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We present different methods to characterise the decay of beer foam by measuring the
foam heights and recording foam images as a function of time. It turns out that the foam
decay does not follow a simple exponential law but a higher-order equation lnV(t) =
a− bt− ct2.5, which can be explained as a superposition of two processes, that is, drainage
and bubble rearrangement. The reorganisation of bubbles leads to the structure of an
Apollonian gasket with a fractal dimension of D ≈ 1.3058. Starting from foam images,
we study the temporal development of bubble size distributions and give a model for
the evolution towards the equilibrium state based upon the idea of Ernst Ruch to de-
scribe irreversible processes by lattices of Young diagrams. These lattices generally involve
a partial order, but one can force a total order by mapping the diagrams onto the inter-
val [0,1] using ordering functions such as the Shannon entropy. Several entropy-like and
nonentropy-like mixing functions are discussed in comparison with the Young order, each
of them giving a special prejudice for understanding the process of structure formation
during beer foam decay.

Copyright © 2006 S. Sauerbrei et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Beer foam is a fascinating subject not only for connoisseurs of selected cultivated beers
but for scientists as well. Some years ago, in 2002, Leike [14] published his observations
on the decay of beer froth. He found that the volume of beer froth decays exponentially
with time. He looked for the height of the froth for different kinds of German beer as
a function of time. His best fits represent the decay only in the beginning. However,
Dale et al. have already published their fundamental results on the decay of beer foam
in 1993 [8]. They investigated the temporal change in the conductivity of the collapsing
beer foam. They distinguished between three decay phases—the initial phase I , the con-
solidation phase C, and the residual R. For the first two phases I and C they estimated
simple exponential laws for the decay of the foam mass. They concluded that at the first
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stage I of foam collapse the liquid beer drainage driven by gravity is the most important
process. This process takes about 300 seconds. The consolidation stage C is characterised
by an increase of the concentration of polypeptide material in the foam. The enrich-
ment of surface active molecules in the bubble lamella—leading, for example, to bubble
coalescence—is responsible for the collapse process.

Following these arguments, one may call in question the results presented by Leike
[14]. This leads to the problem, if it is possible to find a similar separation of different
processes in the temporal development of the foam volume. Usually one describes foams
by their bubble or cavity size distribution function. How does the bubble size distribution
function develop during the decay of the foam? No answers, neither for beer foam, nor for
other fast collapsing fluid/gas foams, are known to this question. The problem is that one
cannot simply look into the three-dimensional body of the foam because of the refraction
of light.

Especially in case of beer foam it is well known that the surface of the beer glass
strongly influences the properties of the foam. Therefore, it seems to be very hard to
conclude to the inner bubble size distribution function from looking at the outside of the
glass. Nevertheless, there should be at least some correlations between the outer and the
inner structure of the bubble arrangement, which could be figured out by looking at the
temporal development of the foam as well as of the increase of the liquid beer flowing out
of the foam. It is our aim to get information about the structure of the body of the foam
by looking only from the outside.

2. Experimental setup

In order to investigate the decay of beer foam, at first one has to produce the foam. The
traditional way of producing beer foam is to pour a glass of beer. Unfortunately, this
method does not lead to reproducible results, since one cannot reproduce the initial bub-
ble size distribution function. For this reason, we decided to foam up the unfoamed beer
with ultrasound (Ultrasonik 28x; NEY) for 13 seconds. This unfoamed beer is allowed
only to posses at most 5% of foam with respect to its fluid part.

It is well known that the shape of the glass and the amount of beer to be foamed will
influence the decay of the beer foam. For this reason we investigated the decay of the
foam in different measuring glasses (100 ml, 2.6 cm in diameter; 250 ml, 3.6 cm in di-
ameter; and 500 ml, 5 cm in diameter) with different amounts of beer: 20 ml beer in the
100 ml measuring glass (abbreviation: 20/100), 50 ml beer in the 250 ml glass (50/250),
and 100 ml beer in the 500 ml measuring glass (100/500). To investigate the temperature
influence on the decay of foam, we used different temperatures in our beer foam experi-
ments: T = 0◦ ± 1◦C, 8◦ ± 1◦C, and 24◦ ± 1◦C.

Using these experimental conditions, the initial volume at time t0 = 0 of the freshly
generated foam after ultrasound treatment was about twice as much compared to the
volume of the unfoamed beer. About 10 Vol.%—with respect to the foam volume—of
the beer remained unfoamed. For example, in case of 20 ml beer we obtained 40 ml foam
and 4 ml unfoamed beer after ultrasound foaming.

The volume of the foam and the liquid beer phase was measured in time intervals of
20 seconds by visual inspection.
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In order to estimate the bubble size distribution function, we analysed photographs
of collapsing beer foam by an optical measuring technique and computer-aided image
processing [10]. The measuring device consisted of a high resolution CCD-camera (JAI
CV-A11), a telecentric lens, coaxial diffuse illumination, and a fast frame grabber card,
leading to an accuracy up to 5 μm. The photographs were recorded every five seconds
starting one minute after foaming up. In order to avoid optical distortions, the beer foam
was generated in special square glass vessels (2.5× 2.5 cm) manufactured in our labora-
tories.

3. Results

3.1. Temporal behaviour of the foam volume. We investigated the volume dependence
V(t) of beer foam decay measuring the height of the foam and the level of liquid beer as
a function of time. In every case we averaged arithmetically five independent measure-
ments under the same conditions. The data obtained were approximated by various curve
fitting calculations. Out of the tested fitting functions we always found the following fit-
ting formula V(t) with highest priority:

lnV(t)= a− bt− ct2.5 (3.1)

fulfilling the constraints

lim
t→∞V(t)= 0, V(t)≥ 0 ∀t > t0. (3.2)

Using (3.1), we estimated the coefficients for many kinds of beer and different tempera-
tures in different glasses.

Taking Beck’s Pils from Bremen, for instance, we obtained in case of the (20/100/24◦C)
experiment equation (3.3) (see Figure 3.1):

V(t)= exp(a)exp(−bt)exp
(− ct2.5),

lnV(t)= 3.64− 4.34 · 10−3t− 6.66 · 10−7t2.5, R2 = 0.998.
(3.3)

This is not an ordinary (simple) exponential function, but it can be interpreted as
a product function decomposable into two separate functions, which describe different
processes of the foam decay at different time intervals:

V1(t)= exp
(
a1
)

exp
(− b1t

)
,

lnV1(t)= a1− b1t,

lnV1(t)= 3.66− 5.40 · 10−3t

(3.4)

for 0s≤ t ≤ 160s, and

V2(t)= exp
(
a2
)

exp
(− c2t

2.5),

lnV2(t)= a2− c2t
2.5,

lnV2(t)= 3.02− 1.13 · 10−6t2.5

(3.5)

for 200s≤ t ≤ 380s.
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Figure 3.1. The volume of the beer foam as a function of time. The fitting function is given by (3.3).
The arrow approximately indicates the point, where drainage switches to bubble rearrangement as
dominating process.

The coefficient a ≈ a1 represents the foam volume V(0) ≡ V0; V1(0) = exp(a1)
≈ exp(a)= V0 immediately after the ultrasound foaming up of the beer. b1 is the coeffi-
cient of the exponential decay at the beginning, which is mainly caused by the drainage of
the liquid beer out of the foam (see Figure 3.2). The essential new factor is the term−c2t2.5

or exp(−c2t2.5), respectively. The corresponding function V2(t)= exp(a2)exp(−c2t2.5)—
which has never been described before—represents the rearrangement of the bubbles in
the second time interval C (see Figure 3.2). The coefficient a2 represents the fictive vol-
ume V2(0)= exp(a2) of this second process at t0 = 0. The character of this process will be
discussed later.

The temperature dependence is shown in Table 3.1 for Beck’s Pils in the (20/100) ex-
periments. The lower the temperature is the smaller the amount of initial foam volume
V0 = exp(a) in lnV(t) after ultrasound treatment of beer is and the faster the drainage
is. This can be seen from the coefficients b and b1, respectively. The coefficients of the
rearrangement process in the phase C decrease with lowering the temperature, which
indicates a slowing down of the underlying process of bubble rearrangement.

Table 3.2 shows an example of the influence of the size of the beer glass on the decay
of beer foam.

Taking wider glasses, we needed more beer for inspection of the decay of foam. The
wider the glasses are and the more beer has to be foamed up, the slower the drainage
is and the rearrangement processes are in tendency. For wider glasses it is much more
difficult to separate the two processes (see Figure 3.3).

Comparing different kinds of beer at the standard experimental conditions (20/100/
24), Table 3.3, we obtained the coefficients shown in Table 3.3. As can be seen, in case of
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Table 3.1. Temperature dependence of the coefficients for Beck’s Pils in the (20/100) experiments.

Beck’s Pils a/a1/a2 b/b1 c/c2

20/100/0◦ C

lnV(t) 3.42 4.83 · 10−3 3.22 · 10−7

lnV1(t) 3.43 5.65 · 10−3 —

lnV2(t) 2.85 — 9.12 · 10−7

20/100/8◦C

lnV(t) 3.56 4.56 · 10−3 4.48 · 10−7

lnV1(t) 3.58 5.53 · 10−3 —

lnV2(t) 3.03 — 1.01 · 10−6

20/100/24◦ C

lnV(t) 3.64 4.34 · 10−3 6.66 · 10−7

lnV1(t) 3.66 5.40 · 10−3 —

lnV2(t) 3.02 — 1.13 · 10−6
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Figure 3.2. The foam volume as a function of time. The three different functions lnV , lnV1, and lnV2

are put together in this figure for comparison.

Diebel’s Alt one gets more foam and the lowest decay by drainage and during rearrange-
ment. In other words, under these conditions the foam of Diebel’s Alt is more stable than
that of Beck’s or Vitamals.

It seems to be possible to enhance such kinds of measurements in order to compare
the foam quality of different kinds of beer.
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Table 3.2. Influence of the size of the beer glass on the decay of the beer foam (Beck’s Alkoholfrei) at
24◦ C.

Beck’s Alkoholfrei a/a1/a2 V0/V1/V2 (mL) b/b1 c/c2

20/100/24◦C

lnV(t) 3.64 38.09 4.34 · 10−3 6.66 · 10−7

lnV1(t) 3.66 38.86 5.40 · 10−3 —

lnV2(t) 3.02 20.49 — 1.13 · 10−6

50/250/24◦C

lnV(t) 4.65 104.58 2.67 · 10−3 4.64 · 10−7

lnV1(t) 4.68 107.77 3.89 · 10−3 —

lnV2(t) 4.24 72.24 — 6.74 · 10−7

100/500/24◦C

lnV(t) 5.27 194.42 2.92 · 10−3 3.94 · 10−7

lnV1(t) 5.30 200.34 3.90 · 10−3 —

lnV2(t) 4.68 129.02 — 6.70 · 10−7
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Figure 3.3. An example for the decay of beer foam which is not separable under these conditions.

3.2. Drainage process. Dale et al. suggested that the exponential shrinking of the volume
according to (3.4) is mainly caused by the drainage [8]. A first inspection seems to sup-
port this idea, since the fitting curve V1(t)= exp(a1)exp(−b1t) for the data of the initial
phase I (0s≤ t ≤ 160s) is an exponential one.
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Table 3.3. Comparison of beer foam decay for different kinds of beer under the same constraints of
the 20/100/24◦C experiments.

a/a1/a2 V0/V1/V2 (mL) b/b1 c/c2

Beck’s Pils

20/100/24◦C

lnV(t) 3.64 38.09 4.34 · 10−3 6.66 · 10−7

lnV1(t) 3.66 38.86 5.40 · 10−3 —

lnV2(t) 3.02 20.49 — 1.13 · 10−6

Diebel’s Alt

20/100/24◦C

lnV(t) 3.83 — 4.06 · 10−3 5.25 · 10−7

lnV1(t) 3.85 — 5.10 · 10−3 —

lnV2(t) 3.38 — — 1.06 · 10−6

Vitamals

100/100/24◦C

lnV(t) 3.66 — 5.46 · 10−3 6.54 · 10−7

lnV1(t) 3.67 — 6.42 · 10−3 —

lnV2(t) 3.10 — — 1.50 · 10−6

However, this drainage process is at the same time overlaid by the beginning of the
rearrangement. Possibly, the separation into two parts of the overall function (3.3) based
on the experimental data enables studying the underlying processes in more detail.

In the region between 200 s and 380 s the function of the temporal dependence of the
volume has been determined to be V2(t)= exp(a2)exp(−c2t2.5) (3.5), where V2,0 ≡V2(0)
is the fictitious initial volume for this process of bubble rearrangement. If we calculate
the difference between the experimental data in the first time interval I and the function
V2(t), we can estimate the function of the pure drainage without the contribution of the
rearrangement process by

Vd ≈V(t)−V2(t) (3.6)

for 0s≤ t ≤ 160s.
The best fit for these data is the following parabola (see Table 3.4 and Figure 3.4):

Vd = a+ ct+ et2

1 + bt+dt2
, R2 = 0.999998. (3.7)

Even simpler parabola will give reasonable results like, for example,

Vd = a+ bt+ ct2, R2 = 0.9999, (3.8)

or

Vd = a+ bt+ ct2.5, R2 = 0.9988, (3.9)
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Table 3.4. Coefficients of (3.7) for the drainage process.

a= 17.54 b = 3.8 · 10−4 c =−1.5 · 10−1 d = 1.05 · 10−5 e = 3.43 · 10−4
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1 + bt + dt2

a = 17.592
b = 0.00038474
c = −0.15559
d = 0.00001049
e = 0.00034347
R2 = 0.999998

Figure 3.4. Fitting of the drainage data by the function of (3.7).

however, all these fitting functions do not fulfil the (artificial) constraint limt→∞Vd(t)
= 0, which means that the experimental data are embedded in the function V2(t) for the
interval 200≤ t ≤∞, unless a third process starts to govern the decay of the foam at time
t ≥ 330s.

An exponential approach of the type

Vd = a+ bexp
−t
c

, R2 = 0.9975, (3.10)

exhibits systematic deviations from the experimental data. So, the above-mentioned pa-
rabola (3.7) is the best description for the experimentally observed temporal decay of the
foam volume, if one considers drainage as its only reason. For the moment we are far
from understanding this process. Therefore, we have to restrict ourselves presently only
on experimental data and first numerical results of the very complex behaviour of the
foam decay by drainage.

3.3. The Apollonian rearrangement. The temporal behaviour of the bubble rearrange-
ment in the consolidation stage C (200s < t < 380s) is described in a very good agreement
by the equation V2(t)= exp(a2)exp(−c2t2.5) (3.5).

Dale et al. assumed that the increase of the concentration of polypeptide materials in
the foam lamella is responsible for this consolidation [8]. We observed a dramatic change
in the bubble size distribution function, which starts from a very sharp distribution func-
tion of very small bubbles just after ultrasound foaming up. Simple visual inspections of
the changes in the foam during this time interval indicate that the bubble rearrange-
ment is the essential process. Within time, large bubbles survive surrounded by small and
very small bubbles, which are filling the remaining spacing between the larger bubbles
(Figure 3.5). These structures are strongly suggestive for the structure of an Apollonian
gasket (Figure 3.8).
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Figure 3.5. Apollonian foam at the inner walls of a plane beer glass.

Figure 3.6. The construction of Apollonios of Perge (see [17]).

Apollonios of Perge (262 to 192 BC [28]) put two circles (of different sizes) inside a
large one, both touching each other and the large one at three different points of con-
tact (see Figure 3.6). In both the two remaining circular triangles he inscribed the largest
possible circles (called Apollonian circles, represented with magenta colour in Figure 3.6),
each of them having contact with the original circles at three points. He ended up with
five circles and six spacing circular triangles [17].

G. W. Leibniz (1646–1716) [17] repeated this procedure ad infinitum (compare Figure
3.7):

Imagine a circle; inscribe within three other circles congruent to each
other, and of maximum radius; proceed similarly with each of these cir-
cles and within each interval between them, and imagine that the process
continues to infinity . . . (quoted from Mandelbrot, The Fractal Geometry
of Nature, page 170) [15, 16].
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Figure 3.7. Sketch of the Leibniz packing.

Figure 3.8. Apollonian gasket.

His construction is known today as the Apollonian packing or Leibniz packing [16].
Following the notation of Mandelbrot, a finite set of Apollonian circles constructed this
way is called Apollonian gasket (Figure 3.8).

The Apollonian cascade is not self-affine. Nevertheless, one can use the Hausdorff-
Besicovitch definition to define a measure. Boyd [3, 4] has estimated numerically this
fractal dimension D to be in the range of

1.30197 < D < 1.314534 [4], or D ≈ 1.3058 [3]. (3.11)

In order to confirm the assumption that the bubble rearrangement during the consolida-
tion phase C is just the formation of an Apollonian gasket, we estimated the Hausdorff-
Besicovitch dimension D for the photographs, which have been taken from the bubbles
on the walls inside the beer glasses. For this purpose we used a special square glass vessel
in order to get plane surfaces.
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(a) (b)

Figure 3.9. Cellular automata are used to estimate the borderlines of the black disks representing the
bubbles in the foam: (a) transformation rules of the cellular automaton, (b) black disks and surround-
ing borderlines (pink coloured), exemplarily drawn for two bubbles.
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Figure 3.10. The fractal dimension D as function of time for the decomposition of the foam of Beck’s
Alkoholfrei beer at various temperatures. The spline functions are given by (3.12).

The grey valued pictures of the bubbles have to be transformed firstly into binary
pictures (black and white pictures). Using cellular automata we estimated the borderlines
of the black disks getting a set of circles (see Figure 3.9).

From these pictures of the borderlines we calculated the fractal dimensions D of the
arrangement of circles at different times. The dimension D of the set of circles converges
to the dimension of the Apollonian gasket (Figure 3.10).
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Table 3.5. Coefficients of (3.12).

Beck’s Alkoholfrei aD bD cD dD R2

8◦C 1.72 1.00 · 10−5 1.84 · 10−6 9.01 · 10−8 0.987

24◦C 1.67 1.24 · 10−5 1.56 · 10−6 7.77 · 10−8 0.997

Figure 3.11. Apollonian spheres (this reproduction has been taken from [18]; the publishing house
does not exist any more).

In order to quantify the statement of the temporal behaviour of the fractal dimension
D, we estimated the spline functions (3.12) (see Figure 3.10):

D(t)= aD − bDt− cDt
2.5 +dDt

3 (3.12)

for the decay of the foam volume at 8◦C and 24◦C in case of Beck’s Alkoholfrei beer (see
Figure 3.10 and Table 3.5 for the temperature dependence of the coefficients).

It is an interesting result that one can correlate the fractal dimension D of the pictures
of the foam surfaces with the state of the decomposition of the foam. As a consequence,
one can state that the fractal Hausdorff-Besicovitch dimension D of these pictures is a
measure for the geometrical rearrangement process of the foam bubbles.

One may argue that one cannot conclude from the inspection of the outer surface of
the foam to its inner part. Therefore it should not be allowed to extrapolate the Apollo-
nian rearrangement observed on the foam surface to the processes in the interior of foam.
On the other hand, there is an early work on Apollonian packages of spheres [7, 18],
which has already been used to describe dense mixtures of particles of very different sizes
(Figure 3.11). Moreover, Japanese mathematicians of the Wasan school discussed in 1822
a similar problem on wooden Sangaku Tables in order to put Kissing Spheres inside a
sphere [20, 22].

Sometimes, one can even recognise bubbles belonging somehow to the inner part of
the foam and one can detect a structure, which resembles strongly an Apollonian gasket of
spheres. This is by no means a proof, but it is a strong indication that the rearrangement
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Figure 3.12. Time dependence of the volume of the liquid beer phase flowing out of the foam (dark
blue), the portion of fluid beer in the foam (blue) and fitted curve (red).

of foam bubbles as an Apollonian package of spheres occurs in the interior of foam in a
similar way as compared to the interface area of the foam and the glass wall.

3.4. The liquid content of the foam. In brewery techniques it is important to know the
amount of liquid phase in the foam at time t. Obviously, one can record the increasing
volume of fluid beer under the foam (see Figure 3.12) getting also the remaining portion
of the liquid phase in the foam [2].

The time-dependence of the liquid volume fraction in the foam is given by

V(t)=V0 exp
(−αVt

βV
)
, V0 =Vtotal, lim

t→∞V(t)= 0, (3.13)

where αV and βV are the coefficients of the corresponding regression curve (βV ≈ 1).
On the other hand, from the recorded photographs (Figure 3.13) one can estimate the

size of the bubble area AB(t) which covers the foam picture at time t. Referring to the total
image area AI , one can calculate the remaining non-bubble area AL(t) which represents
the liquid part of the two-dimensional foam image (3.14),

AL(t)= (AI −AB(t)
)= (AI −AB(0)

)
exp

(−αAt
βA
)
,

(
AI −AB(0)

)∝Vtotal,

lim
t→∞AL(t)= lim

t→∞
(
AI −AB(t)

)= 0,

αA, βA = coefficients of the regression curve
(
βA ≈ 2

)
.

(3.14)

Figure 3.14 shows the temporal development of the two-dimensional liquid area of the
images and Figure 3.15 a snapshot of the bubbles after 165 seconds.

Now, one can correlate the liquid volume V(t) (see Figure 3.12) of the three dimen-
sional foam and the two-dimensional liquid portion AL(t) (see Figure 3.14). For this pur-
pose one has to normalise the amplitudes of both functions: V(t)/V(0) and AL(t)/AI

(Figure 3.16).
This representation shows a clear functional correlation between the classically ob-

tained time dependence of liquid foam volume fraction and the optically determined
time dependence of the two-dimensional liquid portion of the foam.
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AI = total image area

AB = bubble area

AL =non-bubble area
(filled by liquid)

Figure 3.13. Determination of the liquid fraction of foam from a foam image taken as snapshot of
shrinking beer foam with trapped bubbles areas.
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Figure 3.14. Temporal development of the two-dimensional liquid area of the foam pictures according
to (3.14). For the marked point at 165 s, see Figure 3.15.

3.5. Bubble size distribution. Usually, foam is characterised by its bubble size distribu-
tion function. Starting with a very narrow distribution function (Figure 3.17) immedi-
ately after the ultrasound treatment of the beer sample, we observed a fast broadening



S. Sauerbrei et al. 15

Figure 3.15. Snapshot of the two-dimensional arrangement of the bubbles at the inner walls of the
glass after 165 s.
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Figure 3.16. Correlation between the normalised two-dimensional liquid foam area and the three-
dimensional liquid foam volume fraction. The process starts in the upper right corner.

during the initial state I of drainage due to ordinary diffusion (Figure 3.18(a)). But in
the consolidation stage C we observed a very surprising behaviour. Instead of continuing
the normal diffusion process, the distribution function splits into many separated peaks
(Figure 3.18(b)). Only very few and quite different bubble sizes survived.

This very strange behaviour encouraged us to look for another method of description
for the development of the temporal size distribution function. Starting from the famous
articles of Ruch on diagram lattices as structural principle [23] on the principles of increas-
ing mixing [25] and on information extent and information distance [24] we suggest a
model for bubble size distribution described in the following section.
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Figure 3.18. Bubble size distribution functions: (a) 60 s and (b) 260 s after foaming up at 24◦C; the
relative frequency is shown as a function of the bubble size diameters.
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Figure 4.1. Histogram of the bubble size distribution which corresponds to the distribution function
260 s after foaming up which is shown in Figure 3.18(b).

Figure 4.2. A Young diagram as a row of n= 6 boxes.

4. Diagram lattices and mixing functions as a model for bubble size distributions

Originally Ruch used lattices constructed from Young diagrams [26] in order to describe
the development of a discrete distribution function. Together with Schönhofer [26] he
introduced a greater relation for Young diagrams [31, 32], in order to answer questions
which appear in connection with the theory of chirality functions. This greater relation
enabled him to construct a lattice. He could show that this lattice introduces a partial
order of the Young diagrams in contrast to the total order which has been introduced by
Young [31]. For describing the time development of irreversible processes in closed sys-
tems he mapped the diagrams which are partitions of natural numbers onto the Shannon
entropy [23, 27]. Going back to Jaynes [12, 13], a comparable idea has been developed
at the same time by Uhlmann [29] on the Shannon entropy and related functionals on
convex sets. Some years later Uhlmann and Alberti described dissipative motions in state
space by use of stochastic transformations of convex sets like probability vectors on alge-
bras over real numbers and star algebras like C� and W� [1].

Surprisingly, this powerful idea of lattices based on Young diagrams has later been used
to rank biodiversity indices for the comparison of the water quality of lakes [6].

4.1. Histogram representation of bubble size distribution functions and Young dia-
grams. Now, let us assume that a row with n boxes in a Young diagram is a representa-
tion of the number, the frequency, or even the probability of bubbles, the size of which
belongs to the same interval (see Figures 4.1 and 4.2).

For example, if the diagram consists only of one row (Figure 4.2), then all bubbles be-
long to the same bubble size interval. This is a realistic assumption for the foam in status
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Figure 4.3. Development of a Young diagram by shifting one box from the upper row to the next lower
row.

Diagrams with n boxes Partitions of n = 6
integers

γ

γ′

6 P

5 + 1 P′

Figure 4.4. Comparison between diagrams γ and γ′ with n boxes and their corresponding partitions
P and P′ of n= 6 integers. The unequality relations γ ⊃ γ′ and P ⊃ P′ hold, respectively.

nascendi immediately after ultrasound treatment (cf. Figure 3.17). During the temporal
development, larger bubbles are created, which means in our model that the number of
the small initial bubbles diminishes for the benefit of larger bubbles, that is, the diagram
develops (see Figure 4.3).

Following the definition of Ruch [23],
A diagram γ is called greater than a diagram γ′, denoted by γ ⊃ γ′, if γ
can be constructed from γ′ by moving boxes exclusively upward, that is,
from shorter rows into larger or equal ones.

From this definition Ruch transformed a diagram to a smaller neighboured one by
moving one box from a larger row into a smaller one.

It is also known [23] that the lengths of the rows of a diagram represent a partition
of the integer n, that is, the decomposition of n into a sum of integers. In this case, the
definition for the greater relation given by Ruch [23] is the following:

A partition is called greater than another, if the transition from a smaller
to the greater one can be made in steps, whereby partition numbers in-
crease at the expense of others which are not larger (see Figure 4.4).

For further details the reader is kindly requested to look at the original literature [23,
26].

Following Ruch’s rule for the construction of his partition lattice or diagram lattice,
the most striking result of the greater relation is the fact that one gets a total order on
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Figure 4.5. Diagram lattices of n boxes and m diagrams within each lattice. The totally ordered sets
are given in grey coloured boxes, whereas the partially ordered set for n = 6 is represented with red
and pink coloured boxes. The pink coloured diagrams of the same level are incomparable elements
of this lattice. The numbers p with 1 ≤ p ≤ m at the right side of the diagrams demonstrate their
sequence with respect to the total order given by Young, which is identical with the order of the sums
S(Oγ) of the partial sums (4.4) [26] in case of the lattice for n= 6.

the set of all possible diagrams for n boxes only if n≤ 5, but a partial order, if n > 5 (see
Figure 4.5).

The greater relation is originally defined [26] by the vector of the partial sums oi of
the ith row of the partition diagram γ, each vector having the length n and filled up with
zeros if necessary, for example,
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⎜
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o1 = ν1

o2 = ν1 + ν2

o3 = ν1 + ν2 + ν3

o4 = ν1 + ν2 + ν3 + ν4

···

.

(4.1)
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Figure 4.6. Two incomparable diagrams (see Figure 4.5 for n= 6) are shown together with their cor-
related partition vectors γ′ and γ′′ and the vectors O′

γ and O′′
γ of the corresponding partial sums.

A partition γ is greater than a partition γ′, denoted by γ′ ⊂ γ, if and only if

o′i ≤ oi ∀i= 1, . . . ,n, (4.2)

where n is given by the total number of all boxes of the diagram.
We demonstrate this statement by a comparison of the above-mentioned diagram γ

with two other incomparable diagrams (see Figure 4.6).
A simple inspection of these examples shows that the diagrams γ′ and γ′′ (Figure 4.6)

are both smaller than the diagram γ (4.1), that is, γ′,γ′′ ⊂ γ.
But if we compare both the diagrams γ′ and γ′′ (Figure 4.6) with each other, we cannot

say that γ′ is smaller than γ′′ nor that the opposite is true since the components of the
vectors of the partial sums do not fulfil the condition o′i ≤ o′′i for all i = 1, . . . ,n or its
negation, respectively. For this reason the diagrams γ′ and γ′′ are not comparable.

Some additional statements should be mentioned. One can define a distance di(γ,γ′)
between two neighboured diagrams γ and γ′ as the number of rows which a box has to
be shifted in order to step from the upper row of the initial diagram γ to the lower row of
the destination diagram γ′. The sum of all distances on a way from the greatest diagram
in the diagram lattice consisting of only one row with n boxes to the smallest diagram
which contains always one box in each of the n rows is given by the expression (4.3)

n∑

i=1

di(γ,γ′)=
n−1∑

i=1

i. (4.3)

It is remarkable that this sum of distances does not depend on the way from top to bot-
tom, that is, the chosen prejudice of how to step through the incomparable diagrams of
the partially ordered lattice does not affect this sum.

The second remark concerns the sum S(Oγ) of the partial sums of elements in the
vector Oγ of the partial sums. The set of these sums

S
(
Oγ
)=

n∑

i=1

oi (4.4)

reflects the structure of the partially ordered set of diagrams. In the case of diagrams
with n < 7, incomparable elements are characterised by the same number S(Oγ)= S(O′γ).
Then, we can define that a diagram γ is called greater than a diagram γ′, if the inequality
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Table 4.1. Iterative calculations for the number m of Young diagrams for a given number n of boxes.

m 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
n− 0
n− 1
n− 2
n− 3
n− 4
n− 5
n− 6
n− 7
n− 8
n− 9
n− 10
n− 11
n− 12
n− 13
n− 14
n− 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3 3 3 3 3 3

1 3 4 5 5 5 5 5 5 5 5 5
1 3 5 6 7 7 7 7 7 7 7

1 4 7 9 10 11 11 11 11 11
1 4 8 11 13 14 15 15 15

1 5 10 15 18 20 21 22
1 5 12 18 23 26 28

1 6 14 23 30 35
1 6 16 27 37

1 7 19 34
1 7 21

1 8
1

The row n− 7 can be
calculated from the sums

of n = 7.

(4.5) between the sum of partial sums (partitionings) holds:

S
(
Oγ
)
> S
(
O′γ
)
. (4.5)

This definition defines a total order onto the set of all diagrams. So, we can enumerate
the diagrams in a natural way by integers 1 ≤ p ≤m; p,m ∈ ℵ, where m is the number
of diagrams or partitions which can be constructed from n boxes or from the integer n
(see Figure 4.5). But there is no polynomial expression to calculate the value m for a given
number n, since this problem is a nonpolynomial NP-complete problem [9].

However, one can find iteration equations [30] which give the value m for each nat-
ural number n of boxes (see Table 4.1 for n = 1, . . . ,16). A solution of this problem was
presented by Rademacher using a series expansion [21].

4.2. Mapping Young diagrams on scalar functions. If one normalises the number of
boxes νγ,i in the ith row of a given Young diagram γ = (vγ,1,νγ,2, . . . ,νγ,i, . . . ,νγ,n) of n boxes
(or the corresponding partition) with respect to the overall number of boxes n according
to (4.6),

pγ,i =
νγ,i

n
, (4.6)

one can map all diagrams onto a scalar function, for example, the Shannon entropy I(γ)
[23, 27]:

I(γ)= F1(γ)=−
n∑

i=1

pγ,ild
(
pγ,i
)
. (4.7)

By this way one introduces a total order on the set of all Young diagrams belonging to
a given number n of boxes.
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On the other hand, one can also obtain a total order γ ≥ γ′ on the set of diagrams or
partitions for any given number n by the definition [26]:

γ > γ′, if moving from top to bottom in the diagram lattice by compar-
ison of corresponding rows the first row is reached, where the relation
νi > ν′i holds.

This definition by Ruch and Schönhofer [26] of a total order on the set of diagrams
corresponds in the case of n < 7 to the total order which is given by the sum S(Oγ) (4.4)
of partial sums.

Figure 4.7 shows (a) the Shannon entropies of the diagrams as a function of the consec-
utive numbers p of the totally ordered set of entropy values, and (b) the corresponding
partial sums of Shannon entropies up to p. Both functions are increasing monotonous
and discrete functions of the ordering numbers p of the diagrams which correlate with
the progression of the diffusion process.

For the further discussion let us mention that the sum S of all normalised row values
pγ,i (4.6) of a partition vector γ is equal to one (simplex condition), that is, the trace of
the vector is one,

S=
n∑

i=1

pγ,i = 1, 0≤ pγ,i ≤ 1. (4.8)

By the simplex condition (4.8) one obtains a normalised and bounded domain—the
simplex Sn—on which the Shannon entropy is defined. Also, the function over this do-
main of definition itself, that is, the Shannon entropy I(γ)= F1(γ) (4.7) can be normalised
for any number n of boxes by (4.9) (see Figure 4.8 for n= 3):

F2(γ)= 1
ld(n)

F1(γ)=− 1
ld(n)

n∑

i=1

pγ,i ld
(
pγ,i
)
. (4.9)

This normalised Shannon entropy F2(γ) maps the Young diagrams onto real numbers of
the closed interval [0,1]:

γ �−→ F2(γ)∈ [0,1]. (4.10)

It is now very important to realise that the function F2(γ) is a concave function [19] (also
called convex from the above [5, 11]) over the simplex Sn which in addition fulfils the
restrictions

F
(
Sn
)= 0, for vi = 1, ν j �= vi,

F
(
Sn
)= 1, for ν1 = ν2 = ··· = νn = 1

n
.

(4.11)

The Shannon information entropy functions F1(γ) or F2(γ), respectively, can be consid-
ered as a measure for the gain of information if one executes an experiment where the
probabilities of its events are distributed under the restriction of the simplex constraints
(4.8).

The Shannon entropy is only one possible choice among an infinite number of possi-
bilities to find concave scalar functions over the simplex Sn. Examples for other concave
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Figure 4.7. Progression of diffusion process: (a) Shannon entropies of the Young diagrams as a function
of the ordering number p according to (4.4), (b) partial sums of Shannon entropies up to p as a
function of p.

functions—comparable with the normalised Shannon entropy F2—which map the Young
diagrams onto the closed interval [0,1] and which fulfil condition (4.11), respectively,
over n-dimensional simplices Sn as domains are

(i) the normalised general tent function F3(γ) (see Figure 4.9 for n= 3),

F3(γ)= 1− n

2(n− 1)

n∑

i=1

∣
∣
∣
∣pγ,i− 1

n

∣
∣
∣
∣, (4.12)
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Figure 4.8. Normalised Shannon entropy F2(γ) for n = 3 defined on the simplex S2 over triangular
coordinates in the plane.

(ii) the normalised general logistic function F4(γ),

F4(γ)= n

n− 1

n∑

i=1

[(
1− pγ,i

)
pγ,i
]
, (4.13)

(iii) the normalised general biquadratic function F5(γ) (stretched to the simplex
boundaries, see Figure 4.10 for n= 3),

F5(γ)= 1− n4

(n− 1)4 + (n− 1)

n∑

i=1

(
pγ,i− 1

n

)4

, (4.14)

(iv) the normalised general k-quadratic function F6(γ) (stretched to the simplex
boundaries), which becomes the logistic function for k = 1 and the biquadratic
function for k = 2, respectively,

F6(γ)= 1− n2k

(n− 1)2k + (n− 1)

n∑

i=1

(
pγ,i− 1

n

)2k

, with k = 1,2, . . . . (4.15)

There are further functions fulfilling condition (4.11) over n-dimensional simplices Sn,
such as

(i) the normalised general biquadratic function F7(γ) (delta-like compressed to the
centre of simplex),

F7(γ)= n3

(n− 1)2

n∑

i=1

(
1− pγ,i

)2
p2
γ,i, (4.16)
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Figure 4.9. Normalised tent function F3(γ) for n= 3 defined on the simplex S2 over triangular coordi-
nates in the plane.
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Figure 4.10. Normalised biquadratic function F5(γ) for n= 3 defined on the simplex S2 over triangular
coordinates in the plane.

(ii) the normalised general k-quadratic function F8(γ) (delta-like compressed to the
centre of simplex, see Figure 4.11 for n= 3 and k = 4), which becomes the logistic
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Figure 4.11. Normalised k-quadratic delta-function F8(γ) for n= 3 and k = 4 defined over triangular
coordinates in the plane.

function for k = 1 and the biquadratic function for k = 2, respectively,

F8(γ)= n2k−1

(n− 1)k

n∑

i=1

(
1− pγ,i

)k
pkγ,i, with k = 1,2, . . . . (4.17)

Both functions are not concave over the whole simplex, on which they are defined (see
Figure 4.11), although they fulfil condition (4.11), that is, they are symmetric to the cen-
tre of equally distributed values pγ,i = 1/n with function value one, and they take the
function value zero if one pγ,i gets 1 and all other pγ, j vanish; but their mapping interval
exceeds the value 1 in general.

A nonpolynomial type of concave functions fulfilling condition (4.11) which maps the
Young diagrams onto the closed interval [0,1] over n-dimensional simplices Sn as well is
given by the normalised general product of trigonometric functions F9(γ):

F9(γ)= 1
ncos(π/2n)sin(π/2n)

n∑

i=1

cos
(
pγ,i
)

sin
(
pγ,i
)
. (4.18)

The representations of functions F2(γ), F3(γ), F5(γ), and F8(γ) in Figure 4.8 to Figure 4.11
on the S2 simplex over triangular coordinates were chosen to give an intuitive insight into
these types of functions on higher simplices Si with i > 1. Recall that a Young diagram γ
of n boxes corresponds always to a simplex Sn−1 with n vertices defining the domain of
the functions Fi(γ). In fact, our application leads to functions over much higher simplices
which cannot be drawn easily in a three-dimensional graphical representation.
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Figure 4.12. Comparison of the normalised functions y1, . . . , y9 on the simplex S1, that is, the closed
interval [0,1].

The functions F1(γ) to F6(γ) as well as F9(γ) are concave functions on the simplex Si,
that is, the following equation [19]:

f
(
x1
)

+ f
(
x2
)

2
< f
(
x1 + x2

2

)
(4.19)

holds for any variable xi with i = 1,2 (xi should be identified with pγ,i in our context).
On the other hand, the functions F7 and F8 are neither concave nor convex over the
whole simplex (see Figure 4.11), but it is remarkable that both functions exhibit several
maxima although they are normalised to 1 in the centre of the simplex where all variables
have equally distributed values xi, for example, x1 = x2 = x3 = 1/3 in case of the simplex
S2. This kind of functions could be of interest with respect to structure formations in
processes far away from equilibrium and will be discussed in greater detail in Section 4.5.

4.3. Scalar functions on the simplex S1. Figure 4.12 shows a comparison of the scalar
functions y1 ≡ F1(γ) to y9 ≡ F9(γ) defined in the previous section for the special case of
the well known simplex S1, that is, the closed interval [0,1]. The choice of the S1 sim-
plex means that we consider only two variables or a Young diagram of only n = 2 boxes,
respectively, where the simplex condition of the domain of definition is given by

x1 + x2 = 1 or x ≡ x1 = 1− x2, 0≤ xi ≤ 1. (4.20)



28 The Apollonian decay of beer foam

Under these assumptions the Shannon entropy functions F1(γ) (4.7) and F2(γ) (4.9) take
the form

y1 = y2 =−
[
x1 ldx1 + x2 ldx2

]=−[x ldx+ (1− x) ld(1− x)
]
. (4.21)

The tent function F3(γ) (4.12) transforms to y3 according to (4.22). Note that y3 is an
affine function [19] since it is concave (convex from the above) and convex (convex from
the below) simultaneously.

y3 = 1− 2|x− 0.5|. (4.22)

The logistic function F4(γ) (4.13) gets the well-known shape

y4 = 1− 4(x− 0.5)2 = 22x(1− x). (4.23)

The general biquadratic function F5(γ) (4.14) and the k-quadratic function F6(γ) (4.15)
which are stretched to the simplex boundaries change into

y5 = 1− 24(x− 0.5)4,

y6 = 1− 2k(x− 0.5)k, e.g., y6 = 1− 220(x− 0.5)20 for k = 10,
(4.24)

respectively. For k→∞, the function y6 tends to the quadratic pulse-function H of width
one given by (4.25):

H =
⎧
⎪⎨

⎪⎩

1, for 0 < xi < 1,

0, otherwise.
(4.25)

The product function of trigonometric functions F9(γ) (4.18) which is also concave but of
nonpolynomial type becomes

y9 = 2sin
(
π

2
x
)

cos
(
π

2
x
)
. (4.26)

The general biquadratic function F7(γ) (4.16) and the k-quadratic function F8(γ) (4.17)
both of which are delta-like compressed to the centre of simplex take now the simple
forms

y7 = 24x2(1− x)2,

y8 = 2kxk(1− x)k, e.g., y8 = 220x10(1− x)10 for k = 10,
(4.27)

respectively. Both these functions y7 and y8 reflect the fact that they are neither concave
nor convex over the whole closed interval [0,1]. But they have a maximum at x1 = x2 =
1/2 in contrast to their corresponding functions F7(γ) and F8(γ) defined on higher di-
mensional simplices which in general show a minimum at the centre of the simplex and
various maxima symmetrically distributed around this point.

All these functions can be used as measures characterising the disorder or mixing of the
system under inspection. We call the functions F1(γ) to F6(γ) and F9(γ) or the functions
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Figure 4.13. Comparison of the normalised concave entropy-like mixing functions y1, . . . , y6 and y9 on
the simplex S1, that is, the closed interval [0,1]. The tent function y3 is an affine function, since it is
concave and convex simultaneously.

y1 to y6 and y9, respectively, entropy-like mixing functions (see Figure 4.13), since they
form a family of concave functions on the interval [0,1] the maxima of which are 1 in
case of xi = 1/n for all indices i.

4.4. Ordering of mixing functions in higher dimensional diagram lattices. However,
depending on our choice of the entropy-like mixing function the sequences of the diagrams
change, which can easily be seen from the occurrence of extreme values if one compares
the entropy like mixing functions with each other (Figure 4.14).

The partially ordered lattice of the diagrams describes the system without prejudice
for choosing a way from top to bottom in the lattice, that is, from order to disorder. The
classical Shannon entropy is by no means a unique choice to measure disorder or order,
respectively. The choice of a special entropy-like mixing function is nothing else than the
introduction of a prejudice concerning a special mapping by a mixing function of the
diagrams or the corresponding partitions onto the interval [0,1]. The projection may
change the sequence of steps from top to bottom in the lattice, that is, the sequence of
states on the way from order to disorder. For example, if one takes the biquadratic F5(γ)
(4.14) of the diagrams with n= 6 boxes as a function of the correlated Shannon entropy
F2(γ), the incomparable diagrams of the pairs γ4 and γ5 as well as γ7 and γ8, respectively,
permute with each other in their sequence (see also Figures 4.5 and 4.14). The sequences
of those diagrams which are comparable do not switch their sequence when choosing
another partition function than the Shannon entropy (see Figure 4.15).
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Figure 4.14. Dependence of concave partition functions Fi(γ) on the normalised Shannon entropy of
the Young diagrams in case of n= 6.
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Figure 4.16. Dependence of partition functions Fi(γ) on the Young order of partial sums for the Young
diagrams in case of n= 10.

As can be seen from Figure 4.16 there is no unique system to select a total order which
is preferred with respect to all other choices which can be made. The Young order is com-
parable to all the other possibilities forming a total order on the partially ordered lat-
tice of diagrams. But from Figure 4.16 one can see clearly that the set of all entropy-like
mixing functions forms a family of functions which tends to reflect the Young order and
that the k-quadratic functions F6(γ) (4.15) which are stretched to the simplex boundaries
correspond strictly to the Young order for the limiting case with k →∞; and even the
biquadratic function F6(γ) (4.14) reproduces the Young order exactly up to n= 13.

4.5. Nonentropy-like mixing functions. In contrast to the concave entropy-like mixing
functions discussed above, the functions y7 and y8 or—more generally—F7(γ) and F8(γ),
respectively, which are not concave over the whole simplex of their definition, show the
following remarkable properties.

(1) In case of S1 or the closed interval [0,1] as domain of definition, y7 and y8 are
concave around the centre of S1 at x = 0.5 and convex (from the below) towards
the boundaries at x = 0 and x = 1, respectively (see Figure 4.12). In other words,
they have two crossing points with the affine tent function y3 symmetrically ar-
ranged with respect to the centre of S1 both of them moving to x = 0.5 for k→∞.
As a consequence, only in the region around x = 0.5, that is, in case of highly dis-
ordered systems (close to equilibrium or almost equally distributed), y7 and y8

behave as entropy-like mixing functions, yielding a high increase of information if
one executes an experiment. But beyond the crossing points with the affine tent
function y3—that is, on the convex sides—they rapidly tend to zero. If one now
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takes into account that only at the vertices of the simplex the uncertainty of an
experiment is zero or—equivalently—the knowledge is maximal (complete), one
can conclude that in case of these non-overall concave functions even at compa-
rably less knowledge the additional gain in information is very small.

(2) As can be seen exemplarily from Figure 4.11 the functions F7(γ) and F8(γ) de-
fined on higher simplices Si with i > 1 show in general a minimum at the centre
of the simplex and various maxima symmetrically distributed around this point;
hence they exhibit function values greater than one (see Figure 4.16, red poly-
gon) if they are normalised to 1 for an equilibrated or equally distributed system
corresponding to the Young diagram with the highest number m of the correlated
Young order. As a consequence, they have convex (from the below) regions not
only over the vicinities of the simplex vertices but also a convex area over the cen-
tre of the simplex and concave parts symmetrically arranged with respect to the
simplex centre.

If one interprets this behaviour of functions F7(γ) and F8(γ) in terms of state-
ments about information content, an experiment in the immediate neighbour-
hood the equilibrated or equally distributed system does not lead to the max-
imum gain of information, although there is maximum uncertainty and—as a
consequence—the least known knowledge. On the other hand, somewhat far-
ther away from the equilibrium point there are several (equivalent) situations
with maximum increase of information, but already some knowledge. The conse-
quences from the function behaviour in convex regions on the simplex corners
are the same as described above for y7 and y8.

Considering these interesting properties we suggest—with the necessary caution—
that the functions F7(γ) and F8(γ) may be of interest for the description of dynamically
fluctuating systems and the explanation of structure formations in processes.

5. Conclusion

It was our aim to characterise the decay of beer foam by quite different methods like
measuring the temporal behaviour of the foam volume, the fractal dimension of the two-
dimensional photographs, of the bubble arrangements, the estimation of liquid content
in the foam phase, and the bubble size distribution functions. It is our finding that the
foam volume does not shrink simple exponentially but in terms of higher order according
to the equation lnV(t)= a− bt− ct2.5 (3.1).

The term ct2.5 describes the reorganisation of the bubble arrangements which will lead
to an Apollonian gasket of bubbles. This process could be described by the fractal dimen-
sion of the correlated bubble pictures and tends to the fractal dimension D ≈ 1.3058 [3]
of the Apollonian packages of circles. Both methods have a great potential of industrial
and environmental application, since they allow to follow the decay of foams easily. This
could be demonstrated via the estimation of the actual fluid part remaining in the foam
during its decay.

The bubble size distribution function of led to the question how to compare differ-
ent bubble size distribution diagrams. Following the idea of Ruch [23], we described the
bubble size diagrams by Young diagrams forming a partially ordered lattice. The temporal
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Figure 5.1. The Shannon information entropy of the bubble size distribution of Beck’s Alkoholfrei beer
at 24◦C as a function of time.

sequence of Young diagrams reflects the movement of a closed system towards its equilib-
rium attractor. Mapping the Young diagrams on scalar functions, for example, the Shan-
non entropy, one can follow the temporal development of the system by its correlated
Shannon entropy or information content, respectively (Figure 5.1).

It was our expectation to find a smooth, monotonously growing information function
in dependence on time. Surprisingly we got an oscillating behaviour of this informa-
tion function for 0◦C, 8◦C, and 24◦C, respectively. This can be understood qualitatively
if we take into consideration that our system is by no means a closed system and, as a
consequence, one should be able to observe structure formation processes during time
intervals of its development. On the other hand, we started with a very narrow bubble
size distribution function immediately after the ultrasound degassing of the beer, where
one should expect classically a broadening of this distribution function and an increase
of the information entropy, but not the occurrence of a multimodal distribution function
oscillatory swinging up and down.

To get an insight into all these problems we investigated the behaviour of different
mixing functions mapped on the simplex Sn which is correlated to a lattice of Young
diagrams with n boxes. There is an infinite number of concave functions which can be
used to characterise the mixing of states or bubble sizes, respectively, which is described
by one Young diagram. But any choice of a special function out of this set of concave
functions corresponds to the introduction of a prejudice with respect to the definition of a
total order on the partial order of the lattice of Young diagrams with n boxes. Therefore, we
concluded that not only one function, but the total set of all concave functions which are
entropy-like mixing functions is an appropriate, unprejudiced measure for the mixing of
states or bubbles, respectively. In addition, we suggested that the nonentropy-like mixing
functions may be an adequate description for structure formations in processes.

Obviously, the decay of beer foam is finished before reaching the equilibrium—which
of course can never be reached. Before vanishing totally, the foam system remains in a
state which can roughly be described by distribution functions belonging to states any-
where in the middle of a partially ordered lattice of Young diagrams of many boxes. It will
be the task of our next work to describe the oscillating movement of the foam system into
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this region based on an analysis of the doubly stochastic matrices which transform the
vectors of the bubble size distribution functions during their temporal development into
each other.
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