing output. These
measures are equally important to assess the accuracy of
the proposed method, thus to compare the performance of



Computational and Mathematical Methods in Medicine 13

different algorithms we calculate a single balancing measure
called F1 measure as follows:

F1 =
2αag · αga
αag + αga

. (27)

The values of F1 are calculated for each image in the clinical
dataset as a function of disk radius δ. The average F1

values over all clinical images are used as the basis of our
comparisons.

3.4. Parameter Tuning. Before performing experiments for
performance evaluation, the optimal values of the algo-
rithm’s parameters should be found. Primarily, two param-
eters β1 and β2 in (5) are tuned by examining their
different value combinations on the performance of the
vessel resemblance function. Referring to (5), it is expected
that in most cases, the value of RB is close to 1. This is due
to the fact that, on average, the values of |λ1| and |λ2| are
similar. Therefore, in order to obtain more discrimination
between the line-like and blob-like structures, the value of β1

should be in the order of 1. On the other hand, β2 determines
the influence of contrast strength in vessel enhancement. By
selecting large values for this parameter (e.g., in the order of
10), low-contrast objects are ignored and only vessels with
significant contrast are enhanced.

The above conclusions are supported by Figure 9 which
shows the effect of selecting different value pairs for β1 and
β2 within a particular range of scales, that is, 1 ≤ σ ≤ 10. It
can be observed that, high values of β1 increase the response
of the vesselness function for vessel structures than the
small values at the expense of enhancing more background
structures. The small values of the second parameter, for
example, β2 = 2, incorporate more noise and background
structures in the outcome of the enhancement than the large
values. However, the large values, for example, β2 = 32, result
in significant reduction of the filter response even for the
high contrast vessel areas.

The best values of β1 and β2 are selected based on the
experiment conducted to compare the outcome of applying
the vesselness algorithm on the images of the dataset with
their corresponding ground truth silhouette images. The
comparison procedure involves the following steps.

(1) Calculating the number of false positives Fp by
counting the number of pixels in the vesselness image
at which the vesselness value is greater than zero, but
their corresponding point in the ground truth image
is black.

(2) The number of false negatives Fn is also calculated as
the number of white pixels in ground truth silhouette
image which correspond to a zero vesselness value in
the vesselness image.

(3) Calculating the normalized sum of false detections εF
which is used as an objective discrepancy measure
that quantifies the deviation of vesselness images,
obtained by applying different values of parameters

β
2
=

2
β

2
=

8
β

2
=

16
β

2
=

32

β1 = 0.25 β1 = 0.5 β1 = 1

Figure 9: Effect of different values of parameters β1 and β2 on the
output of the vesselness function V .

β1 and β2, from the ground truth silhouette images
[29]:

εF =
Fp + Fn

2N
, (28)

where N is the number of all pixels in the image.

In this study, a set of 12 vesselness images corresponding
to three values for parameter β1, that is, β1 = {0.25, 0.5,
1} and four values for parameter β2, that is, β2 = {2,
8, 16, 32} were created. The appropriate values of β1 and
β2 were chosen from the vesselness image with minimum
discrepancy measure εF . The result of this experiment
showed that the values of β1 = 1 and β2 = 16 are appropriate
for the clinical dataset.

The remaining parameters are constant factor ρ in (14)
and τ in (20). To obtain the optimal value for ρ, the
proposed algorithm was used to extract the center-lines of
clinical images. As mentioned in Section 2.4, a large value of
parameter ρ increases the size of the semicircular profile and,
accordingly, raises the probability of jumping the tracing
point from the current vessel segment to another vessel.
Therefore, the the value of this parameter should be deter-
mined by measuring the consistency and the discrepancy
of the algorithm’s output with the ground truth center-line
on the real-world clinical images in which the problem of
jumping between the vessels is probable. We did not use
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synthetic images for this purpose since each synthetic image
contains a single arterial segment with no side branches.

For each image, a total of 11 center-line segment were
obtained, corresponding to different values of ρ ranging
from 1 to 2 in a step of 0.1. Then, the average F1 values
are calculated over all images in the clinical dataset within
disk radius of 5 pixels. Also, deviations from the ground
truth center-line images are measured by calculating average
discrepancy as shown in Figure 10.

It can be observed that the value of discrepancy rises
as larger values are used for ρ. This is due to the fact that
the vessel curvature and vessel diameter varies more slowly
within a small vicinity than a large distance along the vessel
segment. Therefore, the large radius of scan profile rk has
a negative impact on the accuracy of the estimated vessel
direction. By comparing different values of F1 measure, the
value of ρ = 1.3 is selected as the optimal value.

However, it should be noted that since rk is an integer
value (number of pixels in semicircular scan profile), a fixed
value for ρ results in significant rounding errors for the
vessels with small diameter (less than 5 pixels). Figure 11
shows the ratio of rounding error relative to the vessel radius
for different values of vessel radius where ρ is set to 1.3.
Therefore, a constant value for rk (e.g., rk = 5) can be used
when the vessel half width is less than 5 pixels.

Another parameter is the threshold τ for the percent
dynamic range of the vesselness measure which should be
set based upon the image characteristics. This parameter is
tuned by observing the effect of its different values on the
performance measures αag and αga by applying the tracing
algorithm to the images of the clinical dataset. According
to Figure 12, the optimal value for τ is obtained where the
performance measure F1 reaches to its peak at τ = 0. It can
be seen that the values of performance measures αag and
αga almost remain steady when τ ≤ −2. After this point,
the performance measure αag starts to grow steeply while
the performance measure αga begins to fall more rapidly.
By considering the definition of performance measures in
(26a) and (26b), the above observation can be related to
the reduction in the number of center-line pixels generated
by the proposed algorithm. This reduction affects both
performance measures αag and αga because setting larger
values for parameter τ leads to obtain less false traces as well
as less correctly traced segments. However, as the value of
threshold τ increases, more correct traces are lost than the
false ones. This implies that the proposed algorithm tends to
produce less false traces and more true positives regardless of
the value selected for parameter τ.

3.5. Experimental Results for Algorithm Validation. In this
section, the efficiency of the proposed algorithm is assessed
to see if it is able to produce satisfactory results. It should
be noted that all heuristic schemas which are proposed for
step size and look-ahead distance adaptation are employed
in all experiments conducted for algorithm validation except
otherwise stated. The synthetic images are divided into 7
groups of arterial segments, with different geometries and
varying percentage of stenosis, for comprehensive validation

of the proposed algorithm. The image groups are listed in
Table 1. The first group contains the vessels with zero curva-
ture, zero taper value with different percentage of stenosis.
This group is used to evaluate the ability of the algorithm
in addressing the problem of algorithm’s divergence at the
site of high-grade stenosis. In this experiment, our focus
is on cases in which large deviations occur at the site
of stenosis on the straight vessels, that is, zero curvature
with constant taper segments. As shown in Figure 13, the
effect of percent stenosis on the accuracy of the proposed
algorithm is markedly low such that for stenoses between
60–90%, the values obtained for both error measures remain
in a reasonably low level and almost equal to each other.
Furthermore, no divergence was observed for vessels with
95% stenosis.

The second group of images differs from the first group
by changing the taper value from 0 to 0.00145, while almost
the same values of percent stenosis are employed. Figures
14(a) and 14(b) present 7 error samples for the second
group corresponding to vessels #13 to #19. By comparing
the results in Figures 13(a) and 14(a), it can be seen that the
distance errors plotted for different values of percent stenosis
in group 2 are slightly higher than that of group 1; while
approximately similar range of results (less than 1 degree) are
obtained for the orientation error measure in Figures 13(b)
and 14(b).

The results indicate that the vessel tapering has a trivial
effect on the accuracy of the proposed algorithm in terms
of estimating the curvature (tangent values) at the center-
line points. As expected, for the vessel segments with larger
taper values, a slight increase in the distance error measure
is observed for all values of percent stenosis. This is due to
the sudden change of vessel’s half width before and after
the stenosed region which causes jittery behaviour in the
estimated center-line.

The third image group is used to assay the behaviour of
the proposed algorithm when applied to the vessel segments
with different curvatures. To attain this goal, the other
contributing factors were removed from the third group, that
is, no stenosis and constant tapering value. Two experiments
were performed on 24 images (corresponding to vessels #20–
#43) with different values of curvature ranging from 0.003 to
0.015 radians. In the first experimental run, no adaptation
is used for calculating the step size α; while in the second
run the step size is adapted based on angular difference
between the current and previous estimates of the vessel
direction. Figure 15(a) shows the performance results for the
first experimental run by applying the proposed algorithm
to the knee-type vessels in group 3. The graphs illustrate the
distance and the orientation error performance measures as
a function of curvature, that is, vessel segments with varying
arc-length (from 50 to 175 pixels) are grouped based on their
curvature values. The graph of distance error demonstrates
an exponential relationship between the performance and
the curvature of the vessel segments. In contrast, the values
of orientation error in Figure 15(b), that are obtained from
the second experimental run, exhibit more gradual increase
in orientation error as a function of curvature value. This
indicates that without step size adaptation, the proposed
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Figure 10: Consistency and discrepancy between the estimated center-lines and the ground truth center-lines with different values of
constant factor ρ. (a) The values obtained for performance measure F1 for different values of ρ; (b) the values of discrepancy versus constant
factor ρ.

Table 1: Different geometric parameters of synthetic vessel image database.

Group Image number Curvature type Taper Stenosis Segment type Length

1 No. 1–no. 12 No curvature 0 30–95% Single segment Constant

2 No. 13–no. 19 No curvature 0.00145 30–95% Single segment Constant

3 No. 20–no. 43 Knee-type 0.0008 No stenosis Single segment Constant

4 No. 44–no. 52 Variable 0.0008 30–95% Single segment Variable

5 No. 53–no. 61 Variable 0.001 30–95% Multiple segment Variable

6 No. 62– no. 74 Variable 0 Multiple stenosis Multiple segment Variable

7 No. 75– no. 87 Variable 0.00145 Multiple stenosis Multiple segment Variable
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Figure 11: Ratio of rounding error to vessel radius versus different
values of vessel radius for ρ = 1.3.

algorithm is highly sensitive to the vessel’s curvature in terms
of estimating the distance rather than the orientation. In
this condition, the algorithm is more accurate in estimating
the direction of the vessel segment than estimating the
correct position of the center-line points when highly curved
segments are encountered. This is due to large errors in the
approximation of the local vessel directions by using large
values for the step size at the site of curved segments.

As explained before, the second adaptation schema
is based on choosing values smaller than current ves-
sel radius so as to describe the tortuous vessel center-
lines with larger number of pixels. The graphs of error
measures in Figure 15(b) show the effectiveness of the
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Figure 12: Performance measures obtained for different values of
parameter τ.

proposed step size adaptation schema. In the second exper-
iment, the value of parameter ρ is kept constant and
the proposed algorithm utilizes the step size adaptation
schema. In contrast to the graph of distance error in
Figure 15(a), the values of distance error in Figure 15(b)
increase more gradually as the curvature increases from
0.006 to 0.015. This indicates a considerable reduction in the
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Figure 13: Distance performance measures versus percentage of stenosis calculated by applying the proposed algorithm on the images of
group 1. (a) Normalized global distance error; (b) global orientation performance measure.
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Figure 14: Distance performance measures calculated by applying the proposed algorithm on the vessels with zero curvature; medium taper
value (0.00145); with stenosis. (a) Normalized global distance error; (b) global orientation performance measure.

distance error when highly curved vessels are encountered.
Although no significant reduction is achieved for values of
the orientation error in the second graph, a comparison
between the slopes of the corresponding graphs indicates
that the step size adaptation schema reduces the sensitiv-
ity of the tracing algorithm to the vessel curvature and
improves its robustness to geometrically complex struc-
tures.

Validating the Step Size Adaptation Schema. However, this
improvement is obtained at the cost of more divergence at
the site of stenoses that causes rapid changes in the vessel’s
diameter. The divergence is defined as a condition where the
center-line produced by the proposed algorithm covers less
than 60% percent of the ground truth center-line. To evaluate
the ability of the tracing algorithms in extracting the center-
line at the site of severe stenoses, we measure the algorithm’s
success rate as the average number of center-line points in
the estimated center-line that have a corresponding point in
the ground truth center-line for different values of percent
stenosis in vessel groups 4 and 5.

In Figure 16, the success rate of the proposed algorithm is
plotted against percent stenosis for two adaptation schemas.
In the first schema, only the radius rk is calculated adaptively
and no adaptation is used for the step size α, while in the
second schema both radius rk and step size α are calculated
adaptive to the vessel’s half width. It can be concluded that

the drawback of using adaptive schema for calculating the
step size emerges in difficulties in coping with abrupt changes
of the vessel diameter near to the severe stenoses, that is,
vessels with percent stenosis above 90%.

3.6. Experimental Results for Performance Evaluation. To
evaluate the accuracy and robustness of the center-line
extraction algorithm, two experiments were conducted on
the proposed algorithm and its three well-established coun-
terparts: Sun algorithm [10], Aylward algorithm [17], and
the algorithm proposed by Xu et al. [8].

In the method proposed by Xu et al., the vessel direction
is calculated based on a weighted combination of geometrical
topology information obtained from Sun’s algorithm and
intensity distribution information obtained from Hessian
matrix calculation in Aylward’s method. This combination
is achieved by adjusting the weighting factor α whose range
is 0 ≤ α ≤ 1. Hence, the tracking direction is determined
solely by the geometric direction when α = 1 and the tracking
algorithm becomes very similar to the Sun algorithm; while
the tracking direction is determined solely by the intensity
direction, that is, the Hessian eigenvector, when α = 0 and
the tracking algorithm becomes somewhat similar to the
Aylward algorithm. Xu et al. suggest that more accurate
results can be achieved by changing the weighting factor α to
0.5. Accordingly, we implemented the algorithm developed
by Xu et al. and compared our proposed method with the
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Figure 15: The average performance results calculated by applying the proposed tracing algorithm on the vessel segments with equal
curvature values, varying arc-length, constant taper value, and no stenosis in image group 3. (a) No adaptation schema is used for the
step size. (b) The step size is adapted based on angular difference between the current and previous estimates of the vessel direction.

Table 2: List of parameter values set for the other three algorithms
used in the comparison.

Parameter Symbol Value(s)

Weighting factor for detection of
overlapping vessels

β 1.5

Constant factor for adaptive
look-ahead distance based on
curvature change

ρ 1/π

Proportionality constant for search
window

Kw 2

Proportionality constant for
look-ahead distance

Kd 2

Threshold for percent dynamic
range

γt 0.5%

other three methods by setting parameter α to 0, 0.5, and 1.
Other parameters are listed in Table 2.

The first experiment aims to evaluate the accuracy of
the algorithms in extracting the center-lines of the coronary
vessels in clinical images. In the first step, the proposed seed
point detection algorithm was used to provide an equal set
of validated seed points for all the tracing algorithms. The
optimal parameter values are used to setup the seed point
detection algorithm. Given the validated seed points, the
proposed algorithm and the three existing algorithms were
employed to trace the artery center-lines in the images of the
clinical dataset. The original image and the tracing outputs
using different algorithms in a small area of an example
angiogram are shown in Figure 17.

It can be clearly seen that the proposed algorithm
outperforms the earlier solutions in terms of the accuracy
of the tracing output. According to the outputs, the Sun
algorithm is significantly distracted by the peripheral image
artifacts while the Aylward algorithm fails to trace the highly
curved segments. Also, the output obtained from the Xu’s
algorithm is considerably accurate. This can be ascribed
to taking advantage of the strength of both geometrical
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Figure 16: The average success rate calculated for the vessel
segments with different curvature values, medium taper values, and
single stenosis with varying percentage in image groups 4 and 5.

and intensity-based approaches for estimating the vessel
direction. Yet, it contains small deviations where the minute
branches are encountered.

Figure 18 illustrates the figures of average discrepancy
measure over all clinical images at different values of disk
radius δ. Observe that the proposed algorithm is superior
to its opponents for most values of δ > 2. For example, the
average discrepancy calculated for the proposed algorithm is
about 0.88 pixel at δ = 5, which is approximately 0.1 pixels
less than that of Xu’s algorithm at the same disk radius.
This can be attributed to the fact that, in contrast to the
existing methods, the proposed tracing algorithm uses robust
features to identify the location of the next point, and thus it
is less sensitive to intensity variations, illumination changes,
and image artifacts which increase the discrepancy between
the estimated and ground truth center-lines.

In Figure 19, the average of consistency measure over all
clinical images is plotted for the proposed algorithm and
its opponents. According to the graphs, Aylward has the
lowest consistency figures for all values of disk radius. This
is due to ignoring the geometric features of the arteries in
estimating the location of the next point which results in
high estimation error. The plots correspond to the other
algorithms run almost closely to each other. However, a more
precise observation revealed that, as it was expected, the
Sun’s algorithm is outperformed by the algorithm proposed
by Xu et al. for all values of disk radius δ. This superiority
comes from utilizing the advantages of estimating the vessel
direction based on eigenvalues and eigenvectors of Hessian
matrix. Although Xu’s algorithm dominates the competing
algorithms in terms of highest values of consistency measure
for the first two values of disk radius (26% and 60% resp.),
the proposed algorithm exhibits an average of 5% increase in
consistency measure where δ > 1. For instance, an average
F1-measure of 82.1% was obtained for the Xu’s algorithm
compared with 88.8% recorded for the proposed algorithm
at δ = 5. By considering the fact that the consistency
measure has two contributing factors, namely precision and
completeness of the tracing output, this improvement can

be related to more complete tracing results or higher recall
values obtained for the proposed algorithm at higher values
of disk radius.

The second category comprises the experiments to assess
the robustness of the algorithm to different amounts of
impulse noise. The robustness of the algorithms is measured
by calculating the algorithm’s success rate when an increasing
amount of noise is added to the synthetic images. The
Poisson noise is simulated by White Gaussian noise with
a known range of variance. In this experiment, the noise
was gradually added to the synthetic images such that the
resulting signal-to-noise ratio declined from 20 dB to 10 dB.

As mentioned earlier in this chapter, the algorithm’s
success rate refers to the proportion of the true vessel center-
line that can be traced by the algorithm without prema-
ture termination. Figure 20 shows how different algorithms
behave in response to increasing amount of noise which
causes the tracing algorithms to diverge and terminate pre-
maturely before the vessel segment is completely traced.

As demonstrated in Figure 20, the Aylward algorithm has
the lowest success rates for high signal to noise images, that
is, SNR ≥ 20 dB. In contrast, the other rivals have almost
perfect success rates (at least 94%) within the same range
of SNR. By increasing the amount of noise, the success rate
of the Sun’s algorithm falls significantly, from about 93%
at SNR = 20 dB to approximately 69% at SNR = 16 dB and
reaches to the bottom of 9% for the images with lowest
signal-to-noise ratio (10 dB). Interestingly, the success rate
of the Xu’s algorithm follows the same pattern as the Sun’s
algorithm does. However, on average, it exhibits almost
10% improvement in success rate for low quality images.
It can be clearly seen that, in images with higher values
of additive noise, Aylward algorithm yields more success
rates than both methods of Sun and Xu. Also, it can be
observed that all existing algorithms diverge if the SNR
falls below 16 dB. The figures obtained for the proposed
algorithm show the superiority of the proposed method to
the existing algorithms in terms of robustness to the inherent
noise of angiogram images. The results of this experiment
showed that the proposed tracing algorithm obtained about
33% improvement upon the existing methods in terms of
algorithm’s success rate in processing low quality images.

4. Conclusion and Future Works

All these observations led us to conclude that estimating
the vessel direction based on eigenvalues and eigenvectors
of Hessian matrix results in improvement in the robustness
of the tracing algorithms. On the other hand, utilizing the
geometric features of the arterial segments in estimating the
location of the center-line points leads to obtaining more
accurate results. It seems possible that the promising results
obtained for the proposed algorithm are due to combining
the advantages of the above mentioned approaches and
avoiding the limitations associated with existing methods
in handling highly curved segments and sudden changes of
vessel diameter at the site of arterial lesions. The results of
comparative performance evaluation showed that, according
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Figure 17: A small patch of a clinical arterial image with a curved vessel in (a) original image; and the tracing results using (b) the Sun
algorithm (c) the Aylward algorithm (d) the Xu et al. algorithm, and (e) the proposed algorithm.
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Figure 18: Average discrepancy between the ground truth center-
line and the output of various tracing algorithms applied to the
images of the clinical dataset.
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Figure 19: Average consistency measure, that is, percentage of
points in the estimated center-line that coincides with the ground
truth center-line, calculated for various tracing algorithms over all
images in the clinical dataset.

0

20

40

60

80

100

20 18 16 14 12 10

Su
cc

es
s 

ra
te

 (
%

)

Signal-to-noise ratio (dB)

Proposed algorithm
Xu et al.
Sun et al.
Aylward

Figure 20: The average success rate versus signal-to-noise ratio
calculated for all 7 groups of vessel segments in the synthetic dataset.

to expectations, the proposed method achieved a remarkable
improvement in the accuracy of the tracing algorithm. Sur-
prisingly, the proposed algorithm was found to be extremely
more robust to image noise than existing well-known
methods. This makes the proposed algorithm more suitable
for feature extraction and quantitative coronary analysis
from inherently noisy data in real-world applications. In the
future, we plan to conduct a comprehensive study on the
effect of utilizing different seed point detection algorithms on
the performance of the whole center-line extraction method.
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