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This paper presents an alternative and efficient method for solving the optimal control of
single-stage hybrid manufacturing systems which are composed with two different cat-
egories: continuous dynamics and discrete dynamics. Three different inertia weights, a
constant inertia weight (CIW), time-varying inertia weight (TVIW), and global-local
best inertia weight (GLbestIW), are considered with the particle swarm optimization
(PSO) algorithm to analyze the impact of inertia weight on the performance of PSO
algorithm. The PSO algorithm is simulated individually with the three inertia weights
separately to compute the optimal control of the single-stage hybrid manufacturing sys-
tem, and it is observed that the PSO with the proposed inertia weight yields better result
in terms of both optimal solution and faster convergence. Added to this, the optimal con-
trol problem is also solved through real coded genetic algorithm (RCGA) and the results
are compared with the PSO algorithms. A typical numerical example is also included in
this paper to illustrate the efficacy and betterment of the proposed algorithm. Several sta-
tistical analyses are carried out from which can be concluded that the proposed method
is superior to all the other methods considered in this paper.

Copyright © 2006 M. S. Arumugam and M. V. C. Rao. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The hybrid systems of interest contain two different types of categories, subsystems with
continuous dynamics and subsystems with discrete dynamics that interact with each
other. Such hybrid system frameworks arise in varied contexts in manufacturing, com-
munication networks, automotive engine design, computer synchronization, and chemi-
cal processes, among others. In hybrid manufacturing systems, the manufacturing frame-
work is composed of the event-driven dynamics of the parts moving among different
machines and the time-driven dynamics of the processes within particular machines.
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2 PSO algorithm with various inertia weight variants

Frequently in hybrid systems, the event-driven dynamics are studied separately from the
time-driven dynamics, the former via automata or Petri net models, PLC, and so forth,
and the latter via differential or difference equations. Two categories of modelling frame-
work have been proposed to study hybrid systems. The first category extends event-driven
models to include time-driven dynamics and the second category extends the traditional
time-driven models to include event-driven dynamics. The hybrid framework consid-
ered in this paper adopts the first category and it is motivated by the structure of many
manufacturing systems.

In these systems, discrete entities that are often referred to as jobs are associated with
temporal states and physical states. The temporal state of a job evolves according to event-
driven dynamics and includes information such as the processing time or departure time
of the job. The physical state evolves according to the time-driven dynamics and describes
some measures of “quality” of the job such as temperature, weight, and chemical com-
position. The interaction of time-driven with event-driven dynamics leads to a natural
tradeoff between temporal requirements on job completion times and physical require-
ments on the quality of the completed jobs (see Figure 2.1). Such modelling frameworks
and optimal control problems have been considered in [2, 14, 18].

The task of solving these problems was simplified by exploiting structural properties
of the optimal sample path. In particular, an optimal sample path is first decomposed
into decoupled segments (busy periods) and then into blocks with critical jobs. The iden-
tification of such critical jobs is the crucial part of the analysis and the key to developing
effective algorithms for solving the optimal control problems, which has been realized
using nonsmooth optimization techniques [2, 4]. By this way few algorithms were devel-
oped for solving the optimal control problems, and they decompose the entire optimal
control problem into a set of smaller convex optimization subproblems with linear con-
straints. The first is a backward recursive algorithm [17] which proceeds backward in
time from the last job to the first job. The complexity of the problem was thus reduced
from exponential N (the number of jobs processed) to a linear bounded one by 2N − 1.
The second is a forward algorithm whose complexity is simply N as shown in [3]. The
third is an improved forward algorithm, which is an extension of forward algorithm. In-
stead of increasing the number of jobs by one at every step, this algorithm may increase
the number of jobs by more than one [18].

The real coded genetic algorithm (RCGA) with different forms of selection methods
and crossover methods is implemented to solve the optimal control problem [1]. The se-
lection procedure comprises roulette wheel selection (RWS), tournament selection (TS),
and the hybrid combination of both. Arithmetic crossover (AMXO) and dynamic muta-
tion (DM) are the other two genetic operators considered.

In the PSO algorithm, initially a constant inertia weight was used for solving the op-
timization problem and later it was replaced with a monotonically or linearly decreasing
inertia weight in order to improve the performance of the PSO algorithm. In this paper a
new inertia weight is proposed in terms of the global best and personal best values of the
objective function. The result obtained through this proposed algorithm is better than all
the other methods.

This paper is divided into eight sections. Section 2 describes the formulation of the
objective function. A description of PSO is presented in Section 3. In Section 4, review
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Figure 2.1. A hybrid model for a single-stage hybrid manufacturing system.

of RCGA is described. The experimental settings for both PSO and RCGA are given in
Section 5. Examples and simulations are presented in Section 6. Section 7 depicts the dis-
cussions and comparison between the simulated results with PSO and RCGA, and con-
clusions are shown in Section 8.

2. Problem formulation of single-stage hybrid system

The hybrid model for a single-stage hybrid manufacturing system shown in Figure 2.1,
receives a sequence of N number of jobs (C1,C2, . . . ,CN ) with the known arrival times
0 ≤ a1 ≤ ··· ≤ aN from an external source. The jobs are processed on first-come first-
serve (FCFS) basis and the processing time s(ui) is a function of a control variable ui, and
s(ui)≥ 0.

The time-driven dynamics of the hybrid framework which is given in (2.1) evolves the
job Ci initially at some physical state ξi at time x0, and the event-driven dynamics is given
in the form of standard Lindley equation and shown in (2.2):

żi(t)= g
(
zi,ui, t

)
, zi

(
xo
)= ξi, (2.1)

xi =max
(
x(i−1),ai

)
+ s
(
ui
)
, i= 1, . . . ,N , (2.2)

where xi is the departure or completion time of ith job.
The presence of the control variable ui in both the physical state żi of the time-driven

dynamics (2.1) and the next temporal state xi of the event-driven dynamics (2.2) justifies
the hybrid nature of the system [18]. The typical optimal path trajectory of the hybrid
system is shown in Figure 2.2.

When the first job arrives at a1, the physical state starts to evaluate the time-driven
dynamics until it reaches the departure time x1. Since the first job completes before the
second job arrives, there is an idle period, in which the server has no jobs to process.
The physical state again begins evolving the time-driven dynamics at time a2 (arrival of
second job) until the second job completes at x2. But here the third job has arrived before
the second job is completed. So the third job is forced to wait in the queue until time
x2. After the second job completes at x2 the physical state begins to process the third job.
As indicated in Figure 2.2, not only the arrival time and departure time cause switching
in the time-driven dynamics according to (2.1), but the sequence in which these events
occur is governed by the event-driven dynamics given in (2.2). In this framework, each
job must be processed until it reaches a certain quality level denoted by Γi. That is, the
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Figure 2.2. The optimal path trajectory of the hybrid system.

processing time for each job is chosen such that

si
(
ui
)=min

[

t ≥ 0; zi
(
t0
)=

∫ to+t

to
gi
(
τ,ui, t

)
dτ + z

(
t0
)∈ Γi

]

. (2.3)

For the above single-stage framework defined by (2.1) and (2.2), the optimal control
objective is to choose a control sequence {u1, . . . ,uN} to minimize an objective function
of the form

J =
N∑

i=1

{
θi
(
ui
)

+φi
(
xi
)}
. (2.4)

Although, in general, the state variables zi, . . . ,zN evolve continuously with time, mini-
mizing (2.4) is an optimization problem in which the values of the state variables are
considered only at the job completion times x1, . . . ,xN . Since the stopping criterion in
(2.3) is used to obtain the service times, a cost on the physical state zi(xi) is unnecessary
because the physical state of each completed job satisfies the quality objectives, that is,
zi(xi)∈ Γi.

Generally speaking, ui is a control variable affecting the processing time through si =
s(ui) for extension to cases with time-varying controls ui(t) over a service time. By as-
suming si(·) is either monotone increasing or monotone decreasing, given a control ui,
service time si can be determined from si = s(ui) and vice versa.

For simplicity, let si = ui, and the rest of the analysis is carried out with the notation
ui. Hence the optimal control problem, denoted by P is of the following form:

P : min
u1,...,uN

{

J =
N∑

i=1

{
θi
(
ui
)

+φi
(
xi
)}

: u≥ 0, i= 1, . . . ,N

}

subject to xi =max
(
x(i−1),ai

)
+ s
(
ui
)
, i= 1, . . . ,N.

(2.5)
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The optimal solution of P is denoted by u∗i for i= 1, . . . ,N , and the corresponding depar-
ture time in (2.5) is denoted by x∗i for i= 1, . . . ,N .

3. Particle swarm optimization

Dr. Kennedy and Dr. Eberhart introduced particle swarm optimization in [6] as an alter-
native to genetic algorithm (GA). The PSO technique has ever since turned out to be a
competitor in the fields of numerical optimization.

The evolutionary algorithms, EAs, (GA and EP) are search algorithms based on the
simulated evolutionary process of natural selection, variation, and genetics. The evolu-
tionary algorithms are more flexible and robust than conventional calculus-based meth-
ods. Both GA and EP can provide a near global solution. However, the encoding and
decoding schemes essential in the GA approach make it take longer time for convergence.
EP differs from traditional GAs in two aspects: EP uses the control parameters (real val-
ues), but not their coding as in traditional GAs, and EP relies primarily on mutation and
selection, but not crossover, as in traditional GAs. Hence, considerable computation time
may be saved in EP. Although GA and EP seem to be good methods to solve optimiza-
tion problems, when applied to problems consisting of high number of local minima, the
solutions obtained from both methods are just near global optimum ones.

Particle swarm optimization (PSO) is one of the modern heuristic algorithms under
the EAs and has gained a lot of attention in various power system applications [7]. PSO
can be applied to nonlinear and noncontinuous optimization problems with continuous
variables. It has been developed through simulation of simplified social models. PSO is
similar to the other evolutionary algorithms in that the system is initialized with a popula-
tion of random solutions. However, each potential solution is also assigned a randomized
velocity, and the potential solutions, called agents, correspond to individuals. Each agent
in PSO flies in the n-dimensional problem space with a velocity, which is dynamically
adjusted according to the flying experiences of its own and its colleagues [6, 12]. Gen-
erally, the PSO is characterized as a simple heuristic of well-balanced mechanism with
flexibility to enhance and adapt to both global and local exploration abilities. It is a sto-
chastic search technique with reduced memory requirement, computationally effective,
and easier to implement compared to other EAs. PSO developed by Dr. Kennedy and Dr.
Eberhart shares some of the common features available in other EAs, except the selec-
tion procedure [11]. Also, PSO will not follow “survival of the fittest,” the principle of
other EAs. PSO when compared to EP has very fast converging characteristics; however,
it has a slow fine-tuning ability of the solution. Also PSO has a more global searching
ability at the beginning of the run and a local search near the end of the run. Therefore,
while solving problems with more local optima, there are more possibilities for the PSO
to explore local optima at the end of the run [6, 8].

The underlying motivation for the development of PSO algorithm was the social be-
havior of animals such as bird flocking, fish schooling, and swarm. Initial simulations
were modified to incorporate nearest-neighbor velocity matching, eliminate ancillary
variable, and acceleration in movement. PSO is similar to genetic algorithm (GA) in that
the system is initialized with a population of random solutions [8]. However, in PSO, each
individual of the population, called particle, has an adaptable velocity, according to which
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it moves over the search space. Each particle keeps track of its coordinates in hyperspace,
which are associated with the solution (fitness) it has achieved so far [15]. This value is
called personal best and is denoted by “pbest.” Additionally among these personal bests,
there is only one, which has the best fitness. In a search space of D-dimensions, the ith
particle can be represented by a vector Xi = X1,X2, . . . ,XD. Similarly, the relevant veloc-
ity is represented by another D-dimensional vector Vi = V1,V2, . . . ,VD. The best among
pbest is called the global best and is denoted by “gbest” in (3.1).

Vi =wVi + ρ1r1
(
gbest−Xi

)
+ ρ2r2

(
pbest−Xi

)
. (3.1)

In (3.1), w is known as the inertia weight. The best-found position for the given particle is
denoted by pbest and gbest is the best position known for all particles. The parameters ρ1

and ρ2 are set to constant values, which are normally given as 2, whereas r1 and r2 are two
random values, uniformly distributed in [0,1]. The position of each particle is updated
every generation. This is done by adding the velocity vector to the position vector, as
described in (3.2) below:

Xi = Xi +Vi. (3.2)

The choice of the PSO algorithm’s parameters (such as the group’s inertia) seems to be
of utmost importance for the speed and efficiency of the algorithm. Inertia weight plays
an important role in the convergence of the optimal solution to a best optimal value as
well as the execution time of the simulation run. The inertia weight controls the local
and global exploration capabilities of PSO [16]. Large inertia weight enables the PSO to
explore globally, and small inertia weight enables it to explore locally. So the selection of
inertia weight and maximum velocity allowed may be problem-dependent.

There are five basic principles of swarm intelligence. First is the proximity principle:
the population should be able to carry out simple-space and time computations. Second
is the quality principle: the population should be able to respond to quality factors in
the environment. Third is the principle of diverse response: the population should not
commit its activities along excessively narrow channels. Fourth is the principle of stabil-
ity: the population should not change its mode of behavior every time the environment
changes. Fifth is the principle of adaptability: the population must be able to change be-
havior mode when it is worth the computational price. Note that principles four and five
are the opposite sides of the same coin. The particle swarm optimization concept and
paradigm presented in this paper seem to adhere to all five principles. The population
is responding to the quality factors pbest and gbest. The allocation of responses between
pbest and gbest ensures a diversity of response. The population changes its state (mode
of behavior) only when gbest changes, thus adhering to the principle of stability. The
population is adaptive because it does change when gbest changes [15, 16].

4. Review of real coded genetic algorithm

The genetic algorithm (GA) is a search technique based on the mechanics of natural ge-
netics and survival of the fittest. GA is an attractive and alternative tool for solving com-
plex multimodal optimization problems [10, 13].
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GA is unique as it operates from a rich database of many points simultaneously. Any
carefully designed GA is only able to balance the exploration of the search effort, which
means that an increase in the accuracy of a solution can only come at the sacrifice of
convergent speed, and vice versa. It is unlikely that both of them can be improved simul-
taneously. Despite their superior search ability, GA still fails to meet the high expectations
that theory predicts for the quality and efficiency of the solution. As widely accepted, a
conventional GA is only capable of identifying the high performance region at an afford-
able time and displaying inherent difficulties in performing local search for numerical
applications [5].

To improve the final local tuning capabilities of a binary coded genetic algorithm,
which is a must for high precision problems, new genetic operators have been intro-
duced [9]. The main objective behind real coded GA implementations is to move the ge-
netic algorithm closer to the problem space. For most applications of GAs to constrained
optimization problems, the real coding is used to represent a solution to a given prob-
lem. Such coding is also known as floating-point representation, real number represen-
tation.

GAs start searching the solution by initializing a population of random candidates
to the solution. Every individual in the population undergoes genetic evolution through
crossover and mutation. The selection procedure is conducted based on the fitness of
each individual. In this paper, the roulette wheel selection (RWS), tournament selection
(TS), and a hybrid of both selection procedures are adopted in conjunction with the elitist
strategy. By using the elitist strategy, the best individual in each generation is ensured to
be passed to the next generation. The selection operator creates a new population by se-
lecting individuals from the old populations, biased towards the best. The chromosomes,
which produce the best optimal fitness, are selected for next generations. Crossover is the
main genetic operator, which swaps chromosome parts between individuals. Crossover is
not performed on every pair of individuals; its frequency being controlled by a crossover
probability (Pc). The probability should have a larger value, typically, Pc = 0.8. The last
operator is mutation which changes a random part of string representing the individual.
This operator must be used with some care, with low probability, typically Pm, ranges
from 0.01 to 0.1 for normal populations. The algorithm is repeated for several gener-
ations until one of the individuals of population converges to an optimal value or the
required number of generations (max gen) is reached.

Michaelewicz indicates that for real valued numerical optimization problems, floating-
point representations outperform binary representations because they are more consis-
tent, more precise, and lead to faster execution. For most applications of GAs to opti-
mization problems, the real coding technique is used to represent a solution to a given
problem. Hence, we use GA with real values in both conventional and hybrid forms, for
solving the optimal control problem.

5. Experimental parameter settings

5.1. Initial population. The initial populations are generated randomly, and the num-
ber of chromosomes generated per population is equal to the dimension of the optimal
problem or equal to the number of jobs (N) involved in the main objective function. In
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this paper the number of chromosomes generated per population (or the dimension of
the optimal control problem) is varying from 5 to 25.

5.2. Selection. Three different types of selection methods are used in this paper: roulette
wheel method (RWS), tournament selection method (TS), and the hybrid combinations
(TS + RWS) with different proportions of roulette wheel and tournament selection meth-
ods.

5.2.1. Roulette wheel selection method. Each individual in the population is assigned a
space on the roulette wheel, which is proportional to the individual relative fitness. Indi-
viduals with the largest portion on the wheel have the greatest probability to be selected
as parent generation for the next generation.

5.2.2. Tournament selection method. In tournament selection, a number “Tour” of indi-
viduals is chosen randomly from the population and the best individual from this group
is selected as a parent. This process is repeated as often as individuals to choose. These
selected parents produce uniform offspring at random. The parameter for tournament
selection is the tournament size Tour. Tour takes values ranging from 2-Nind (number of
individuals in population).

5.2.3. Hybrid selection method. The hybrid selection method consists of the combination
of both RWS and TS. We designed two types of hybrid selections: single level and two level
hybrid selection methods. In single level hybrid selection method, 50% of the population
size adopts TS procedure where as the RWS procedure is used in the remaining 50% of
the population size. The two level hybrid selection method consists of 25% of TS, then
followed by 25% RWS and again 25% TS and 25% RWS.

5.3. Crossover. Crossover is the main genetic operator and consists of swapping chro-
mosome parts between individuals. Crossover is not performed on every pair of indi-
viduals; its frequency being controlled by a crossover probability (Pc). There are several
crossover methods available and here we use hybrid combination of arithmetic crossover
method (AMXO), average convex crossover (ACXO), and direction-based crossover
(DBXO).

5.3.1. Arithmetic crossover method (AMXO). The basic concept of this method is bor-
rowed from the convex set theory [9, 13]. Simple arithmetic operators are defined as the
combination of two vectors (chromosomes) as follows:

x′ = λx+
(
1− λ

)
y,

x′′ = (1− λ
)
x+ λy,

(5.1)

where λ is a uniformly distributed random variable between 0 and 1.

5.4. Population size. From the earlier research, done by Eberhart and Shi [8], it is proved
that the performance of the standard algorithm is not sensitive to the population size but
to the convergence rate. Based on these results the population size in the experiments was
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fixed at 20 particles in order to keep the computational requirements low. The size of the
population will affect the convergence of the solution. Hence the population size is set to
20 in this paper.

5.5. Search space. The range in which the algorithm computes the optimal control vari-
ables is called search space. The algorithm will search for the optimal solution in the
search space which is between 0 and 1. When any of the optimal control values of any
particle exceeds the searching space, the value will be reinitialized. In this paper the lower
boundary is set to zero and the upper boundary to one.

5.6. Dimension. The dimension is the number of independent variables, which is iden-
tical to the number of jobs considered for processing in the hybrid system framework. In
this paper, the dimension of the optimal control problem varies between 5 and 25.

5.7. Maximum generations. This refers to the maximum number of generations allowed
for the fitness value to converge with the optimal solution. We set 1000 generations for
the simulation.

5.8. Boundary. When any of the optimal control value of any particle exceeds the search-
ing space, the value will be reinitialized.

Lower bound = 0, and upper bound = 1.

5.9. Time-varying inertia weight (TVIW). Eberhart and Shi [8] have found a signifi-
cant improvement in the performance of PSO method with the linearly decreasing iner-
tia weight over the generations, time-varying inertia weight (TVIW). The mathematical
representation of TVIW is given in (5.2).

Inertia weight w = (wi−wf
)
(

maxiter− iter
iter

)
+wf , (5.2)

where w1 and w2 are the initial and final values of the inertia weight, respectively, iter is
the current iteration and maxiter is the maximum number of allowable iterations.

5.10. Global local best inertia weight (GLbest IW). In this paper, a new inertia weight
is proposed which is neither set to a constant value nor set as a linearly decreasing time-
varying function. Instead it is defined as a function of pbest and gbest values of the ob-
jective function for each generation and given in (5.3):

inertia weight wi =
(

1.1− gbesti(
pbesti

)

)

, (5.3)

where pbest is the local best value of the particles and gbest is the best among all the local
best values in the swarm.
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6. Examples and simulations

To test the efficacy of our proposed algorithm, we consider the optimal control problem
from (2.5) with the following functions:

θi
(
ui
)= 1

ui
, φ

(
xi
)= x2

i . (6.1)

Now (2.5) becomes

min
u1,...,uN

{

J =
N∑

i=1

(
1
ui

+ x2
i

)}

subject to xi =max
(
x(i−1),ai

)
+ui.

(6.2)

The optimal controls (ui) and cost or fitness (J) for the objective function given in (6.2)
is computed with the following parameter settings. The dimension or the number of
jobs involved in the objective function N = (5,10,15,20,25). The maximum number of
generations is set as 1000 with the population size of 20. The crossover probability, Pc,
and mutation probability Pm are set to 0.8 and 0.1, respectively.

The arrival sequence (ai for i= 1 to N) is {1,1.2,1.5,1.8,2,2.2,2.5,2.8,3,3.2,3.5,3.8,4,
4.2,4.5,4.8,5,5.2,5.5,5.8,6,6.2,6.5,6.8,7}. The number of arrival times is taken according
to the dimension of the problem, that is, the number of jobs considered for processing.
In this paper, PSO algorithms with 3 different inertia weights are considered.

Added to these three PSO techniques, three real coded genetic algorithms are also
considered in this paper for comparison. The genetic operators used in RCGAs are

(1) roulette-wheel selection (RWS),
(2) tournament selection (TS),
(3) hybrid selection (RWS + TS),
(4) arithmetic crossover (AMXO), and
(5) dynamic mutation (DM).

All the six methods which are listed in Table 6.1 are simulated 1000 times at different
periods of time, and their statistical analyses are recorded. The mean or average and stan-
dard deviation (SD) are the basic statistical tests. From these two, the coefficient of variance
(CV), which is the ratio of standard deviation to mean, is calculated. The fourth statistical
test is average deviation (AVEDEV), which will give the average of the absolute deviation
of the fitness values from their mean, which are taken in 1000 simulation runs. Added to
these analyses, hypothesis t test and analysis of variance (ANOVA) test also were carried
out to validate the efficacy of all the six methods. These statistics analyses are presented
in Tables 6.2–6.6. The graphical analyses are done through box plot, which are shown in
Figure 6.2.

A box plot, which is shown in Figure 6.1, provides an excellent visual summary of
many important aspects of a distribution. The box stretches from the lower hinge (de-
fined as the 25th percentile) to the upper hinge (the 75th percentile) and therefore con-
tains the middle half of the scores in the distribution.
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Table 6.1. Various optimization methods.

Method no. Method name Description

1 PSO-1 PSO with constant inertia weight (CIW) = 0.5

2 PSO-2 PSO with linearly decreasing inertia weight (TVIW)

3 PSO-3 PSO with proposed GLbest inertia weight (GLbestIW)

4 RCGA-1 Simple RCGA with TS, AMXO, and DM

5 RCGA-2 Simple RCGA with RWS, AMXO, and DM

6 RCGA-3 Hybrid RCGA with RWS & TS, AMXO, and DM

Table 6.2. Statistical analyses of fitness value for N = 5.

Stat. test Average SD CV AVEDEV t test for N = 5

PSO-1 34.81632 0.00001 0.00000 0.00000 Method nos. P value Best method

PSO-2 34.81631 0.00000 0.00000 0.00000 1 & 2 0.998074 2

PSO-3 34.81631 0.00000 0.00000 0.00000 2 & 3 0.999942 3

RCGA-1 34.84775 0.02246 0.00064 0.01730 3 & 4 0.000000 3

RCGA-2 34.92619 0.06024 0.00172 0.05081 3 & 5 0.000000 3

RCGA-3 34.81637 0.00013 0.00000 0.00098 3 & 6 0.000000 3

Table 6.3. Statistic analyses of fitness value for N = 10.

Stat. test Average SD CV AVEDEV t test for N = 10

PSO-1 102.10156 0.00476 0.00005 0.00272 Method nos. P value Best method

PSO-2 102.10725 0.01614 0.00016 0.00818 1 & 2 0.005011 1

PSO-3 102.09958 0.00058 0.00001 0.00049 1 & 3 0.999118 3

RCGA-1 103.02754 0.42894 0.00416 0.30942 3 & 4 0.000000 3

RCGA-2 103.07814 0.30204 0.00293 0.23756 3 & 5 0.000000 3

RCGA-3 102.10978 0.02283 0.00022 0.09394 3 & 6 0.000000 3

Table 6.4. Statistical analyses of fitness value for N = 15.

Stat. test Average SD CV AVEDEV t test for N = 15

PSO-1 216.15085 2.43051 0.01124 2.13195 Method nos. P value Best method

PSO-2 213.98033 0.05227 0.00025 0.03306 1 & 2 1.000000 2

PSO-3 213.85370 0.00323 0.00002 0.00271 2 & 3 1.000000 3

RCGA-1 215.02073 0.53207 0.00247 0.38085 3 & 4 0.000000 3

RCGA-2 216.36323 0.45778 0.00212 0.37181 3 & 5 0.000000 3

RCGA-3 213.99321 0.06611 0.00031 0.04170 3 & 6 0.000000 3



12 PSO algorithm with various inertia weight variants

Table 6.5. Statistical analyses of fitness value for N = 20.

Stat. test Average SD CV AVEDEV t test for N = 20

PSO-1 461.09201 22.78419 0.04941 19.83020 Method nos. P value Best method

PSO-2 387.08515 0.05378 0.00014 0.04239 1 & 2 1.000000 2

PSO-3 387.00120 0.01241 0.00003 0.01039 2 & 3 1.000000 3

RCGA-1 389.21029 0.89738 0.00231 0.65196 3 & 4 0.000000 3

RCGA-2 391.23726 1.11092 0.00284 0.97646 3 & 5 0.000000 3

RCGA-3 387.29281 0.07721 0.00019 0.07281 3 & 6 0.000000 3

Table 6.6. Statistical analyses of fitness value for N = 25.

Stat. test Average SD CV AVEDEV t test for N = 25

PSO-1 882.39203 38.21507 0.04331 29.67120 Method nos. P value Best method

PSO-2 636.98189 0.13835 0.00022 0.08762 1 & 2 1.000000 2

PSO-3 636.59875 0.03011 0.00005 0.02530 2 & 3 0.999993 3

RCGA-1 639.90364 1.12836 0.00176 0.83489 3 & 4 0.000000 3

RCGA-2 642.32081 1.31279 0.00204 1.05927 3 & 5 0.000000 3

RCGA-3 637.12148 0.13012 0.00020 0.10393 3 & 6 0.000000 3

A far out value
is outside the
outer fence.

The outer fence is 99.
Outer fences are not drawn.

An outside value
is outside the
inner fence.

Inner fence
Adjacent value

Upper hinge
Mean
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Figure 6.1. A simple box plot.

The median is shown as a line across the box. Therefore 1/4 of the distribution is
between this line and the top of the box and 1/4 of the distribution is between this line
and the bottom of the box.
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Figure 6.2. ANOVA t test for all the six methods for (a) N = 10 and (b) N = 15.

The percentage of deviation of all other optimization methods discussed in this paper
with the proposed method, PSO with GLbest inertia (PSO-3), is calculated using (6.3)
and presented in Table 6.7. The negative deviation clearly proves the betterment of the
proposed method compared to the other methods considered in this paper.

Percentage of deviation of the fitness value

=
(

Fitness of PSO-3− Fitness of other method
Fitness of PSO-3

)
× 100.

(6.3)
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Table 6.7. Percentage of deviation of fitness values from the proposed PSO-3 algorithm.

Number
of jobs

Percentage of deviation of fitness values from the proposed

PSO-3 algorithm

PSO-1 PSO-2 RCGA-1 RCGA-2 RCGA-3

5 0.00000 0.0000 −0.0903 −0.3156 −0.0002

10 −0.00751 −0.0075 −0.9089 −0.9584 −0.0100

15 −0.05921 −0.0218 −0.5457 −1.1735 −0.0637

20 −0.02169 −0.0139 −0.5708 −1.0946 0.0754

25 −0.06019 −0.0131 −0.5191 −0.8988 −0.0821

Table 6.8. Execution times for the PSOAs and RCGAs.

Methods Execution time (in seconds)

N = 5 N = 10 N = 15 N = 20 N = 25

PSO-1 2.000 2.500 3.000 3.500 4.000

PSO-2 3.000 4.000 4.000 5.000 5.000

PSO-3 3.000 4.000 4.500 4.500 5.500

RCGA-1 3.000 4.500 5.000 6.500 7.500

RCGA-2 4.000 5.000 6.000 7.000 8.500

RCGA-3 4.000 5.000 6.000 7.500 9.000

The execution times for all the evolutionary algorithms considered in this paper, are
calculated for N = 5, 10, 15, 20, 25 and given in Table 6.8. PSO-1 converges faster than
the other methods but delivers only premature results. At the same time, PSO-2 and
PSO-3 take little longer than PSO-1 but provide better solutions. When comparing PSO-
2 and PSO-3, the latter provides the best solution with almost same convergence speed
as the former. Hence it can be concluded that the proposed GLbest IW improves the
performance of PSO in all possible manner.

7. Discussions

This paper deals with the optimal control problem for a single-stage manufacturing sys-
tems in the hybrid framework. The control variables comprise the processing times of
various jobs and the performance metrics involve measures of quality and of time de-
livery requirements of the completed jobs. Two important EAs (PSO and RCGA) are
implemented to solve the optimal control problem with different parameter designs.

For any optimization search algorithm, generally, it is a good idea for the algorithm
to possess more exploitation ability at the beginning to find a good seed, and then have
the algorithm to have more exploration ability to fine search the local area around the
seed. PSO is an extremely simple algorithm that seems to be effective for optimizing
a wide range of functions. Conceptually, PSO seems to lie somewhere between genetic
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algorithms and evolutionary programming. PSO algorithm solves the optimal control
problem by changing the position and velocity of each particle at each time step, to ob-
tain the best optimal solution. The PSO technique provides the natural mechanism to
make the particles search actively, which encourages employing the small inertia weight
to obtain better optimal solution.

Number of simulations have been performed to illustrate the impact of inertia weight
on the performance of PSO in computing the optimal control of a class of hybrid systems.
From the simulation results it can be observed that the PSO with the proposed inertia
weight, GLbestIW (PSO-3), provides better result compared to the other PSO methods
with TVIW (PSO-2) and CIW (PSO-1) and as well as the RCGAs (RCGA 1, 2, and 3).

The experimental results illustrate that the PSO algorithm has the ability to converge
faster than RCGAs. The impact of inertia weight on the performance of PSO is analyzed
with three different inertia weight variants. When the inertia weight is constant (say I.W
= 0.5, PSO-1), the PSO converges faster and yields the premature solution which is not a
satisfactory result. But at the same time when the inertia weight is replaced with a linearly
decreasing time variant inertia weight (TVIW, PSO-2), the PSO yields a better optimal
solution but the convergence of the solution takes little more time. In order to get a com-
promise between optimal solution and convergence rate (or execution time), a new iner-
tia weight is introduced with PSO (GLbestIW, PSO-3) which comprises global best and
local best values of the fitness function. From the simulation results it is observed that
PSO-3 provides a better optimal solution to the optimal control problem than any other
method considered in this paper. The convergence rate (or the execution time) is also
improved over PSO-2 but slightly higher than PSO-1. Since PSO-3 gives a compromise
between the optimal solution and the execution time, it can be concluded that PSO-3 is
the best method to compute the optimal control of single-stage hybrid manufacturing
systems.

It is also proved through the statistical analyses, which are presented in Tables 6.2–6.6,
for different dimensions of the optimal control problem. All the statistical parameters,
such as mean, standard deviation, C.V, AVEDEV, taken from the 1000 simulated runs of
all the six methods considered in this paper, are proven and the efficacy and betterment
of the proposed method, PSO-3, is verified. The hypothesis t test results and the ANOVA
box plots strengthen and justify the superiority of the proposed method. The results here
hence indicate that the improved performance of the PSO can be obtained by carefully
selecting the inertia weight.

Apart from the PSO, another popular optimization technique, GA, in the form of
RCGA, is also considered to solve the optimal control problem in order to get an external
comparison for the proposed PSO method. Three different RCGAs are considered and
each varies from the other with the composition of genetic operators. Among the three
RCGA methods, RCGA-3 which has hybrid composition of the genetic operators seems
to be better. From the results listed in Tables 6.2–6.6, it can be observed that RCGAs are
superior to PSO-1, especially for higher dimension problems, but fails to maintain the su-
periority with PSO-2 and PSO-3 where the latter is the proposed method. However, the
comparison of the results with RCGAs, strengthen the validity and efficacy of the PSO
methods and particularly the proposed method.
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8. Conclusions

In summary, it can be concluded without any prejudice that PSO performs significantly
well on high-dimensional optimal problems with great speed, reliability, and accuracy
than RCGAs. Also, the impact of the inertia weight in improving the performance of the
PSO towards obtaining the optimal solution for the optimal control of the single-stage
hybrid system is clearly seen. The new concept of defining the inertia weight in terms
of the personal and global best values helps the PSO to perform better in solving any
high-dimensional optimal control problem with faster convergence and accuracy. The
superiority of the proposed method is hence proved by all means. Further improvements
in the performance of PSO algorithms will be investigated in future works.
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