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We describe the role of symmetries in formation of quantum dynamics. A quantum ver-
sion of d’Alembert’s principle is proposed to take into account the symmetry constrains
more exact. It is argued that the time reversibility of quantum process, as the quantum
analogy of d’Alembert’s principle, makes the measure of the corresponding path integral
δ-like. The argument of this δ-function is the sum of all classical forces of the problem
under consideration plus the random force of quantum excitations. Such measure es-
tablishes the one-to-one correspondence with classical mechanics and, for this reason,
allows a free choice of the useful dynamical variables. The analysis shows that choosing
the action-angle variables, one may get to the free-from-divergences quantum field the-
ory. Moreover, one can try to get an independence from necessity to extract the degrees
of freedom constrained by the symmetry. These properties of new quantization scheme
are vitally essential for such theories as the non-Abelian Yang-Mills gauge theory and
quantum gravity.

1. Introduction

We learned with deep grief the news about the decease of Ilya Romanovich Prigogine. It
was not only because he was one of the most outstanding scientists in the world, but also
because many of us had close personal scientific ties with him and were influenced by his
fascinating intellectual personality.

Nikolai Nikolaevich Bogoliubov and Ilya Romanovich Prigogine were both devoted to
methods of statistical physics. Bogoliubov praised very highly the scientific contributions
and the human character of Prigogine. The group of Prigogine closely cooperated with
the group of Professor Ivanov from Joint Institute for Nuclear Research (JINR) and some
other researchers.

One of us (Sissakian) is happy to say that he had several discussions with Prigogine
about cooperation and scientific issues. He was always very amiable, was interested in
modern Russia, but as for science, he was always strict.
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Although he was not feeling very well at the Solvay conference in Greece (2001), Pri-
gogine listened with interest to our new research in statistical approach in the theory of
multiple particle production and made a number of very important remarks which later
on were of great use in our research.

Prigogine was an outstanding scientist, and contributed very much to both physics
and chemistry. It is widely known that his methods are successfully applied even in other
branches of science. He was profoundly confident that nature is a whole entity and its sep-
aration into physics, chemistry, and other branches is conventionality introduced by man.

The problem of “book-keeping” the quantum degrees of freedom till now looks like
a primary task for modern theory of the arbitrary many degrees of freedom system. The
point is that the non-Abelian gauge theory of Yang and Mills or Einstein gravity, both
obey high symmetry, and the symmetry itself signifies an existence of a connection among
various degrees of freedom, that is, the symmetry reduces the number of dynamical de-
grees of freedom. So, “book-keeping” means the procedure of counting the independent
degrees of freedom.

Our aim is to discuss an attempt to formulate the perturbation theory for a nonequi-
librium problem constrained by the symmetry. We note that the problem of defining the
notion of equilibrium in dissipative systems is itself very important. For instance, interest
in this problem is often aroused because the transition to equilibrium in the dissipative
systems is understood as the tendency to establish a certain order [18].

This question has a fundamental background. It is known that the symmetry may im-
prove solvability of the quantum problem. The hidden O(4) symmetry solves the Cou-
lomb problem [2, 9] and, therefore, the semiclassical Bohr-Sommerfeld quantization
rules are exact for this problem. Another example is the SL(2C) symmetry which solves
the 2-dimensional sin-Gordon field theory so that the semiclassical approximation be-
comes exact [4, 5]. More examples one can find in [7]. So, the symmetry can actually
reduce the quantum degrees of freedom.

We should keep in mind this marvellous phenomenon although it is hard to hope that
we always deal with such simple “completely integrable systems” [1], in which there are
enough number of symmetry constrains to prevent quantum perturbations. However, we
have to keep in mind such a possibility. What if, for example, the Einstein gravity is the
purely classical theory because of its highest space-time symmetry. Sure, this assumption
looks curious, though, it is most likely that Einstein was thinking it is so. But there is also
another side of the “book-keeping” problem.

Note that general quantum field, due to the constrains, cannot be treated always as
the dispersive medium, unlike the electromagnetic fields which are described as one, two,
and more photon states. In this case the quantum electrodynamics fundamental method
of spectral analysis cannot be applied. An example is the soliton quantization problem,
where ordinary methods are not effective [10].

One needs other formalism, which takes into account the symmetry constrains.

2. Variational principles

The modern quantum theories are practically based on the classical Hamiltonian varia-
tional principle. It can be built into the quantum theories keeping in mind Bohr’s
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“correspondence principle.” Formally, this becomes possible thanks to an outstanding
result of Dirac that the action S(u) is a generator of displacements along the u(t) trajec-
tory. Then the transition amplitude of the initial state, |in〉, into the final one, |out〉, is an
exponent: 〈in|out〉 ∼ exp{iS(u)}. The wave nature of quantum dynamics is realized then
as a sum over all trajectories u(t).

The simplest way of definition of this sum is based on the Ferma’s principle and uses
the basis of geometrical optics. A generalization represents an equivalent to the Hamilton-
ian variational principle. In this frame the dynamics is realized on the actions extremum,
that is, it is supposed that the physical trajectory uc(t) is a solution of

δS(u)
δu(t)

= 0. (2.1)

This approach of “book-keeping” deviations from uc is known as the WKB method [19].
A weak point of this variational principle, as it is known from classical mechanics, is

that it demands in a cumbersome way that the (symmetry) constrains be introduced into
the formalism [8]. The formal problem is to extract the dynamical, that is, independent,
degrees of freedom. In the quantum case this leads to implementation of the Faddeev-
Popov ansatz [8] which separates the dynamical degrees of freedom from symmetrical
ones. Unfortunately, this method is unacceptable for non-Abelian gauge theory (in case
the corresponding Yang-Mills fields are sufficiently strong [11], e.g., if the soliton-like
excitation is considered) and for gravitational field [6].

3. D’Alembert’s variational principle

We propose to use d’Alembert’s variational principle which easily “absorbs” the con-
strains, as is known from the classics. For this reason, it is of a definite value for us.

Indeed, d’Alembert’s variational principle means that the virtual deviation ε(t) does not
produce any work, F(u)ε, since the mechanical motion is time reversible. So, for mechanical
systems F(u)ε(t) = 0, and, as soon as ε(t) is an arbitrary function, one gets a condition
that the sum of all the forces should be equal zero, F(u)= 0. This equality may be treated
as the equation of motion for u(t) since F(u) includes also the “force of inertia,” ∼ ü(t).
If there are constrains in the system considered, then they have to be included along with
other forces into F(u) [1].

It should be noted here that, as follows from d’Alembert’s principle, the solution of
equation of motion uc already “absorbs” all the constrains. Therefore, it is enough to
count all possible forms of uc which are fixed by the integration constants.

Therefore, the mechanics built on d’Alembert’s variational principle seems to be most
useful for us. The connection among various degrees of freedom, as well as constrains,
is naturally included into the prescription that the mechanical motion must be time re-
versible.

The time reversibility may be achieved in quantum theories, for instance, considering
loop trajectory with the transition amplitude R = 〈in|in〉. In the meantime, to define
the integral over particle momentum unambiguously, one needs to implement the iε-
prescription of Feynman.
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In particle physics the iε-prescription has been chosen so that a wave must disappear
in remote future. Note that only such definition conserves a total probability. But it is
evident that such a wave process is not time reversible. Therefore, even the simple loop
trajectory cannot be considered as an example of time-reversible wave motion: due to
the iε-prescription, the loop amplitude is complex, that is, it is not a singlet of complex
conjugation operator.

This example creates an impression that quantum mechanics is time irreversible and,
therefore, the d’Alembert’s variational principle cannot be claimed for it. But then one
may ask where is the quantum correspondence principle?

The answer is in fact that the amplitude R is not a measurable quantity while only the
product

ρ(in,out)= 〈in|out〉〈out|in〉 = 〈in|out〉〈in|out〉∗ = ∣∣〈in|out〉∣∣2
(3.1)

is measured experimentally, that is, it only has to be time-reversible quantity [12]. Note
here that to define the amplitude 〈in|out〉, the (+iε)-prescription must be used, as well
as for 〈out|in〉 = 〈in|out〉∗, the (−iε)-prescription is applied. Therefore, just ρ(in,out)
describes the time-reversible process and this removes the contradiction with correspon-
dence principle. We now consider what this gives us.

4. Dirac functional measure

Following Dirac, one writes

ρ ∼ eiS(u+)e−iS(u−). (4.1)

Note that u+ and u− are two completely independent trajectories and, by definition, the
total action {S(u+)− S(u−)} is defined so that it describes closed-path motion.

To introduce d’Alembert’s variational principle, one needs to distinguish between the
physical trajectory u(t) and the virtual deviation ε(t) from it. Therefore, it is naturally
that

u±(t)= u(t)± ε(t), (4.2)

and the integrations over u(t) and ε(t) are taken independently [12]. Noticing that (i) the
closed-path motion is already described and (ii) the end-points (in,out) cannot vary, the
integration over ε(t) must be performed with boundary conditions for initial ti and final
t f times: ε(ti)= ε(t f )= 0. Then, in the expanding in ε(t),

S(u+ ε)− S(u− ε)= {S(u+ ε)− S(u− ε)
}∣∣

ε=0 + 2Re
∫ t f

ti
dt
δS(u)
δu(t)

ε(t) +U(c,ε), (4.3)

one may omit for the moment higher ε(t)-terms noted here by U(u,ε). The first term is
important if the classical trajectory is a periodic function [12]. The resulted integral over
ε(t) gives the functional δ-function

∫ ∏
t

dε(t)exp
{

2iRe
∫ t f

ti
dt
δS(u)
δu(t)

ε(t)
}
=
∏
t

′
δ
(
δS(u)
δu(t)

)
. (4.4)
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This equality means that the continuum of contributions with δS(u)/δu(t) �= 0 are can-
celled in the integral independently of the shape of the function u(t). It is the result of
destructive interference among divergent e+iS(u+) and convergent e−iS(u−) waves. Note that
this complete cancellation is actually a result of the time reversibility.

The dynamical equilibrium, when δS(u)/δu(t) = 0, is the only surviving one, and in
this case the integral (4.4) is infinite. This is expressed by δ-function in (4.4). Therefore,
integration over virtual deviation, ε(t), leads to the Dirac δ-like measure and the later
defines the complete set of contributions in the integrals over the trajectory u(t) [12].

Returning to d’Alembert’s variational principle, one can notice that, formally, the
product Υ= εδS(u)/δu in the exponent in (4.4) represents “virtual work.” But in the con-
sidered wave process case Υ �= 0, that is, the quantum virtual deviations can produce some
work. However, as follows from (4.4), the “physical” trajectory is defined by the classical
Lagrange equation (2.1) and, therefore, it is the trajectory where dynamical equilibrium
is achieved.

Thus, we get a quantum version of d’Alembert’s variational principle. It relies on the
general principle of quantum theories that only the time-reversible amplitude module is
a measurable quantity.

Furthermore, this formalism allows including external forces [13, 17]. Thus, if U(u,ε)
takes into account the higher nonlinear in ε(t) terms, then the strict path integral repre-
sentation of ρ is given by

ρ = e−iK( jε)
∫ ∏

t

′
du(t)δ

(
δS(u)
δu(t)

+ j(t)
)
eiU(u,ε), (4.5)

where the operator

2K( jε)= Re
∫
dt

δ

δ j(t)
δ

δε(t)
(4.6)

generates a quantum perturbation series. The interaction functional U(u,ε) can be easily
discovered from the Lagrangian. At the very end, one should take in (4.5) the auxiliary
variables j and ε to be equal to zero.

So, one can generate the quantum perturbations including the random force j(t) be-
ing external to the classical system. This is an authentic indication that our formulation
of quantum wave mechanics resembles the classical mechanics built on d’Alembert’s vari-
ational principle base.

5. Transition to the collective variables

A generalization of the representation (4.5) to the field-theory case is straightforward.
One should simply replace u(t) by u(x, t), where x is the space coordinate and t is the
time [15, 16]. The formalism does not depend on the type of field considered.

It must be noticed first of all that the functional δ-function in (4.5) establishes one-to-
one correspondence among quantum and classical descriptions [12]: the quantum case
introduces the random force j(x) into the system influence via the Gaussian operator
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K( jε). Therefore, if we know the general solution uc �= 0, then all quantum states can be
counted, varying the integration constants as the dynamical variables.

This correspondence is extended so that it allows involving such a powerful method of
classical mechanics as the method of transformation of dynamical variables. It should be
underlined that this method cannot be adopted on the time-irreversible quantum ampli-
tudes level [13, 16, 17].

The most useful variables are the (action, angle)-type ones [14, 15] (in definite sense,
this type of variables plays the same role as the “collective coordinates” of Bogoliubov
[3]). In these terms the world line of classical system (with enough constrains) moves
over (Arnold’s) hypertorus with radii being equal to the action variable and its location is
defined by the angle variables. In the quantum case, the action of the operator exp{−iK}
leads to the Gaussian thrilling of the hypertorus. This vibration may be described in terms
of random fluctuation of the action and angle variables and so that quantum perturba-
tion gets up not in the functional space of field u(x, t).

A transformation to the special-type variables, namely, to a set of the integration con-
stants, has been proposed in [13, 14, 15, 16, 17]. Note that if there is not enough con-
strains, then the system leaves the hypertorus surface and any mapping becomes mean-
ingless. Such a situation is realized, for example, in quantum electrodynamics, which is
gauge invariant, but this is not enough for the hypertorus formation. In this case the
ordinary method of the Faddeev-Popov ansatz is effective.

It should be stressed that the discussed formulation of the theory is necessary and
sufficient as well. The necessity follows from the fact that, in the situation of general
position, the dynamics should be realized on Arnold’s hypertorus [12]. The sufficiency
follows from the fact that the fluctuations are defined on the Gaussian measure and so
they cover the (action, angle) phase space completely.

We call such perturbation theory the topological theory. Indeed, the topological prop-
erties are crucial since if a trajectory on the hypertorus has definite winding number
(topological charge), then the probability that after random quantum walking, the sys-
tem returns to the same (or shifts on a constant winding number) position is equal to
zero. Therefore, such systems have to be exactly semiclassical. The quantitative prove of
this conclusion is given in [13, 16, 17].

In the case if there is no topological charge, the system “freely” moves along the hyper-
torus and can be quantum. It is evident that the Yang-Mills in the real-time metric [14]
and the gravitation are just such kind of theories.

The above-described transformation to the (action, angle)-type variables reduces the
field-theoretical problem to the quantum mechanical one. Generally, such a mapping is
singular but it is possible to isolate these infinities (they look like divergent integrals) and
remove them via the normalization. This observation is extremely important since as a
result we get the quantum mechanics theory which is free from divergences. One can
mention that isolating the divergences and then cancelling them, the renormalization
was already performed. This property is intriguing since the finiteness of the theory was
attained without introduction of new fields, for example, supersymmetry partners.

It is understandable that there is no necessity to distinguish between the symmetry
and dynamical degrees of freedom in new formulation of theory. Indeed, the quantum
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fluctuations are realized in the (action, angle) factor space and this does not touch the
action symmetry. As a result, the perturbation series consists of transparently invariant
terms [14].

6. Conclusions

We would like to note the following fact being important from the cognition point of
view. It is remarkable that restricting the problem and computing the module of am-
plitude, that is, leaving the phase of amplitude undefined, the remarkable progress is
shown to be achieved. So, we can say that, for instance, the Yang-Mills theory exists (see
http://www.claymath.org/Millennium Prize Problems/ concerning more details on the
question of existence of the Yang-Mills theory) as the theory of observables since in this
restricted frame (i) it is free from the divergences and (ii) there is no problems [14] of
necessity to distinguish between the dynamical and the symmetry degrees of freedom.

However, finally, it must be admitted that one does not know whether the time-revers-
ibility principle, that is, the quantum d’Alembert’s principle, can be applied to the Ein-
stein gravity. If yes, then no gravitational waves are expected to be observed despite the
fact that the gravity would be the quantum theory and, moreover, such theory could be
free from divergences. The point is that, most likely, the gravity does not represent the
dispersive media. This follows from the fact that the equation for metrics has a nontrivial
solution.
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