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By introducing the conflicting effects of dynamic changes in blood flow, volume, and blood oxygenation, Balloon model provides
a biomechanical compelling interpretation of the BOLD signal. In order to obtain optimal estimates for both the states and
parameters involved in this model, a joint filtering (estimate) method has been widely used. However, it is flawed in several aspects
(i) Correlation or interaction between the states and parameters is incorporated despite its nonexistence in biophysical reality. (ii)
A joint representation for states and parameters necessarily means the large dimension of state space and will in turn lead to huge
numerical cost in implementation. Given this knowledge, a dual filtering approach is proposed and demonstrated in this paper
as a highly competent alternative, which can not only provide more reliable estimates, but also in a more efficient way. The two
approaches in our discussion will be based on unscented Kalman filter, which has become the algorithm of choice in numerous
nonlinear estimation and machine learning applications.

1. Introduction

A thorough understanding of the dynamic relationship
between cerebral blood flow (CBF), cerebral blood volume
(CBV), and the blood oxygenation level dependent (BOLD)
signal is essential for the physiological interpretation of fMRI
activation data. The Balloon model described by Buxton et
al. (1998) [1] is the first biomechanical plausible model to
expound this relationship: increasing the flow (or perfusion
rate) generally leads to dilution of venous deoxyhemoglobin
(dHb), reducing the tendency of the blood to attenuate the
magnetic resonance signal. The resultant increase in signal
intensity is referred to as the BOLD response [2]. It is by
extending this model to cover the dynamic coupling between
CBF and synaptic activity, more sophisticated physiological
realities are incorporated, for example, oxygen metabolism
dynamics, both intra- and extravascular signal [3, 4], and
more intricate models obtained.

The Balloon model is an input-state-output model with
three state variables: blood flow, and volume, deoxyhe-
moglobin content and several biologically reasonable pa-
rameters. The problems of state estimation and parameter
estimation (sometimes referred to as system identification or

machine learning) associated with Balloon model are often
formulated in a state-space representation, where Balloon
model serves as a set of continuous-time system equations
to describe the hemodynamic process. The equations are
nonlinear, corresponding to the fact that Balloon model is
one of the numerous nonlinear approaches to characterizing
evoked hemodynamic response in fMRI.

Several work has utilized the Balloon model or its
enhanced versions in the analysis of fMRI response. Some
approaches, including expectation maximization (EM) [5, 6]
and maximum likelihood [7], model the BOLD observation
as deterministic hemodynamic process. However, a limi-
tation of these methods is that they can only deal with
measurement noise. Many promising approaches to the dual
estimation problem belong to filtering algorithm that is
able to account for both the physiological and measurement
noise. Riera et al. [8] addressed the data assimilation
problem in an extended Kalman filter (EKF) strategy. As EKF
might lead to the problem of divergence due to linearized
approximation, Johnston et al. proposed particle filter [9,
10] to avoid the flaw of linearization. Moreover, Hu et al.
[11–13] employed unscented Kalman filter (UKF) that also
outperforms EKF in terms of estimation error but with
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roughly the same computational cost. Most recently, Friston
et al. described variational filtering to optimize the approxi-
mation of posterior density on hidden model variables, while
accumulating sufficient statistics to optimize the conditional
densities of parameters and precision [14, 15].

The approaches mentioned above have greatly improved
our ability to explore, and above all, to quantify the physi-
ological mechanism involved in neural activation. However,
they still have palpable defects. It is noteworthy that many
of them actually are in the spirit of joint filtering, in which
the underlying states and parameters are concatenated into
a single higher dimensional joint state space, a filter runs
for estimating both the states and parameters. Despite its
straightforwardness in theory and convenience in imple-
mentation, the weakness of joint filtering is obvious. The
objective of this paper is to introduce and develop an
estimator equally concise but with higher performance—
dual filtering. We will demonstrate the advantage of dual
filter from two aspects, by the example of dual UKF versus
joint UKF. (1) In terms of Balloon model, there is no inherent
biophysical correlation between the states and parameters. By
treating them separately, dual filtering can avoid undesired
transaction between them. (2) Larger dimension of state-
space vector implies much more computational expense.
Specifically, computational complexity for general state-
space problems is O(L3) [16]. Although the frequency of
predict-update cycle required by dual filter is the twice of
that required by joint filter, dual estimate is much more
computational efficient.

2. Materials and Methods

2.1. Hemodynamic Model. Balloon model describes the
coupled kinetic changes from synaptic activity to the fMRI
BOLD signal at a given region. This model has been extended
by Friston et al. (2000) [5] to include the effects of external
inputs to an autoregulated vasodilatory signal, assuming
that the relationship between evoked neural activity and
blood flow is linear. The subsequent work added different
variations to this model, several of them were reviewed
and integrated in Stephan et al. (2004) [18] and Buxton
(2004) [19]. Based on fundamental physiology, rather than
empirical approaches, these enhanced models are able to
unify existing literature and provide insight into how the
underlying physiological mechanisms result in stable or/and
transit BOLD response. However, the original model pro-
posed by Buxton et al. and completed by Friston et al. is
sufficient to account for the nonlinear behaviors observed in
real-time series [5]. Too many state variables and parameters
will not serve our purpose here better.

The dynamic intertwinement between multiple physio-
logical variables, the cerebral blood flow (CBF) f , blood
venous volume v, and veins deoxyghemoglobin content q,
can be given as a set of nonlinear nondimensional differential
equations [1, 20]:

f̈ = εu(t)− ḟ

τs
− f − 1

τ f
,

v̇ = 1
τ0

(
f − v1/α

)
,

q̇ = 1
τ0

(
f

1− (1− E0)1/ f

E0
− v1/α q

v

)
, (1)

where ε is neuronal efficacy, reflecting the significance of
neuronal activity evoked by experimental event, hence it
varies with trial event; τs and τ f represent time constant for
signal decay and autoregulatory feedback from blood flow,
respectively. The existence of feedback term can be inferred
from the poststimulus undershoots in CBF [21]. The degree
of nonlinearity of the BOLD signal is largely determined by
the stiffness parameter α, which characterizes the balloon-
like capacity of the venous compartment to expel blood at
a greater rate when distended [22]. E0 is resting net oxygen
extraction fraction. All variables are expressed in normalized
form, relative to resting values.

Noticing that the first equation has a second-order time
derivative, so we can write this input-state-output system
as a set of first-order ordinary differential equations by
introducing another variable s = ḟ . By defining the state
vector as x(t) = [ f , s, q, v]T , the system dynamic equation
can be constructed from (1):

ẋ = f (x, θ, u, v) v ∼ N(0, Q), (2)

where θ = {ε, τs, τ f , τ0,α,E0,V0} ∈ Rl is system parameter,
the neuronal input u represents system input, and v is to
account for the process noise.

The observed signal can be taken as a nonlinear function
of volume v and deoxyghemoglobin q that comprises a
volume-weighted sum of intra- and extravascular signal:

y(t) = V0

(
k1
(
1− q

)
+ k2

(
1− q

v

)
+ k3(1− v)

)
,

k1 = 7E0, k2 = 2, k3 = 2E0 − 0.2,

(3)

appropriate for a 1.5 tesla magnet [1]. V0 is the resting blood
volume fraction, which generally varies across brain regions
and subjects. All parameters are independent of each other.
Their physiological definitions and probability distributions
are given in Table 1 [23].

The actual observation y is then composed of a determin-
istic part h(x, θ, t) and a stochastic part w:

y = h
(

x,β, w
)

w ∼ N(0, R), (4)

where y is the observation vector, w is measurement noise,
and β consists of k1, k2, and k3. Simultaneous estimation of
V0 and other parameters would be impossible, since their
product is settled for each sampled measurement yk. The
stiffness parameter α is a nominal factor to BOLD contrast, it
can be fixed to any value with its reasonable range in system
identification [17].

Equation (2) describes a continuous-time hemodynamic
process, and (4) models fMRI measurement as discrete
sampling of the continuous system states, together they have
formed a standard state-space representation for fMRI data
assimilation. Given yk, the physiological states x and the
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Table 1: Hemodynamic model parameters and their probability
distribution.

Notation Definition Distribution

ε Neuronal efficacy ε ∼ N(0.54, 0.12)

τs Signal decay τs ∼ N(1.54, 0.252)

τ f Autoregulation τ f ∼ N(2.46, 0.252)

τ0 Transit time τ0 ∼ N(0.98, 0.252)

α Stiffness parameter α ∼ N(0.33, 0.0452)

E0 Resting oxygen extraction E0 ∼ N(0.34, 0.12)

V0 Resting blood volume fraction V0 ∼ N(0.02, 0.0052)

optimal parameters for a certain voxel can be estimated
by use of UKF—a recursive minimum mean-square-error
(MMSE) estimator.

2.2. Dual UKF and Joint UKF. The unscented Kalman filter
has been applied extensively to the field of nonlinear estima-
tion for both states and parameters. The basic framework
of UKF involves estimation of the states of a discrete-time
nonlinear dynamic system:

xk+1 = F(xk, uk, vk),

yk = H(xk, nk),
(5)

where xk represents the unknown system states, the system is
driven by a known exogenous input uk and process noise vk.
The observation noise is given by nk.

The UKF generally involves recursive utilization of a de-
terministic “sampling” approach. The sampled points (sigma
points) completely capture the true mean and covariance of
the variables, and when propagated through the nonlinear
system (F in this case), they are able to capture the posterior
mean and covariance accurately to the 2nd order of Taylor
series expansion [16].

Parameter estimation, or machine learning, on the other
hand, involves determining a nonlinear mapping:

yk = G(xk, w), (6)

where xk is the input, yk is the output, and the nonlinear map
G(·) is parameterized by the vector w. Typically, a training
set is provided by sample pairs consisting of known input
and desired output, {xk, dk}. The goal of the learning can be
expressed to some degree as solving for w which minimizes
the error of the machine: ek = dk − G(xk, w). In order to
estimate the parameters by utilizing UKF, a new state-space
representation can be written:

wk+1 = wk + rk,

dk = G(xk, wk) + ek,
(7)

where the parameters wk correspond to a stationary process
with identity state transition matrix, driven by process noise
rk.

Given that BOLD signal is the only output and obser-
vation of the system in terms of Balloon model, the dual

estimation problem, in which the system states and model
parameters must be estimated simultaneously, can be given
as follows:

xk+1 = F(xk, uk, vk, wk),

wk+1 = wk + rk,

yk = G(xk, wk) + ek.

(8)

Since standard UKF cannot be applied to this system imme-
diately, dual UKF and joint UKF have been proposed as two
alternatives. In the dual filtering method, two UKFs—one for
state estimation, the other for parameter estimation—run
in an alternate way. At each time step, the current estimate
of parameters ŵk is used in the state filter as given input,
and likewise the current states estimate x̂k is used in the
parameter filter. On the contrary, a single UKF runs for both
state and parameter estimation in the joint filtering. A higher
dimensional joint state vector is defined: x̃k = [xk

Twk
T]T ,

and the state-space model is reformed as follows:

x̂k+1 = F̂(x̂k, uk, v̂k),

yk = G(x̂k, nk).
(9)

The dual UKF and joint UKF approaches are illustrated in
Figure 1.

In this section, the framework of UKF is briefly reviewed,
a dual estimation problem with two approaches have been
presented. In the next section, we will focus on examining
the different performances of dual UKF and joint UKF, and
all of our discussion will be in the context of Balloon model.

3. Results and Discussion

3.1. Biophysical Interpretation. One of the most prominent
bifurcations between dual estimate and joint estimate is
whether to incorporate interaction or correlation between
states and parameters into filtering. As discussed earlier, the
joint filter concatenates the state and parameter random

variables into a single augmented state (̂̃xk), so the cross-
covariance between states and parameters is effectively
modeled, that is,

E
[(̂̃x − E

[̂̃x
])(̂̃x − E

[̂̃x
])T] =

[
Pxkxk Pxkwk

Pwkxk Pwkwk

]
. (10)

Dual filtering, on the other hand, decouples (in a sta-
tistical sense) the dual estimation problem by treating states
and parameters separately, which means Pxkwk = Pwkxk = 0.
For states and parameters involved in Balloon model, no
dynamic interaction or biophysical correlation between
them has been observed (they are uncorrelated variables),
therefore, it is reasonable to expect dual filtering to exhibit
more biophysical accuracy. Thus the fMRI experiments
substantiated our assumption.

The real fMRI data was acquired from 8 health subjects.
136 acquisitions in total were made (RT = 2s), in block of
8, giving 16 16-second blocks. The condition for successive
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Figure 1: Schematic diagrams of joint filter (left) and dual filter
(right).

Figure 2: The greatest activated area of the group in the superior
temporal gyrus (GT) for data assimilation.

blocks alternated between rest and auditory stimulation,
starting with rest. Auditory stimulation was emotionally
neutral words presented at a rate of 60 per minute. We
selected the largest activated voxels in superior temporal
gyrus (GT) to implement data assimilation [24] (Figure 2).
Bias correction was performed using the method in [25].
The two algorithms were initialized in identical way on
experimental data and parameters.

Figure 3 shows the hemodynamic states given by joint
UKF and dual UKF. The lower peak of blood flow inferred
from joint UKF corresponds to the smaller neuronal efficacy
(ε) in Figure 4.

Parameters estimated are shown in Figure 4. Signal decay,
autoregulation et al. remain unchanged (almost) during
dual filtering. While for joint UKF, the parameters do not
converge to their final values until the 4th ∼ 5th block (60 ∼
80 s after the first stimulation). This phenomenon is a strong
indicator for the introduced interaction between states and
parameters.

Real and estimated fMRI signals are plotted in Figure 5.
The simulated BOLD signal given by dual UKF shows a slight

Table 2: The fact that joint filtering requires half of the iterations
that are required by dual filtering has been taken into account.

Algorithm Dimension of state vector Total flops

Joint UKF L = Lx + Lw = 9 285

Dual UKF Lx = 4,Lw = 5 170

overshoot, followed by gradual return to reduced plateau,
and ending with a strong poststimulus undershoot. On the
other hand, joint UKF fails to some degree to reconstruct
a clean BOLD signal: the plateau is missing, neither does
the evolving pattern of the signal show itself in a stable
way in each block. The overestimated transit time (τ0)
leads to a reduction in amplitude of the BOLD peak; the
less intense poststimulus undershoot can be explained by
the underestimated signal decay (τs). Given the fact that
dual UKF and joint UKF have very similar performance
for state estimation, which is made clear in Figure 3, it is
safe to attribute the failure to the undesired fluctuations of
parameters (especially E0, which affects the estimated signal
directly by (3)), or more precisely, the undesired interaction
between parameters and states.

3.2. Computational Interpretation. One of the most compu-
tationally expensive operations in UKF corresponds to calcu-
lating the new set of sigma points at each time update. This
requires taking a matrix squareroot of the state covariance
matrix, P ∈ RL×L, given by SST = P [16]. An efficient
implementation using a Cholesky factorization requires in
general O(L3/6) computations [26]. Therefore enlarging the
dimension of state-space vector will dramatically increase the
computational complexity (also can be referred to as time
complexity). In this subsection we will introduce two criteria
for evaluating the property of dual UKF and joint UKF in
time complexity.

Number of Floating-Point Operations (flops). In com-
puting, floating point can be thought of as a computer
realization of scientific notation, which is able to represent
a wide range of values. Flops number required by a given
algorithm or computer program is independent of the
computing platform, although its precise value may differ
under different counting rules. MATLAB (version before 6.0)
has provided us with a useful function f lops to specify the
cumulative number of flops. For instance, if A and B are
N-by-N matrixes, then the output of f lops (A + B) and
f lops (AB) will approximately be N2 and 2N3.

Since Cholesky factorization is the only operation within
UKF whose time complexity is proportional to N3, it is
appropriate to consider that the flops number of Cholesky
factorization is sufficient to determine the flops of the whole
algorithm. For Balloon model, the dual estimation problem
is about determining four state variables (Lx = 4) and five
parameters (all the parameters except V0 and α, Lw = 5)
at each time step. Table 2 shows the total flops number of
Cholesky factorization involved in each predict-update cycle
of UKF.
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Figure 3: States estimated by dual and joint UKF. The dotted line corresponds to change of blood flow, the solid line shows venous volume
and dashed line depicts dHb content.
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Figure 4: Parameters estimated by joint UKF and dual UKF. The mean values in Table 1 are used as initial values in our simulation. Apart
from E0, which grows sharply at the beginning and does not change afterwards, all the parameters obtained from dual UKF can be seen as
constants. Resting oxygen extraction V0 is the most important parameter in driving the model uncertainty [17], but simultaneous estimation
of V0 and other parameters would be impossible, as stated earlier. α is a nominal mechanism to BOLD signal. Therefore V0 and α does not
enter filtering.
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Table 3: Flops number for augmented state vector.

Algorithm Dimension of state vector Total flops

Joint UKF L = Lx + Lw = 19 2470

Dual UKF Lx = 9,Lw = 11 1582

However, in practice by slightly restructuring the state
vector, the process and observation models, we may intro-
duce the noise with the same order of accuracy as the
uncertainty in the state. First, the state vector is augmented
to give a Lα = Lx + Lv + Ln dimensional vector;

xα
k =

⎡
⎢⎣

xk

vk
nk

⎤
⎥⎦. (11)

Then the process model is rewritten as a function of xα
k ,

xα
k+1 = F(xα

k , uk); the unscented transform uses sigma points
that are drawn from

Pα =
⎡
⎢⎣

Px 0 0
0 Rv 0
0 0 Rn

⎤
⎥⎦, (12)

where Rv and Rn are the process and observation noise
covariance. In this situation, similarly we can derive Table 3.

For either case mentioned above, the flops number for
joint filtering is at least 56% larger than that for dual filtering.

Comparing to flops count, overall execution time is a
more tangible and practical criterion. We have tested our
programs on several computers and collected their execution
time data. Normally, a difference over 90% can be observed
(16 s and 30 s for dual UKF and joint UKF, resp.). This
result is even more impressive than that related to flops
analysis, indicating that flops number is not the only
factor influencing the operation time. Even if we take the
rapid improvements in processing speed and memory into

consideration, this variance is significant and should not be
ignored.

4. Conclusions

In this paper we brought forward the dual Kalman filter as a
reliable and efficient approach to estimating the states and
parameters involved in balloon model. Comparing to the
commonly used joint Kalman filter, its principle is in better
conformity with the physiological reality, and by decoupling
the dual estimation problem, it is much more calculational
efficient to implement. The result of experiments showed
good agreement with our conclusion.
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