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This paper studies reciprocals of formal power series whose coefficients are monotone
and bounded by a geometrically decaying sequence. Explicit and applicable, optimal de-
cay rates are provided for the coefficients of the reciprocal series in terms of the parame-
ters of the geometric bound. The results imply a best possible lower bound on the zeros
of the series being considered.
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1. Introduction

This paper studies reciprocals of power series whose coefficients are monotone and
bounded by a geometrically decaying sequence. In particular, for fixed A ≥ 1 and 0 <
r < 1, let the sets �A,r and �I

A,r be defined by

�A,r
def=
{
Q : Q(z)= 1 +

∞∑
k=1

qkz
k,
{
qk
}

is nonincreasing and 0≤ qi ≤Ari, for each i≥ 1

}
,

�I
A,r

def=
{
Ω : Ω(z)= 1 +

∞∑
k=1

ωkz
k, Ω= 1

Q
, for some Q ∈�A,r

}
.

(1.1)

Disregarding its probabilistic context, the well-known Kendall renewal theorem (cf. [2,
16, 17, 21, 27]) can essentially be restated as follows.

Theorem 1.1 [17]. Suppose Ω(z)=∑∞
i=0ωizi ∈�I

A,r , for some A > 0 and r < 1. Then,
∣∣ωi

∣∣=O
(
σi
)
, (1.2)

for some σ < 1.

Here, we take steps towards obtaining an explicit form of Theorem 1.1. Specifically, we
will prove the following.
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2 Reciprocals of formal power series

Theorem 1.2. Suppose Ω∈�I
A,r , where A and r are constants satisfying

(a) 1≤ A≤ 1/(2r),

(b) (A2r2− 2A2r +A)(A+ (1/2)/(A+ 1/2)) +Ar2− 2Ar−A2r3 +A2r2 ≥ 0,

(c) (−2A2r +A)(A+ (1−Ar)/(A+ 1−Ar))−Ar +A2r2 ≥ 0,

(d) ((1− Ar)(A2 − A + 1− Ar)/(A + 1− Ar)) + A(A2 − A + 1− Ar) + A− 1− A2r +
Ar−A2 ≥ 0.

If Ω(z)=∑∞
i=0ωizi, then for n≥ 1,

∣∣ωn

∣∣≤ sn+1
1 + (−1)nsn+1

2

δ
rn = s1 + s2(−1)n

(
s2/s1

)n
δ

(
s1r
)n ≤ CA,r s

n
A,r , (1.3)

where δ
def= √A2 + 4(1−Ar), s1

def= (δ +A)/2, s2
def= (δ−A)/2,

sA,r
def= rs1 < 1,

CA,r
def= A

s1
≤ 1.

(1.4)

Note that if (A,r) satisfies Ar < 1, then sA,r < 1 and (as suggested by Theorem 1.1) the
coefficients of the reciprocal series decay at an exponential rate. To see this bound, note
that for 0 < r < 1 and 0 < Ar < 1,

1− rs1 = (2− rA)− rδ

2
= (2− rA)2− r2δ2

2(2− rA) + 2rδ
= 2(1− rA)

(
1− r2

)
(2− rA) + rδ

> 0. (1.5)

It is crucial that for given A and r, assumptions (a)–(d) are easily verifiable and are satis-
fied for a significant portion of the strip {(A,r) : 0≤ r ≤ 1 and A≥ 1}. Some pairs (A,r)
satisfying the assumptions of Theorem 1.2 are given (in the shaded region) in Figure 1.1.

Monotone sequences and generating functions appear in all facets of applied and pure
mathematics, most notably enumerative combinatorics and applied probability (cf. Wilf
[34] and Feller [14]). Applications of Theorem 1.2 to quantitative convergence rates for
Markov chains will be discussed elsewhere.

For pairs (A,r) satisfying assumptions (a)–(d), Theorem 1.2 gives the optimal value of
σ in (1.2) which applies for all Ω ∈�I

A,r . Consideration of the remaining pairs remains
open.

The next example gives zero-free regions for complex power series with rapidly decay-
ing coefficients.

Example 1.3. Theorem 1.2 has immediate implications on lower bounds for the modulus
of the smallest zero of a power series Q ∈�A,r . Since the result places a lower bound on
the radius of convergence R of Ω= 1/Q, via

R= 1
limsupn→∞ n

√
ωn
≥ 1

sA,r
, (1.6)

it also places a lower bound on zeros of Q. Indeed, we have the following corollary.
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Figure 1.1. Some pairs (A,r) satisfying the assumptions of Theorem 1.2.

Corollary 1.4. Suppose z0 is a root of a power series Q ∈�A,r , where Q(z) = 1 + q1z +
q2z2 + ··· , and A and r satisfy the hypotheses of Theorem 1.2, then

∣∣z0
∣∣≥ s−1

A,r . (1.7)

In fact, the series Q ∈�A,r given by

Q(z)= 1 +Arz+Ar3z2 +Ar3z3 +Ar5z4 +Ar5z5 +Ar7z6 + ···

= 1 +
Arz

(
1 + r2z

)
1− r2z2

= 1− r2z2 +Arz
(
1 + r2z

)
1− r2z2

= (Ar− 1)(rz)2 +A(rz) + 1
1− r2z2

(1.8)

has a zero at z =−s−1
A,r , and Corollary 1.4 is optimal. The series in (1.8) also serves to show

that the decay rate sA,r of Theorem 1.2 is optimal in that context as well.
Power series with restricted coefficients have been studied in the context of determin-

ing distributions of zeros (cf. Flatto et al. [15], Solomyak [26], Beaucoup et al. [3, 4], and
Pinner [24]). Related problems for polynomials have been considered by Odlyzko and
Poonen [23], Yamamoto [36], Borwein and Pinner [12], Borwein and Erdélyi [11], and
others.

Berenhaut and Morton [10] provide a result along the lines of Theorem 1.2, when
the monotonicity assumption is dropped by studying the recurrence in (2.11), below.
Figure 1.2 compares the decay rate s1,r (i.e., with A= 1) of Theorem 1.2 with the compa-
rable rate bound from [10] (for r near 1/4).
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Figure 1.2. A comparison of the decay rates s1,r of Theorem 1.2 with the comparable rates from [10].
The lower and upper curves give the optimal rates with and without the assumption of monotonicity
of coefficients, respectively.

The remainder of the paper proceeds as follows. Section 2 contains some prelimi-
nary notation and the statement of a crucial lemma (Lemma 2.1) on linear recurrences.
Section 3 comprises a discretization approach which serves to limit the scope of possi-
bilities which need to be considered. The paper concludes with a proof of Lemma 2.1
(Section 4). Section 5 contains a proof of a technical lemma employed in Section 3.

2. Preliminaries

Suppose Ω∈�I
A,r and Q ∈�A,r satisfy Ω= 1/Q. In analyzing the coefficients of Ω, it will

be convenient to instead consider the coefficients hi = ωi/ri and φi = qi/ri of the series

Ω∗(z)
def= Ω

(
z

r

)
,

Q∗(z)
def= Q

(
z

r

)
,

(2.1)

respectively.
Note that 0≤ φi ≤A and

φi = qi
ri
≥ qi+1

ri
= φi+1r (2.2)

follow from 0≤ qi ≤ Ari and the monotonicity assumption on {qi}, respectively.
If we can find a bound of the form |hi| ≤ Bi, for i≥ 1, then

∣∣ωi

∣∣= ∣∣hi∣∣ri ≤ Bir
i. (2.3)
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Now, consider solving for the coefficients of Ω∗ in terms of those of Q∗, that is, solving
for hi in

1=Q∗(z)Ω∗(z)= (1 +φ1z+φ2z
2 + ···)(1 +h1z+h2z

2 + ···)
= 1 +

(
φ1 +h1

)
z+
(
φ2 +φ1h1 +h2

)
z2 +

(
φ3 +φ2h1 +φ1h2 +h3

)
z3 + ··· . (2.4)

This yields the general linear recurrence

h1 =−φ1,

h2 =−φ2−φ1h1,

h3 =−φ3−φ2h1−φ1h2,

...

hn =−φn−φn−1h1−···−φ1hn−1,

(2.5)

for each n∈N.
To simplify the notation, we will represent the recurrence coefficients in (2.5) by the

matrix ⎡
⎢⎢⎢⎢⎢⎢⎣

−φ1 0 ··· 0

−φ2 −φ1
. . .

...
...

...
. . . 0

−φn −φn−1 ··· −φ1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.6)

Now, by relaxing the Toeplitz restriction in (2.6), we can consider, instead, the matrix

⎡
⎢⎢⎢⎢⎢⎢⎣

−α1,0 0 ··· 0

−α2,0 −α2,1
. . .

...
...

...
. . . 0

−αn,0 −αn,1 ··· −αn,n−1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.7)

The remaining restrictions on the {φi} imply

0≤ αi, j ≤A (2.8)

and (the quasimonotone restriction)

αi, j ≤ αi, j+1
1
r
. (2.9)

Define the sequence {Bi}∞i=0 by the second-order recurrence

Bn =
⎧⎨
⎩A

n, if 0≤ n≤ 2,

ABn−1 + (1−Ar)Bn−2, if n > 2.
(2.10)

Note that {Bi} is nondecreasing in i, under assumption (a) of Theorem 1.2.
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The key to obtaining a bound of the form in (2.3) will be the following lemma on
bounds for linear recurrences, which will be proved in Section 4.

Lemma 2.1. Suppose the sequence {bn}∞n=0 satisfies b0 ∈ {−1,1} and

bn =
n−1∑
k=0

(−αn,k
)
bk, n≥ 1, (2.11)

where

αn,k ∈ [0,A], (2.12)

for 0≤ k ≤ n− 1, n≥ 1, and

αn,k ≤ 1
r
αn,k+1, (2.13)

for k ≤ n− 1, n≥ 2. If A and r satisfy the hypotheses of Theorem 1.2, then

∣∣bn∣∣≤ Bn, (2.14)

for n≥ 0.

Theorem 1.2 follows directly from Lemma 2.1, upon solving the second-order linear
equation in (2.10) and employing (2.3).

Remark 2.2. Perhaps unexpectedly, Lemma 2.1 does not hold for all A≥ 1 and r < 1. This
fact is illustrated in the following simple example.

Example 2.3. Suppose that b0 = 1, and {bi} and {αi, j} satisfy (2.11), where the coefficient
matrix in (2.7) is given by

[−αi, j
]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0
−1 −0.5 0 0 0 0 0
0 −1 −1 0 0 0 0
0 −1 −0.5 −0.25 0 0 0
−1 −0.5 −0.25 −1 −1 0 0
−1 −0.5 −0.25 −1 −0.5 −0.25 0
0 −1 −0.5 −0.25 −0.125 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.15)
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Here, (b0, . . . ,b7) = (1,−1,−0.5,1.5,0.875,−2.75,−1.625,5.140625). With A = 1 and
r = .5, (2.12) and (2.13) are satisfied, for n ≤ 7, but B7 = 5.125 < 5.140625 = b7. Hence,
the inequality b7 ≤ B7 does not hold in this case. It may be easily verified that of the
conditions (a)–(d) of Theorem 1.2 only the first is satisfied for (A,r)= (1, .5).

Note that, recurrences with varying or random coefficients have been studied by many
previous authors. For a partial survey of such literature see Viswanath [31, 32], Viswanath
and Trefethen [33], Embree and Trefethen [13], Wright and Trefethen [35], Mallik [20],
Popenda [25], Kittappa [18], Odlyzko [22], Berenhaut and Goedhart [8, 9], Berenhaut
and Morton [10], Berenhaut and Foley [6], Zhang and Tian [37], Li and Cheng [19] and
Stević [28–30] (and the references therein). For a comprehensive treatment of difference
equations and inequalities; see Agarwal [1].

3. Discretization

In this section, we recall a discretization theorem from [7], which is crucial in proving
Lemma 2.1. For completeness, we include a proof here.

First, for a given vector u= (u0,u1,u2, . . . ,uk) satisfying u0 ≥ 0, ui ≥ 1 for 1≤ i≤ k and

∑
i

ui =N , (3.1)

define the vector pu via

pu
def= A

⎛
⎜⎝

u0︷ ︸︸ ︷
0,0, . . . ,0; r0,r1, . . . ,ru1−1; r0,r1, . . . ,ru2−1; r0,r1, . . . ,ruk−1

⎞
⎟⎠ . (3.2)

In addition, define the set of vectors

�N =
{

pu : u satisfies (3.1)
}
. (3.3)

We require the following lemma regarding inner products.

Lemma 3.1. Suppose that p = (p1, . . . , pn) and q = (q1, . . . ,qn) are n-dimensional vectors
where p satisfies

r pi ≤ pi+1, (3.4)

for 1≤ i≤ n− 1, and 0≤ pi ≤A, for 1≤ i≤ n. Then

min
{

pu ·q : pu ∈�n
}≤ p ·q≤max

{
pu ·q : pu ∈�n

}
, (3.5)

where p ·q denotes the standard scalar product
∑n

i=1 piqi.

For a vector p = (p1, p2, . . . , pn), we will use the notation pi, j to indicate the vector
consisting of the ith through jth entries in p, that is,

pi, j = (pi, pi+1, . . . , pj
)
. (3.6)
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Proof of Lemma 3.1. First, suppose p · q > 0, and note that the lower bound in (3.5) fol-
lows from the fact that pu = 0 for u = (n,0, . . . ,0). Now, consider the vectors p̃i =
(p̃i(1), p̃i(2), . . . , p̃i(n)), i=−1,0,1, . . . ,n− 1, defined recursively according to the follow-
ing scheme.

(1) Set p̃−1 = p.
(2) If Si = {s : n− i+ 1 ≤ s ≤ n and p̃i−1(s) = A} is a nonempty set, set vi =minSi,

otherwise set vi = n+ 1.
(3) For i≥ 0, set

p̃i =
(

p̃i−1(1), p̃i−1(2), . . . , p̃i−1(n− i− 1),

cip̃i−1(n− i),cip̃i−1(n− i+ 1), . . . ,cip̃i−1
(
vi− 1

)
,

p̃i−1
(
vi
)
, p̃i−1

(
vi + 1

)
, . . . , p̃i−1(n)

)
,

(3.7)

where ci is given by

ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

p̃i−1(n− i)
, if p̃n−i,vi−1

i−1 ·qn−i,vi−1 > 0,

rp̃i−1(n− i− 1)
p̃i−1(n− i)

, if p̃n−i,vi−1
i−1 ·qn−i,vi−1 ≤ 0, i < n− 1,

0, otherwise.

(3.8)

Now, note that (3.7) and (3.8) imply that

p̃i ·q− p̃i−1 ·q= (ci− 1
)(

p̃n−i,vi−1
i−1 ·qn−i,vi−1)≥ 0, (3.9)

and that if p̃i−1 satisfies

p̃i−1( j− 1)r ≤ p̃i−1( j)≤A, (3.10)

then p̃i satisfies

p̃i( j− 1)r ≤ p̃i( j)≤ A. (3.11)

It is not difficult to verify that the final p̃i (i.e., p̃n−1) is of the form in (3.2), and the lemma
is proven in this case. The proof follows similarly if p ·q≤ 0, and the proof of the lemma
is complete. �

We are now in a position to prove the following theorem from [7].

Theorem 3.2. Suppose that {bi} and {αi, j} satisfy (2.11) and (2.13). Then, there exist {b′i}
and {α′i, j} such that

∣∣bn∣∣≤ ∣∣b′n∣∣,

b′n =
n−1∑
k=0

(−α′n,k

)
b′k, n≥ 1,

(3.12)



Kenneth S. Berenhaut et al. 9

with each vector

α′i =
[
α′i,0,α′i,1, . . . ,α′i,i−1

]∈�i, (3.13)

for 1≤ i≤ n, where �i is as in (3.3).
In fact, there exists a set {α′1,α′2, . . . ,α′n}, with α′i ∈�i, such that b′i is as large as possible

(with its inherent sign) given b0,b′1,b′2, . . . ,b′i−1.

Proof. The proof, here, involves applying Lemma 3.1 to successively “scale” the rows of
the coefficient matrix [−αi, j] as in (2.7), while not decreasing the value of |bn| at any step.

First, define the sequences

αi =
(
αi,0, . . . ,αi,i−1

)
,

bk, j = (bk, . . . ,bj
)
,

(3.14)

for 0≤ k ≤ j ≤ n− 1 and 1≤ i≤ n.
Assume that bn > 0. Note that expanding via (2.11), bn can be written as

bn = C0
1b0 +C1

1b1, (3.15)

where C0
1 and C1

1 are constants, which depend on {αi, j}. If C1
1 > 0, then select α′1 = (α′1,0)∈

�1 so that −α′1 ·b0,0 is maximal, via Lemma 3.1. Similarly, if C1
1 < 0, select α′1 = (α′1,0)∈

�1 so that −α′1 ·b0,0 is minimal. In either case, replacing α1,0 by α′1,0 in (2.11) will result
in a larger (or equal) value for C1

1b1, and in turn, referring to (3.15), a larger (or equal)
value of |bn|.

Now, suppose that the first through (k − 1)th rows of the α matrix are of the form
described in the theorem (i.e., resulting in maximal bi values for 1≤ i≤ k− 1 with respect
to the preceeding bj , 0≤ j ≤ i− 1), and express bn in the form

bn = C0
kb0 +C1

kb1 + ···+Ck
kbk, (3.16)

via (2.11). If Ck
k ≥ 0, then select α′k ∈�1 so that −α′k ·b0,k−1 is maximal, via Lemma 3.1.

Similarly, if Ck
k < 0, select α′k ∈�1 so that −α′k · b0,0 is minimal. In either case, referring

to (3.16), replacing the values in αk by those in α′k in (2.11) will not decrease the value of
|bn|. The result follows similarly for the case Ck

k < 0, and the theorem follows by induction
for this case. The case bn ≤ 0 is similar and the theorem is proven. �

Remark 3.3. A simpler version of Theorem 3.2 was also employed in Berenhaut and
Bandyopadhyay [5] in proving that all symmetric Toeplitz matrices generated by mono-
tone convex sequences have off-diagonal decay preserved through triangular decomposi-
tions.

A matrix of coefficients will be said to be “fully scaled” when the process suggested in
the proof of Theorem 1.1 terminates; that is, the set {α′1,α′2, . . . ,α′n} referred to in the last
sentence of the statement of Theorem 1.1 is attained.

We now turn to a proof of Lemma 2.1.
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4. Proof of Lemma 2.1

By Theorem 3.2, we may restrict attention to sequences {bi} resulting from the “fully
scaled” matrices of αi, j . Hence, suppose we have some “fully scaled” matrix [−αi, j], where
the resulting {bi}ni=0 has sign configuration s= {si}, that is,

si =
⎧⎨
⎩+1, if bi ≥ 0,

−1, if bi < 0.
(4.1)

The following lemma is a direct consequence of Theorem 3.2, via the fact that the α-
matrix is fully scaled, and will be used frequently, without explicit mention, in what fol-
lows.

Lemma 4.1. Suppose that [αi, j] is fully scaled. Then,
(i) if k < K and sk = sK , then

sk

( k−1∑
i=0

(−αK ,i
)
bi

)
≤ skbk, (4.2)

(ii) if sk = sk−1, then skbk ≤ skbk−1,
(iii) if k < K and sK = sk 
= sk−1, then

sk

( k−2∑
i=0

(−αK ,i
)
bi

)
≤ sk

(
bk +Abk−1

)
. (4.3)

Proof. Without loss of generality, we may assume that sk = 1. For part (i), we have

bk =
k−1∑
i=0

(−αk,i
)
bi ≥

k−1∑
i=0

(−αK ,i
)
bi, (4.4)

since [αi, j] is fully scaled. Similarly, for (ii), we have

bk =
k−2∑
i=0

(−αk,i
)
bi−αk,k−1bk−1 ≤

k−2∑
i=0

(−αk,i
)
bi ≤

k−2∑
i=0

(−αk−1,i
)
bi = bk−1. (4.5)

To prove (iii), note that αk,k−1 = A and hence

bk +Abk−1 =
k−2∑
i=0

(−αk,i
)
bi ≥

k−2∑
i=0

(−αK ,i
)
bi. (4.6)

�

The next technical lemma is proved in Section 5.
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Lemma 4.2. Suppose that A and r satisfy the hypotheses of Theorem 1.2, c,k ≥ 2, and n ≥
max{c+ k,c+ 3}. Then,

(
(c− 1)A2 + 1−A

(
rk + ···+ rk+c−2))Bn−c +Ark−1Bn−c−2 ≤ Bn. (4.7)

Proof. See Section 5. �

We now turn to a proof of Lemma 2.1.

Proof of Lemma 2.1. Suppose we have some “fully scaled” matrix of αi, j where the result-
ing {bi} has sign configuration s= {si}.

By employing Theorem 3.2 and comparing several low degree polynomials in A and r,
it is not difficult to verify that

∣∣bi∣∣≤ Bi, (4.8)

for i≤ 3. Now, assume that |bi| ≤ Bi for all i≤ n− 1.
Note that by Theorem 3.2, if for some j < i, si = s j (si 
= s j), then we need only consider

αi, j of the form αi, j = Ark for some k ≥ 1 (k ≥ 0).
We will consider the following cases:

(1) sn−1 = sn = 1;
(2) sn−2 = sn−1 =−1, sn = 1;
(3) sn = 1, sn−1 =−1, sn−2 = sn−3 = ··· = sn−c = 1, sn−c−1 =−1, αn,n−c =Ar;
(4) sn = 1, sn−1 = −1, sn−2 = sn−3 = ··· = sn−c = 1, sn−c−1 = −1, αn,n−c = Ark for

some k ≥ 2 and
(a) sn−c−2 = 1;
(b) sn−c−2 =−1.

The proofs for the cases where the signs are opposite to those considered are analogous.

Case 1 (sn−1 = sn = 1, i.e., s= (. . . ,1,1)). Here,

bn =−αn,n−1bn−1 +
n−2∑
i=0

(−αn,i
)
bi ≤−αn,n−1bn−1 +Bn−1 ≤ Bn−1 ≤ Bn. (4.9)

Case 2 (sn−2 = sn−1 = −1, sn = 1, i.e., s = (. . . ,−1,−1,1)). Note that αn,n−1 = αn,n−2 = A,
and consider the α-matrix obtained by switching the positions of αn,i and αn−1,i for 0 ≤
i≤ n− 2. Denote the resulting b-vector by b∗ = (b∗1 ,b∗2 , . . . ,b∗n ). Then,

b∗n−1 = bn +Abn−1, (4.10)

and hence

b∗n + bn =−Ab∗n−1 + bn−1 + bn =−A
(
bn +Abn−1

)
+ bn−1 + bn

= (1−A)bn +
(
1−A2)bn−1 = (1−A)

(
bn + (1 +A)bn−1

)
.

(4.11)
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Setting αn,0 = αn,1 = ··· = αn,n−2 = 0 shows that bn ≥−Abn−1−Abn−2, hence

bn + (1 +A)bn−1 ≥−Abn−2 + bn−1 ≥ 0, (4.12)

since bn−2 ≤ bn−1 ≤ 0 (by Lemma 4.1(ii)) and A≥ 1.

Since b∗n−1≥0, b∗n <0, and |b∗n |≥|bn|, we have reduced this case to one of Cases 3 or 4.
For the remaining cases, it will be useful to introduce the following notation (similar

to (3.6)) for subsequences of recurrence coefficients.

Definition 4.3. For 0≤ k ≤ j ≤ i− 1 and i≤ n, define the subsequences

α
k, j
i

def= [−αi,k, . . . ,−αi, j
]
. (4.13)

Case 3 ((i) sn = 1, sn−1 = −1, sn−2 = sn−3 = ··· = sn−c = 1, sn−c−1 = −1, i.e., s = (. . . ,−1,
1, . . . ,1︸ ︷︷ ︸

c−1

,−1,1), and (ii) αn,n−c = Ar).

Theorem 3.2 leads to the following entries in the α-matrix:

αn−c−1,n−1
n =−A[1,r1,r2, . . . ,rk+c−2,1

]
,

αn−c−1,n−c−1
n−c =−A[1].

(4.14)

We have

bn =−Abn−1 +
n−2∑

j=n−c+1

−Ar j−(n−c)+1bj −Arbn−c +
n−c−1∑
j=0

−αn, jb j . (4.15)

Since bj ≥ 0 for n− c + 1 ≤ j ≤ n− 2, the first sum in (4.15) is nonpositive, while by
Lemma 4.1(i), the second sum is bounded by bn−c. Thus, we have

bn ≤ABn−1−Arbn−c + bn−c = ABn−1 + (1−Ar)bn−c
≤ABn−1 + (1−Ar)Bn−c ≤ABn−1 + (1−Ar)Bn−2 = Bn.

(4.16)

Case 4.

Subcase 4.1 ((i) sn = 1, sn−1 = −1, sn−2 = sn−3 = ··· = sn−c = 1, sn−c−1 = −1, sn−c−2 = 1,
i.e., s= (. . . ,1,−1,1, . . . ,1︸ ︷︷ ︸

c−1

,−1,1), and (ii) αn,n−c =Ark for some k ≥ 2). Theorem 3.2 leads

to the following entries in the α-matrix:

αn−c−1,n−1
n =−A[rk−1,rk, . . . ,rk+c−2,1

]
,

αn−c−2,n−2
n−1 =−A[rv−1,rv,1,1, . . . ,1

]
,

αn−c−1,n−c−1
n−c =−A[1],

αn−c−2,n−c−2
n−c−1 =−A[1],

(4.17)

for some v ≥ 1.
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Employing (4.17) and applying Lemma 4.1(iii) give

bn =−Abn−1 +
n−2∑
j=n−c

−Ar j−(n−c)+kbj −Ark−1bn−c−1 +
n−c−2∑
j=0

−αn, jb j

≤−Abn−1 +
n−2∑
j=n−c

−Ar j−(n−c)+kbj −Ark−1bn−c−1 +
(
bn−c +Abn−c−1

)
,

(4.18)

bn−1 =
n−2∑
j=n−c

(−A)bj −Arvbn−c−1−Arv−1bn−c−2 +
n−c−3∑
j=0

−αn, jb j

≥
n−2∑
j=n−c

(−A)bj −Arvbn−c−1−Arv−1bn−c−2 +
(
bn−c−1 +Abn−c−2

)
.

(4.19)

Hence, substituting (4.19) into (4.18) and using Lemma 4.1(ii) to obtain 0≤ bj ≤ bn−c ≤
Bn−c, for n− c ≤ j ≤ n− 2, gives

bn ≤
n−2∑
j=n−c

(
A2−Ar j−(n−c)+k)bj + bn−c +

(
A−Ark−1 +A2rv −A

)
bn−c−1

+
(
A2rv−1−A2)bn−c−2

≤
n−2∑
j=n−c

(
A2−Ar j−(n−c)+k)Bn−c +Bn−c +

(−Ark−1 +A2rv
)
bn−c−1

+
(
A2rv−1−A2)bn−c−2

= ((c− 1)A2 + 1−A
(
rk + rk+1 + ···+ rk+c−2))Bn−c

+
(
A2rv −Ark−1)bn−c−1 +

(
A2rv−1−A2)bn−c−2.

(4.20)

Now, suppose A2rv − Ark−1 ≥ 0. Then, since bn−c−1 < 0, bn−c−2 ≥ 0, and A2 > A2rv−1,
(4.20) and Lemma 4.2 give

bn ≤
(
(c− 1)A2 + 1−A

(
rk + rk+1 + ···+ rk+c−2))Bn−c ≤ Bn. (4.21)

On the other hand, if A2rv −Ark−1 < 0, then 1≤ A < rk−1−v, and hence

v > k− 1≥ 1. (4.22)

Since

0 > bn−c−1 =−Abn−c−2 +
n−c−3∑
j=0

−αn−c−1, jb j ≥−Abn−c−2−Bn−c−2, (4.23)
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we have

(
A2rv −Ark−1)bn−c−1 +

(
A2rv−1−A2)bn−c−2

≤ (A2rv −Ark−1)(−Abn−c−2−Bn−c−2
)

+
(
A2rv−1−A2)bn−c−2

= (−A3rv +A2rk−1 +A2rv−1−A2)bn−c−2 +
(−A2rv +Ark−1)Bn−c−2

≤Ark−1Bn−c−2.

(4.24)

The final inequality in (4.24) follows since bn−c−2 ≥ 0, v > 1, 0 < r < 1/2, 0≤Ar ≤ 1, and

−A3rv +A2rk−1 +A2rv−1−A2 =A2(rv−1(1−Ar)− (1− rk−1))
≤A2(r(1−Ar)− (1− rk−1))
≤A2(r− (1− r)

)= A2(2r− 1)≤ 0.

(4.25)

Application of Lemma 4.2 to (4.20) and (4.24) completes the proof for this case.

Subcase 4.2 ((i) sn = 1, sn−1 =−1, sn−2 = sn−3 = ··· = sn−c = 1, sn−c−1 =−1, sn−c−2 =−1,
i.e., s= (. . . ,−1,−1,1, . . . ,1︸ ︷︷ ︸

c−1

,−1,1), and (ii) αn,n−c =Ark for some k ≥ 2).

Theorem 3.2 leads to the following entries in the α-matrix:

αn−c−1,n−1
n =−A[rk−1,rk, . . . ,rk+c−2,1

]
,

αn−c−2,n−2
n−1 =−A[rv−1,rv,1,1, . . . ,1

]
,

αn−c−2,n−c−1
n−c =−A[1,1],

(4.26)

for some v ≥ 1.
Employing Lemma 4.1(i) and (iii), we have

bn =−Abn−1 +
n−2∑
j=n−c

−Ar j−(n−c)+kbj −Ark−1bn−c−1 +
n−c−2∑
j=0

−αn, jb j

≤−Abn−1 +
n−2∑
j=n−c

−Ar j−(n−c)+kbj −Ark−1bn−c−1 +
(
bn−c +Abn−c−1

)
,

(4.27)

bn−1 =
n−2∑
j=n−c

(−A)bj −Arvbn−c−1 +
n−c−2∑
j=0

−αn, jb j

≥
n−2∑
j=n−c

(−A)bj −Arvbn−c−1 + bn−c−1.

(4.28)
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Hence, substituting (4.28) into (4.27) gives

bn ≤
n−2∑
j=n−c

(
A2−Ar j−(n−c)+k)bj + bn−c +

(
A−Ark−1 +A2rv −A

)
bn−c−1

≤
n−2∑
j=n−c

(
A2−Ar j−(n−c)+k)Bn−c +Bn−c +

(−Ark−1 +A2rv
)
bn−c−1

= ((c− 1)A2 + 1−A
(
rk + rk+1 + ···+ rl

))
Bn−c +

(
A2rv −Ark−1)bn−c−1

≤ ((c− 1)A2 + 1−A
(
rk + rk+1 + ···+ rl

))
Bn−c +Ark−1bn−c−2

≤ ((c− 1)A2 + 1−A
(
rk + rk+1 + ···+ rl

))
Bn−c +Ark−1Bn−c−2,

(4.29)

where l = k+ c− 2, and the result for this case follows by Lemma 4.2. �

5. Proof of Lemma 4.2

In this section, we will prove Lemma 4.2.
First, note that straightforward manipulation of (2.10), along with the fact that {Bi} is

nondecreasing, gives Bi ≤ (A+ 1−Ar)Bi−1 for all i≥ 3, and hence
(
A+

1−Ar

A+ (1−Ar)

)
Bn−1 ≤ Bn ≤ (A+ 1−Ar)Bn−1, (5.1)

for n≥ 3.

Proof of Lemma 4.2. We will consider two cases: (1) c = 2 and (2) c ≥ 3.

Case 1 (c = 2). Set

Z
def= (A2 + 1−Ark

)
Bn−2 +Ark−1Bn−4. (5.2)

We have

Bn−Z =ABn−1 + (1−Ar)Bn−2−Z

=A
(
ABn−2 + (1−Ar)Bn−3

)
+ (1−Ar)Bn−2−Z

= (Ark −Ar
)
Bn−2 +A(1−Ar)Bn−3−Ark−1Bn−4

= (Ark −Ar
)(
ABn−3 + (1−Ar)Bn−4

)
+A(1−Ar)Bn−3−Ark−1Bn−4

= (A2rk − 2A2r +A
)
Bn−3 +

((
Ark −Ar

)
(1−Ar)−Ark−1)Bn−4

=A
(
κ1Bn−3 + κ2Bn−4

)
,

(5.3)

for instance. Since Ar < 1/2, κ1 = 1−A(2r− rk) > 0, and hence, applying (5.1), (5.3), and
assumption (a) of Theorem 1.2 gives

Bn−Z ≥ κ1Bn−3 + κ2Bn−4 ≥
(
κ1

(
A+

1−Ar

A+ 1−Ar

)
+ κ2

)
Bn−4

≥
(
κ1

(
A+

1/2
A+ 1/2

)
+ κ2

)
Bn−4.

(5.4)
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Now, define T by

T(k)
def= κ1

(
A+

1−Ar

A+ 1−Ar

)
+ κ2. (5.5)

Then,

T′(k)=A2r ln(r)
(
A+

1−Ar

A+ 1−Ar

)
+Ark ln(r)−A2rk+1 ln(r)−Ark−1 ln(r)

= rk−1
(
A ln(r)

(
A3r +A2r−A3r2 + 3Ar− 2A2r2 + r− 2Ar2 +A2r3−A− 1

)
A+ 1−Ar

)
.

(5.6)

Hence, for fixed (A,r), T is monotone in k and we need only consider two cases: T(2) and
limk→∞T(k). Assumption (b) in the statement of Theorem 1.2 (with (5.4)) gives T(2)≥
0, while assumption (c) gives limk→∞T(k)≥ 0, and the lemma follows for this case.

Case 2 (c ≥ 3). First, note that(
A2(c− 1) + 1−A

(
rk + ···+ rk+c−2))Bn−c +Ark−1Bn−c−2

= (A2(c− 2) + 1−A
(
rk + ···+ rk+c−3))Bn−c

+Ark−1Bn−c−2 +A2Bn−c−Ark+c−2Bn−c

= (A2(c− 2) + 1−A
(
rk + ···+ rk+(c−1)−2))B(n−1)−(c−1)

+Ark−1B(n−1)−(c−1)−2 +A2Bn−c−Ark+c−2Bn−c

≤ Bn−1 +A2 Bn−c ≤ Bn−1 +A2 Bn−3

(5.7)

by induction.
Now, let

W
def= Bn−

(
Bn−1 +A2Bn−3

)
. (5.8)

Successively employing (2.10) gives

W = ABn−1 + (1−Ar)Bn−2−
(
Bn−1 +A2Bn−3

)
= (A− 1)

(
ABn−2 + (1−Ar)Bn−3

)
+ (1−Ar)Bn−2−A2Bn−3

= (A(A− 1) + 1−Ar
)
Bn−2 +

(
(A− 1)(1−Ar)−A2)Bn−3

= γ1Bn−2 + γ2Bn−3 =
(
Aγ1 + γ2

)
Bn−3 +

(
γ1(1−Ar)

)
Bn−4,

(5.9)

where γ1
def= A(A− 1) + 1−Ar and γ2

def= (A− 1)(1−Ar)−A2. Since γ1 > 0, we have (via
(5.1)) that

W ≥
((

Aγ1 + γ2
)

+
(
γ1(1−Ar)

) 1
A+ 1−Ar

)
Bn−3 ≥ 0 (5.10)

by assumption (d) in the statement of Theorem 1.2.

Lemma 4.2 now follows. �
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