
Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2007, Article ID 27383, 25 pages
doi:10.1155/2007/27383

Research Article
Efficient Computation of Shortest Paths in Networks Using
Particle Swarm Optimization and Noising Metaheuristics

Ammar W. Mohemmed and Nirod Chandra Sahoo

Received 13 March 2007; Accepted 4 April 2007

This paper presents a novel hybrid algorithm based on particle swarm optimization (PSO)
and noising metaheuristics for solving the single-source shortest-path problem (SPP)
commonly encountered in graph theory. This hybrid search process combines PSO for
iteratively finding a population of better solutions and noising method for diversifying
the search scheme to solve this problem. A new encoding/decoding scheme based on
heuristics has been devised for representing the SPP parameters as a particle in PSO.
Noising-method-based metaheuristics (noisy local search) have been incorporated in or-
der to enhance the overall search efficiency. In particular, an iteration of the proposed
hybrid algorithm consists of a standard PSO iteration and few trials of noising scheme
applied to each better/improved particle for local search, where the neighborhood of each
such particle is noisily explored with an elementary transformation of the particle so as
to escape possible local minima and to diversify the search. Simulation results on several
networks with random topologies are used to illustrate the efficiency of the proposed hy-
brid algorithm for shortest-path computation. The proposed algorithm can be used as a
platform for solving other NP-hard SPPs.

Copyright © 2007 A. W. Mohemmed and N. C. Sahoo. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

Shortest-path (SP) computation is one of the most fundamental problems in graph the-
ory. The huge interest in the problem is mainly due to the wide spectrum of its appli-
cations [1–3], ranging from routing in communication networks to robot motion plan-
ning, scheduling, sequence alignment in molecular biology, and length-limited Huffman

2 Discrete Dynamics in Nature and Society

coding, to name only a very few. Furthermore, the shortest-path problem also has nu-
merous variations such as the minimum weight problem, the quickest path problem.
Deo and Pang [4] have surveyed a large number of algorithms for and applications of the
shortest-path problems.

The SPP has been investigated by many researchers. With the developments in com-
munication, computer science, and transportation systems, more variants of the SPP
have appeared. Some of these include traveling salesman problem, K-shortest paths, con-
strained shortest-path problem, multiobjective SPP, and network flow problems, and so
forth. Most of these problems are NP-hard. Therefore, polynomial-time algorithms for
these problems like Dijkstra and Bellman-Ford [5] are impossible. For example, in com-
munication networks like IP, ATM, and optical network, there is a need to find a path
with a minimum cost while maintaining a bound on delay to support quality-of-service
applications. This problem is known to be NP-hard [6]. Multiple edge weights and weight
limits may be defined, and the general problem is called as the constrained shortest-path
problem. In another instance, it is required to find a shortest path such that cost or delay
is to be minimized, and quality or bandwidth is to be maximized. These types of shortest
paths are referred to as multicriteria or multiobjective shortest paths which are also NP-
hard problems [6]. Therefore, untraditional methods like evolutionary techniques have
been suggested to solve these problems which have the advantage of not only finding the
optimal path, but also of finding suboptimal paths.

Artificial neural networks (ANNs) have been examined to solve the SP problem us-
ing their parallel and distributed architectures to provide a fast solution [7–9]. However,
this approach has several limitations. These include the complexity of the hardware with
increasing number of network nodes; at the same time, the reliability of the solution de-
creases. Secondly, they are less adaptable to topological changes in the network graph
[9], including the cost of the arcs. Thirdly, the ANNs do not consider suboptimal paths.
Thus, the evolutionary and heuristics algorithms are the most attractive alternative ways
to go for. The powerful evolutionary programming techniques have considerable poten-
tial to be investigated in the pursuit for more efficient algorithms because the SP prob-
lem is basically an optimal search problem. In this direction, genetic algorithm (GA) has
shown promising results [10–13]. The most recent notable results have been reported in
[12, 13]. Their algorithm shows better performance compared to those of ANN approach
and overcome the limitations mentioned above.

Among the notable evolutionary algorithms for path finding optimization problems
in network graphs, successful use of GA and Tabu search (TS) has been reported [14–
16]. The success of these evolutionary programming approaches promptly inspires in-
vestigative studies on the use of other similar (and possibly more powerful) evolutionary
algorithms for this SP problem. Particle swarm optimization is one such evolutionary
optimization technique [17], which can solve most of the problems solved by GA with
less computational cost [18]. It is to be noted that GA and TS demand expensive compu-
tational cost. Some more comparative studies of the performances of GA and PSO have
also been reported [19–22]. All these studies have firmly established similar effective-
ness of PSO compared to GA. Even for some applications, it has been reported that the
PSO performs better than other evolutionary optimization algorithms in terms of success

A. W. Mohemmed and N. C. Sahoo 3

rate and solution quality. The most attractive feature of PSO is that it requires less com-
putational bookkeeping and, generally, a few lines of implementation codes. The basic
philosophy and science behind PSO is based on the social behavior of a bird flock and
a fish school, and so forth. Because of the specific algorithmic structure of PSO (updat-
ing of position and velocity of particles in a continuous manner), PSO has been mainly
applied to many continuous optimization problems with few attempts for combinatorial
optimization problems. Some of the combinatorial optimization problems that have been
successfully solved using PSO are task assignment problem [23], traveling salesman prob-
lem [24, 25], sequencing problem [26], and permutation optimization problem [27], and
so forth.

The purpose of this paper is to investigate on the applicability and efficiency of PSO
for this SP problem. In this regard, this paper reports the use of particle swarm op-
timization to solve the shortest-path problem, where a new heuristics-based indirect
encoding/decoding technique is used to represent the particle (position). This decod-
ing/encoding makes use of cost of the edges and heuristically assigned node preference
values in the network, that is, problem-specific. Further, in order to speed up the search
process, additional noising metaheuristics [28, 29] have been fused into the iterative PSO
process for effective local search around any better particle found in every PSO iteration.
The basic purpose behind the use of this noising metaheuristics is as follows. Any effective
search scheme for an optimization problem typically consists of two mechanisms/steps:
(1) find a local optimal (better) solution, and (2) apply a diversification mechanism to
find another local optimal solution starting from the one found in the previous step. The
mechanism of PSO is very good in iteratively obtaining a population of local optimal
solutions (in the end, one such solution may be the desired global solution) [17–27]. Re-
cently, the noising method [28, 29] is shown to exhibit highly effective diversified local
search. These features prompt the use of a hybrid search algorithm so as to exploit the
good features of both PSO and noising method for solving the SPP. The proposed hy-
brid algorithm has been tested by exhaustive simulation experiments on various random
network topologies. The analysis of the results indicates the superiority of the PSO-based
approach over those using GA [12, 13].

The paper is organized as follows. In Section 2, standard PSO paradigm is briefly
discussed. The proposed heuristics-based particle encoding/decoding mechanism is pre-
sented Section 3.2. In Section 3.4, the problem-specific local search algorithm using nois-
ing metaheuristics and the overall flow of the hybrid PSO algorithm for SP computation
are shown. The results from computer simulation experiments are discussed in Section 4.
Section 5 concludes the paper.

2. Basic particle swarm optimization algorithm

Particle swarm optimization is a population-based stochastic optimization tool inspired
by social behavior of bird flock (and fish school, etc.), as developed by Kennedy and
Eberhart [17]. This new evolutionary paradigm has grown in the past decade [30].

2.1. Basic steps of PSO algorithm. The algorithmic flow in PSO starts with a popula-
tion of particles whose positions, that represent the potential solutions for the studied

4 Discrete Dynamics in Nature and Society

problem, and velocities are randomly initialized in the search space. The search for opti-
mal position (solution) is performed by updating the particle velocities, hence positions,
in each iteration/generation in a specific manner as follows. In every iteration, the fitness
of each particle is determined by some fitness measure and the velocity of each particle
is updated by keeping track of the two “best” positions, that is, the first one is the best
position (solution) a particle has traversed so far, called pBest, and the other “best” value
is the best position that any neighbor of a particle has traversed so far, called neighbor-
hood best (nBest). When a particle takes the whole population as its neighborhood, the
neighborhood best becomes the global best and is accordingly called gBest. A particle’s
velocity and position are updated (till the convergence criterion, i.e., usually specified as
maximum number of iterations, is met) as follows:

PVid = PVid +ϕ1r1
(
Bid −Xid

)
+ϕ2r2

(
Bn
id −Xid

)
, i= 1,2, . . . ,Ns, d = 1,2, . . . ,D,

(2.1)

Xid = Xid + PVid, (2.2)

where ϕ1 and ϕ2 are positive constants, called as acceleration coefficients, Ns is the to-
tal number of particles in the swarm, D is the dimension of problem search space, that
is, number of parameters of the function being optimized, r1 and r2 are independent
random numbers in the range [0, 1], and “n” stands for the best neighbor of a parti-
cle. The other vectors are defined as Xi = [Xi1,Xi2, . . . ,XiD]≡ position of the ith particle;
PVi = [PVi1,PVi2, . . . ,PViD]= velocity of the ith particle; Bi = [Bi1,Bi2, . . . ,BiD]= best po-
sition of the ith particle (pBesti), and Bn

i = [Bn
i1,Bn

i2, . . . ,Bn
iD]= best position found by the

neighborhood of the particle i (nBesti). When the convergence criterion is satisfied, the
best particle found so far (with its position stored in Xbest and best fitness fbest) is taken
as the solution (near optimal) to the problem.

Equation (2.1) calculates a new velocity for each particle based on its previous velocity
and present position, the particle’s position at which the best possible fitness has been
achieved so far, and the neighbors’ best position achieved. Equation (2.2) updates each
particle’s position in the solution hyperspace. ϕ1 and ϕ2 are essentially two learning fac-
tors, which control the influence of pBest and nBest on the search process. In all initial
studies of PSO, both ϕ1 and ϕ2 are taken to be [17]. However, in most cases, the velocities
quickly attain very large values, especially for particles far from their global best. As a re-
sult, particles have larger position updates with particles leaving boundary of the search
space. To control the increase in velocity, velocity clamping is used in (2.1). Thus, if the
right-hand side of (2.1) exceeds a specified maximum value±PVmax

d , then the velocity on
that dimension is clamped to±PVmax

d . Many improvements have been incorporated into
this basic algorithm [31].

The commonly used PSOs are either global version of PSO or local version of PSO.
In global version, all other particles influence the velocity of a particle, while in the local
version of PSO, a selected number of neighbor particles affect the particle’s velocity. In
[32], PSO is tested with regular-shaped neighborhoods, such as global version, local ver-
sion, pyramid structure, ring structure, and von Neumann topology. The neighborhood
topology of the particle swarm has a significant effect on its ability to find optima. In ring

A. W. Mohemmed and N. C. Sahoo 5

topology, parts of the population that are distant from one another are also independent
of one another. Influence spreads from neighbor to neighbor in this topology, until an
optimum is found by any part of the population and then, this optimum will eventually
pull all the particles into it. In the global version, every particle is connected to all other
particles and influences all other particles immediately. The global populations tend to
converge more rapidly than the ring populations, when they converge; but they are more
susceptible to convergence towards local optima [33].

2.2. Modifications to basic PSO algorithm. For improved performance, some of the
widely used modifications to the basic PSO algorithm are (a) constriction factor method,
and (b) velocity reinitialization.

(a) Constriction factor method (CFM). In [34], Clerc proposed the use of a constriction
factor χ. The algorithm was named the constriction factor method (CFM), where (2.1) is
modified as

PVid = χ
[

PVid +ϕ1r1
(
Bid −Xid

)
+ϕ2r2

(
Bn
id −Xid

)]
, (2.3)

where

χ = 2
(∣∣
∣2−ϕ−

√
ϕ2− 4ϕ

∣
∣
∣
)−1

if ϕ= ϕ1 +ϕ2 > 4. (2.4)

The objective behind the use of constriction factor is to prevent the velocity from
growing out of bounds, thus the velocity clamping is not required. But, Eberhart and
Shi [35] have reported that the best performance can be achieved with constriction factor
and velocity clamping. Algorithm 2.1 shows pseudocodes of PSO (with CFM) for a func-
tion minimization problem. To pose a problem in PSO framework, the important step is
to devise a coding scheme for particle representation, which is discussed in the following
section.

(b) Velocity reinitialization. One of the problems of the PSO is the premature conver-
gence to a local minimum. It does not continue to improve on the quality of solutions
after a certain number of iterations have passed [36]. As a result, the swarm becomes
stagnated after a certain number of iterations and may end up with a solution far from
optimality. Gregarious PSO [37] avoids premature convergence of the swarm; the parti-
cles are reinitialized with a random velocity when stuck at a local minimum. Dissipative
PSO [38] reinitializes the particle positions at each iteration with a small probability.
In [39], this additional perturbation is carried out with different probabilities based on
time-dependent strategy.

3. Shortest-path computation by PSO and noising metaheuristics

The shortest-path problem (SPP) is defined as follows. An undirected graph G = (V ,E)
comprises a set of nodes V ={vi} and a set of edges E∈V ×V connecting nodes in V .
Corresponding to each edge, there is a nonnegative number ci j representing the cost (dis-
tance, transit times, etc.) of the edge from node vi to node vj . A path from node vi to node
vk is a sequence of nodes (vi,vj ,vl, . . . ,vk) in which no node is repeated. For example, in

6 Discrete Dynamics in Nature and Society

fbest ←∞, Xbest ←NIL
initialize Xi randomly
initialize PVi randomly
evaluate fitness f (Xi)

Bi ←Xi

Bn
i ←X j // j is the index of the best neighbor particle

iteration count ← 0;
// max iteration =maximum number of iterations

while (iteration count < max iteration)
for each particle i,

find Bn
i such that f (Bn

i) < f (X j),∀ j ∈ {neighbors of i}
if f (Xi) < f (Bi) then

Bi ←Xi

if f (Bi) < fbest then
fbest ← f (Bi)
Xbest ← Bi

update PVi according to (2.3)
update Xi according to (2.2)
evaluate f (Xi)

iteration count← iteration count + 1;
end while
return Xbest

Algorithm 2.1. Simple particle swarm optimization algorithm (with CFM).

Figure 3.1, a path from node 1 to node 7 is represented as (1, 4, 2, 5, 7). The SPP is to
find a path between two given nodes having minimum total cost. The 0-1 linear program
model of the SPP is formulated as (s and t stand for source and terminal node, resp.):

Minimize
hi j∑

(i, j)∈E
ci j , such that

∑

j:(i, j)∈E
hi j −

∑

j:(j,i)∈E
hji =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, i= s

−1, i= t

0, i �= s, t,

(3.1)

where hi j is 1 if the edge connecting nodes i and j is in the path or 0 otherwise.
The proposed hybrid algorithm uses the PSO pseudocodes as listed in Algorithm 2.1

for network shortest-path computation with the inclusion of noising metaheuristics for
diversified local search. In PSO, the quality of a particle (solution) is measured by a fitness
function. For the SPP, the fitness function is obvious as the goal is to find the minimal
cost path. Thus, the fitness of ith particle is defined as

fi =
Ni−1∑

j=1

cyz, y = PPi(j), z = PPi(j + 1), (3.2)

where PPi is the set of sequential node IDs for the ith particle, Ni = |PPi| = number of
nodes that constitute the path represented by the ith particle, and cyz is the cost of the link

A. W. Mohemmed and N. C. Sahoo 7

1

2

3

4

5

6

7

8

910

12

14

15

18
19

20

4

6

Figure 3.1. A network with 7 nodes and 11 edges.

connecting node y and node z. Thus, the fitness function takes minimum value when the
shortest-path is obtained. If the path represented by a particle happens to be an invalid
path, its fitness is assigned a penalty value so that the particle’s attributes will not be
considered by others for future search.

The main issue in applying PSO (GA) to the SPP is the encoding of a network path
into a particle in PSO (chromosome in GA). This encoding in turn affects the effective-
ness of a solution/search process. A brief discussion on some of the existing path encod-
ing techniques for solving the SP problem using GA is presented followed by a detailed
description of the proposed encoding algorithm.

3.1. Existing path encoding techniques. Two typical encoding techniques have been
used for path representations in solving the SP problems using GA. They are direct and
indirect representations. In the direct representation scheme, the chromosome in the GA is
coded as a sequence of node identification numbers (node IDs) appearing in a path from
a source node to a destination node [10–12]. A variable-length chromosome of length
equal to the number of nodes for encoding the problem has been used to list up node IDs
from a source node to a destination based on a topological database of a network. In [11],
another similar (but slightly different) fixed-length chromosome representation has been
used, that is, each gene in a chromosome represents a node ID that is selected randomly
from the set of nodes connected with the node corresponding to its locus number. The
disadvantage with these direct approaches is that a random sequence of node IDs may
not correspond to a valid path (that terminates on destination node without any loop),
increasing the number of invalid paths returned.

An indirect scheme for chromosome representation scheme has been proposed by Gen
et al. [13], where instead of node IDs directly appearing on the path representation, some
guiding information about the nodes that constitute the path is used to represent the path.
The guiding information used in [13] are the priorities of various nodes in the network.
During GA initialization, these priorities are assigned randomly. The path is generated by
sequential node appending procedure beginning with the source node and terminating
at the destination node, the procedure is referred as to path growth strategy. At each step
of path construction from a chromosome, there are usually several nodes available for
consideration and the one with the highest priority is added into path and the process

8 Discrete Dynamics in Nature and Society

is repeated until the destination node is reached. For effective decoding, a dynamic node
adjacency matrix is maintained in the computer implementation [13] and is updated
after every node selection so that a selected node is not a candidate for future selection.
One main advantage of this encoding is that the size of the chromosome is fixed rather
than being variable (as in direct encoding) making it easier to apply various operators
like mutation and crossover. One disadvantage is that the chromosome is “indirectly”
encoded; it does not have important information about the network’s characteristics like
its edges’ costs. Actually this coding is quite similar to random number encoding used for
graph tree representation in genetic algorithms [40].

Another variant of indirect coding of the chromosome is called weighted encoding [14].
Similar to the priority encoding, the chromosome is a vector of values called weights. This
vector is used to modify the problem parameters, for instance the cost of the edges. First,
the original problem is temporarily modified by biasing the problem parameters with
the weights. Secondly, a problem-specific nonevolutionary decoding heuristic is used to
actually generate a solution for the modified problem. This solution is finally interpreted
and evaluated for the original (unmodified) problem.

3.2. Proposed cost-priority-based particle encoding/decoding. Inspired by the above
encoding schemes, a representation scheme, called cost-priority-based encoding/decod-
ing, is devised to suit the swarm particles for the SPP. Note that direct encoding is not
appropriate for the particles as the particle updating uses arithmetic operations. In the
proposed scheme, the particle encoding is based on node priorities and the decoding is
based on the path growth procedure taking into account the node priorities as well as
cost of the edges. The particle contains a vector of node priority values (particle length =
number of nodes). To construct a path from a particle, from the initial node (node 1) to
the final node (node n), the edges are appended into the path consecutively. At each step,
the next node (node j) is selected from the nodes having direct links with the current
node such that the product of the (next) node priority (pj) and the corresponding edge
cost is minimum, that is,

j =min
{
ci j p j | (i, j)∈ E

}
, pj ∈ [−1.0,1.0]. (3.3)

The steps of this algorithm are summarized in Algorithm 3.1. The node priorities can take
negative or positive real numbers in the range [−1.0,1.0]. The problem parameters (edge
costs) are part of the decoding procedure. Unlike the priority encoding where a node is
appended to the partial path based only on its priority, in the proposed procedure, a node
is appended to the path based on the minimum of the product of the node (next node)
priority and the edge cost that connects the current node with the next one to be selected.
Experimental results show superiority of this procedure over the priority encoding when
it is implemented within PSO frame. The PSO-based search is performed for optimal set
of node priority values that result in shortest-path in a given network.

An example of the execution steps of the cost-priority decoding for path construction
for the network of Figure 3.1 is shown in Figure 3.2. It also compares the path construc-
tion from the same particle with simple priority decoding [13] highlighting the advantage
of the new approach.

A. W. Mohemmed and N. C. Sahoo 9

// i is the source node
// j is an adjacent node to i
// n is the destination node, 1 = source node
// A(i) is the set of adjacent nodes to i
// PATH (k) is the partial path at decoding step k
// pj is the corresponding priority of node j in the particle P (position vector X)
// N∞ is a specified large number
Particle Decoding (P)
i← 1,
p1 ←N∞
k← 0,
PATH (k)← {1}
while ({ j ∈ A(i), pj �=N∞} �=∅)

k← k+ 1
j ← argmin{ci j p j | j ∈ A(i), pj �=N∞}
i← j, PATH (k)← PATH(k)∪{i}
pi ←N∞
if i= n then return the path PATH (k)

end while

return Invalid Path

Algorithm 3.1. Pseudocodes for cost-priority-based decoding procedure.

3.3. Noising metaheuristics-based local search for performance enhancement. Evo-
lutionary algorithms (EAs) are robust and powerful global optimization techniques for
solving large-scale problems with many local optima. However, they require high CPU
times and are generally poor in terms of convergence performance. On the other hand,
local search algorithms can converge in a few iterations but lack a global perspective. The
combination of global and local search procedures should offer the advantages of both
optimization methods while offsetting their disadvantages [41, 42]. The hybridization of
EA with local search has been shown to be faster and more promising on most prob-
lems. The local search essentially diversifies the search scheme. Recently, one such effi-
cient metaheuristics, called noising method, was proposed by Charon and Hurdy [28, 29].
This noising metaheuristic was initially proposed for clique partitioning problem in a
graph, and subsequently, it is shown to be very much successful for many combinatorial
optimization problems.

In this work, a local search based on noising metaheuristics is embedded inside the
main PSO algorithm for search diversification. The basic idea of noising method is as fol-
lows. for computation of the optimum of a combinatorial optimization problem, instead
of taking the genuine data into account directly, they are perturbed by some progressively
decreasing “noise” while applying local search. The reason behind the addition of noise
is to be able to escape any possible local optimum in the optimizing function landscape.
A noise is a value taken by a certain random variable following a given probability distri-
bution (e.g., uniform or Gaussian law). There are different ways to add noise [29]. One

10 Discrete Dynamics in Nature and Society

1 2 3 4 5 6 7
0.1 �0.4 0.7 0.6 0.3 0.5 0.2

k = 0,PATH(k)= �1�
�

1 2 3 4 5 6 7
N
�
�0.4 0.7 0.6 0.3 0.5 0.2

(c12p2 =�4,c13p3 = 9.8),c14p4 = 7.2)

k = 1,PATH(k)= �1,2�
�

1 2 3 4 5 6 7
N
�

N
�

0.7 0.6 0.3 0.5 0.2
(c24p4 = 9,c25p5 = 2.4)

k = 2,PATH(k)= �1,2,5�
�

1 2 3 4 5 6 7
N
�

N
�

0.7 0.6 N
�

0.5 0.2
(c57p7 = 1.8)

k = 3,PATH(k)= �1,2,5,7�

Total path cost= 27

(a)

1 2 3 4 5 6 7
0.1 �0.4 0.7 0.6 0.3 0.5 0.2

k = 0,PATH(k)= �1�

�
1 2 3 4 5 6 7

�N
�
�0.4 0.7 0.6 0.3 0.5 0.2
k = 1,PATH(k)= �1,3�

�

1 2 3 4 5 6 7
�N

�
�0.4 �N

�
0.6 0.3 0.5 0.2

k = 2,PATH(k)= �1,3,4�
�

1 2 3 4 5 6 7
�N

�
�0.4 �N

�
�N

�
0.3 0.5 0.2

k = 3,PATH(k)= �1,3,4,5�
�

1 2 3 4 5 6 7
�N

�
�0.4 �N

�
�N

�
�N

�
0.5 0.2

k = 4,PATH(k)= �1,3,4,5,7�

Total path cost= 29

(b)

Figure 3.2. Illustrative examples of path construction from a particle position/priority vector for
the network of Algorithm 2.1: (a) proposed cost-priority-based decoding; (b) simple priority-based
decoding [13].

way is to add noise to the original data and then applying a descent search method on
the noised data. The noising method used here is based on noising the variations in the
optimizing function (f), that is, perturbing the variations of f . When a neighbor solu-
tion X′ of the solution X is computed by applying an elementary transformation [28, 29]
to X, the genuine variation Δ f (X,X′){= f (X′)− f (X)} is not considered, but a noised
variation Δ fnoised(X,X′) defined by (3.4) is rather used:

Δ fnoised(X,X′)= Δ f (X,X′) + ρk, (3.4)

where ρk denotes the noise (changing) at each trial k and depends on the noise rate (NR).
Similar to iterative descent method in a function minimization problem, if Δ fnoised(X,
X′) < 0, X′ becomes the new current solution, otherwise X is kept as the current solution
and another neighbor of X is tried. The noise ρk is randomly chosen from an interval
whose range decreases during the process (typically to zero, but it is often stopped much
earlier). For example, if noise is drawn from the interval [−NR, +NR] with a given prob-
ability distribution, then the noise rate NR of the noise decreases during the running of
the method from NRmax to NRmin, as given in (3.5), used in this study. The noise is added
in an interval containing positive as well as negative values such that a bad neighboring

A. W. Mohemmed and N. C. Sahoo 11

// X is the initial solution

// X′ is a neighbor of X computed by an elementary transformation on X
// better sol is the best solution found so far

// NR is the noise rate

// ρk is a random real number

// add noise is a logical variable used to choose between noised or unnoised

descent (local search)

Noising Method (X)

k← 0

add noise← false

better sol←X
NR←NRmax

While (k < max trials)

if (k = 0 (modulo fixed rate trials) and add noise = false) then

// noised descent phase

NR=NRmax(1− k/max trials)

ρk ← uniformly drawn from [−NR, NR]

add noise = true

else if (k = 0 (modulo fixed rate trials) and add noise = true) then

// unnoised descent phase

ρk ← 0

add noise = false

Let X′ be the next neighbor of X.

if f (X′)− f (X) + ρk < 0, then X←X′.
if f (X) < f (better sol), then better sol←X.

k← k+ 1

end while

return better sol

Algorithm 3.2. Pseudocodes for local search using noising metaheuristics.

solution may be accepted, but also a good neighboring solution may be rejected,

NR=NRmax×
(

1− k

max trials

)
, (3.5)

where k = trial number in the noising-method-based local search, max trials = total
number of trials for a typical current solution, and fixed rate trials = number of trials
with fixed noise rate. We follow [29] where noising method is applied alternatively with
unnoised (descent) search, that is, for few trials, noised descent is performed followed
by unnoised descent search for few trials and so on. The pseudocodes for the noising-
method-based local search for an initial solution X are given in Algorithm 3.2.

12 Discrete Dynamics in Nature and Society

3.4. Complete PSO and noising-method-based algorithm for SPP. The complete algo-
rithm for the shortest-path computation uses main PSO algorithm (Figure 3.1) with an
embedded selective local search done on each particle using noising metaheuristics as
discussed above. The local search is performed selectively making use of the concept of
proximate optimality principle (POP) [43]. It has been experimentally shown that the
POP holds good for many combinatorial optimization problems, that is, good solutions
in optimization problems have similar structures. The good solutions are interpreted as
locally optimal solutions as obtained from the main PSO. Based on POP, a good solution
(a path in the SPP) is more likely to have better solutions in its locality, that is, another
better solution (path) in the local neighborhood most likely shares some node/edges
(similar structures). Conversely, it is not advised to have a local search around a known
bad solution. This feature is incorporated in the proposed hybrid algorithm by applying
nosing-method-based local search only when a solution’s fitness improves by PSO (then
one may expect to get locally better solutions). The pseudocodes for the complete hybrid
algorithm for the SPP are given in Algorithm 3.3.

The algorithm passes the particle that has experienced an improvement in PSO to
the noising method. The noising method will take this particle as an initial solution for
further search around it. If the noising local search is able to find a solution better than the
original particle, then the particle will be updated and returned. Also, this new solution
is compared with best solution found so far by that particle; if it is better, then it will also
be updated for reflecting the new found solution back on the swarm.

4. Computer simulation results and discussion

The proposed PSO-based hybrid algorithm for SPP is tested on networks with random
and varying (The random network topologies are generated using Waxman model [44]
in which nodes are generated randomly on a two-dimensional plane of size 100× 100,
and there is a link between two nodes u and v with probability p(u,v) = α · e−d(u,v)/(βL),
here 0 < α, β ≤ 1, d(u,v) is the Euclidean distance between u and v, and L is the maxi-
mum distance between any two nodes) topologies through computer simulations using
Microsoft Visual C++ on an Pentium 4 processor with 256 MB RAM. The edge costs of
the networks are randomly chosen in the interval [10, 1000]. The results are also com-
pared with two recently reported GA-based approaches, that is, one uses direct encod-
ing scheme [12] and the other uses the priority-vector-based indirect encoding scheme
(but without the modifications proposed in this work) [13]. In all the simulation tests,
the optimal solution obtained using Dijkstra’s algorithm [4, 5] is used as reference for
comparison purposes. The selections of parameter settings of PSO and noising meta-
heuristics are discussed now.

(a) Population size. In general, any evolutionary search algorithm shows improved
performance with relatively larger population. However, very large population
size means greater cost in terms of fitness function evaluations. In [45, 46], it is
stated that a population size of 30 is a reasonably good choice.

(b) Particle initialization. The particle position (node priorities) and velocity are ini-
tialized with random real numbers in the range [−1.0,1.0]. The maximum ve-
locity is set as ±1.0.

A. W. Mohemmed and N. C. Sahoo 13

fbest ←∞
Xbest ←NIL
PATH←NIL
for each particle i,

initialize Xi randomly from [−1.0,1.0]
initialize PVi randomly from [−1.0,1.0]
evaluate f (Xi)

PATH← Particle Decoding(Xi)
f (Xi)← cost (PATH)

Bi ←Xi

Bn
i ←X j // j is the index of the best neighbor particle

iteration count← 0;
// max iteration is the specified maximum number of iterations
while (iteration count < max iteration)

for each particle i
find Bn

i such that f (Bn
i) < f (Xi)

if f (Xi) < f (Bi) then
Bi ←Xi

Bi ←Noising Method(Bi)
if f (Bi) < fbest then

fbest ← f (Bi)
Xbest ← Bi

update PVi according to (2.3)
update Xi according to (2.2)
evaluate f (Xi)

PATH← Particle Decoding(Xi)
f (Xi)← cost (PATH)

iteration count← iteration count + 1

end while

PATH← Particle Decoding(Xbest)
return PATH

Algorithm 3.3. Pseudo-codes for hybrid PSO (with CFM) and noising metaheuristics for the SPP.

(c) Neighborhood topology. Ring neighborhood topology [33] for PSO is used to
avoid premature convergence. In this topology, each particle is connected to its
two immediate neighbors.

(d) Constriction factor χ. In [47], it is shown that the CFM has linear convergence
for ϕ > 4. Here, ϕ1 and ϕ2 are chosen to be 2 and 2.2, respectively; thus ϕ= 4.2.
From (2.4), χ = 0.74.

(e) Noising method parameters. Maximum and minimum noise rates NRmax = 80,
NRmin = 0; maximum number of trials (max trials) = 4000; maximum num-
ber of trials at a fixed noise rate (fixed rate trials) = 10. The generic elementary

14 Discrete Dynamics in Nature and Society

transformation used for local neighborhood search is the swapping of node pri-
ority values at two randomly selected positions of a particle priority (position)
vector and two such swapping transformations are successively applied in each
trial for generating a trial solution in the local search.

4.1. Performance assessment of proposed hybrid PSO. The main objective of these
simulation experiments is to investigate the quality of solution and convergence speed
for different network topologies. First, the quality of solution (route optimality) is inves-
tigated. The route optimality (or success rate) is defined as the (average number) per-
centage of times the algorithm finds the global optimum (i.e., the shortest-path) [12]
over a large number of runs. The route failure ratio is the inverse of route optimality. It is
asymptotically the probability that the computed route is not optimal, as it is the relative
frequency of route failure [12]. The results are averaged over 1000 runs and in each run
(for a network of certain number of nodes), a different random network is generated by
changing the seed number. The seed number changes from 1 to 1000 generating networks
with a minimum degree of 4 and maximum degree of 10. The number of fitness function
evaluations to achieve the corresponding success rate is also recorded. In all the cases, the
proposed cost-priority-based encoding/decoding of particle is used.

Case 1: standard PSO (with CFM only).
Case 2: standard PSO (with CFM and velocity reinitialization).
Case 3: noising method (where PSO is used for initial two iterations to obtain good start-

ing points).
Case 4: standard PSO (with CFM) and local search with noising method (proposed hy-

brid algorithm).

For all cases, the number of particles is chosen to be 30. Maximum number of PSO iter-
ations is chosen as 100 except for the cases where no noising-method-based local search
is used, that is, for Cases 1 and 2, the maximum number of iterations is chosen as 2000
so that a fair comparison of performance is done because with the noising method, more
local search trials are being performed. The number of noising trials is set to 4000. For
Case 3, two initial PSO iterations are used to generate a better initial solution and then
the noising method is allowed to run for 30 000 trials.

Table 4.1 shows a comparison of success rates (SRs) and required average number of
fitness function evaluations (FEav) for convergence to the reported results. It is seen that
Case 2 which adopts velocity reinitialization shows better results over Case 1 which im-
plements the standard PSO only. Case 3 has the worst performance and the algorithm
fails to give a success rate more than 66%. The proposed hybrid PSO algorithm (Case
4) that incorporates noising-method-based local search offers the best results in terms
of success rate as well as convergence speed. The proposed algorithm is clearly able to
find the optimum path with high probability (more than 95%) for most of the network
topologies tested.

Next, the effect of the number of particles is investigated. For this, two case studies
(Cases 2 and 4) are selected. The number of particles is varied from 10 to 50, and for
each case, the success rate and the average number of fitness function evaluations re-
quired to achieve that success rate for the network topology number 1 (from Table 4.1)

A. W. Mohemmed and N. C. Sahoo 15

Table 4.1. Performance comparison among different case studies involving PSO for the SPP.

Network
topology
number

No. of
nodes

No. of
edges

Case 1 Case 2 Case 3 Case 4

SR FEav SR FEav SR FEav SR FEav

1 100 281 0.656 35961 0.637 32800 0.453 19750 0.957 22858

2 100 255 0.634 32270 0.686 29469 0.463 19872 0.966 17648

3 90 249 0.654 30713 0.694 28393 0.545 17723 0.971 17210

4 90 227 0.695 27632 0.768 24125 0.546 17622 0.982 13993

5 80 231 0.691 28444 0.733 25372 0.553 17364 0.982 16155

6 80 187 0.804 20354 0.821 18816 0.632 14973 0.984 10035

7 70 321 0.498 39352 0.58 34789 0.363 22119 0.897 34222

8 70 211 0.724 25277 0.771 22438 0.57 16884 0.973 15516

9 60 232 0.681 27924 0.742 24352 0.496 18541 0.961 20269

10 50 159 0.85 15304 0.872 13475 0.662 13328 0.995 8107

PSO with velocity reinitialization
PSO with noising method

10 20 30 40 50

Number of particles

0

0.2

0.4

0.6

0.8

1

1.2

Su
cc

es
s

ra
te

Figure 4.1. Success rate versus number of particles for network number 1.

are recorded. From the comparison of test results shown in Figures 4.1 and 4.2, it is seen
that the proposed hybrid algorithm based on PSO and noising method produces better
results for all the different population settings. For example, with number of particles
equal to 30, the success rate with proposed algorithm is 95.7% (compared to 63.7% for
the case without noising method), and for number of particles equal to 40, the success
rate with proposed algorithm is 97% (compared to 73.3% for the case without noising
method).

Further, the effects of the number of PSO iterations and noising-method-based tri-
als on convergence characteristics of the algorithm are examined (with a population size

16 Discrete Dynamics in Nature and Society

PSO with velocity reinitialization
PSO with noising method

10 20 30 40 50

Number of particles

0

10000

20000

30000

40000

50000

N
u

m
be

r
of

fi
tn

es
s

ev
al

u
at

io
n

s

Figure 4.2. Average number of fitness function evaluations to get the results of Figure 4.1.

of 30). In the first experiment (Case A), the number of noising method trials is fixed to
1000 and the number of PSO iterations is changed from 20 to 100. The success rate and
number of fitness function evaluations are recorded. In the second experiment (Case B),
the number of PSO iterations is fixed to 10 and the number of noising method trials is
changed from 1000 to 5000. These specific choices are set to get a comparison of suc-
cess rates and number of fitness function evaluations for the two cases, that is, variable
number of PSO iterations and variable number of noising method trials. The results are
illustrated in Figures 4.3 and 4.4. As expected, to get high success rates, either the number
of PSO iterations should be increased when the proposed algorithm is used with certain
fixed number of noising-method-based trials or the other way round. However, it should
be noted that a noising-method-based trial is simpler in terms of computation demand
compared to PSO iteration. Hence, the algorithm is more responsive to the increase in
the number of noising method trials than PSO iterations. Increasing the number of PSO
iterations while keeping the number of noising method trials fixed has less performance
efficiency than increasing number of noising trials for fixed number of PSO iterations.
For example, with 10 PSO iterations and 5000 noising-method-based trials, the success
rate is 88% and the average number of fitness function evaluations is 17570 compared to
getting a success rate of 75% and 17962 fitness function evaluations for the case with 100
PSO iterations and 1000 noising-method-based trials.

An advantage of the proposed algorithm is that several alternative suboptimal paths
are also generated in the search process. This is recorded in Figure 4.5 which shows the
success rates for suboptimal paths with costs within 105% and 110% of the shortest-
path cost. The success rates are almost 100% for all the topologies. Figure 4.6 shows the
number of unique paths (generated in the search process) whose costs are within 115%
of the optimum path cost. The point is that the proposed algorithm also successfully
generates many potential paths between the source and the destination.

A. W. Mohemmed and N. C. Sahoo 17

Case A
Case B

20 40 60 80 100
Case A (no. of PSO iterations)

Case B (no. of noising trials � 50)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Su
cc

es
s

ra
te

Figure 4.3. Success rate versus number of iterations for network number 1.

Case A
Case B

20 40 60 80 100
Case A (no. of PSO iterations)

Case B (no. of noising trials � 50)

0

5000

10000

15000

20000

N
u

m
be

r
of

fi
tn

es
s

ev
al

u
at

io
n

s

Figure 4.4. Number of evaluations versus number of iterations for network number 1.

All these results clearly establish the superiority of the nosing method based hybrid
PSO algorithm for solving the shortest-path problem in terms of solution quality as well
as convergence characteristics. Further, in order to assess the relative performance of the
proposed algorithm for the SPP compared to other previously reported heuristic algo-
rithms, in the following two subsections, the simulation results are also compared with
those obtained from other previously reported results for this problem, that is, GA-based
search using direct path encoding scheme [12] and indirect (priority-based) path encod-
ing scheme [13].

18 Discrete Dynamics in Nature and Society

Paths within 105% of optimal path
Paths within 110% of optimal path

50 60 70 80 90 100
Number of nodes

0

0.2

0.4

0.6

0.8

1

1.2

Su
cc

es
s

ra
te

Figure 4.5. Success rate for alternative paths that are within 105% and 110% of the optimum path
cost.

50 60 70 80 90 100

Number of nodes

0

100

200

300

400

500

600

700

800

N
u

m
be

r
of

al
te

rn
at

iv
e

pa
th

s

Figure 4.6. Number of alternative paths that are within 115% of the optimum path cost.

4.2. Performance comparison with GA-based search using direct path encoding. To
compare the performance of the proposed PSO hybrid algorithm with the GA algorithm
described in [12], different network topologies of (15–50) nodes with randomly assigned
link are generated. A total of 1000 random network topologies was considered in each
case (number of nodes). The number of PSO iterations is set to 100 and the number of
noising method trials is 4000. A comparison of the quality of solution in terms of route
failure ratio between the proposed PSO-based hybrid algorithm and GA-based search re-
ported in [12] (where the number of chromosomes in each case is the same as the number
of nodes in the network) is shown in Figures 4.7 and 4.8 comparing the time efficiency to
get these results (same hardware setup as in [12]). It clearly illustrates that the quality of

A. W. Mohemmed and N. C. Sahoo 19

GA [12]
PSO (with noising method)

15 20 25 30 35 40 45 50
Number of nodes

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

R
ou

te
fa

ilu
re

ra
ti

o

Figure 4.7. Comparison of route failure ratio between proposed hybrid PSO and GA [12].

GA [12]

PSO with noising method

15 20 25 30 35 40 45 50

Number of nodes

0

0.02

0.04

0.06

0.08

1

1.12

1.14

C
om

pu
ta

ti
on

ti
m

e
(s

)

Figure 4.8. Comparison of convergence time between proposed hybrid PSO and GA [12].

solution and time efficiency obtained with PSO-based hybrid algorithm are higher than
those of GA-based search. For example, in case of 45 node networks, the route failure ra-
tio is 0.002 (99.8% route optimality); but the GA search has route failure ratio 0.36 (64%
route optimality). The overall statistics of these results are collected in Table 4.2. The

20 Discrete Dynamics in Nature and Society

Table 4.2. Comparison of statistics of the quality of solution.

Performance measure
Algorithms

GA search [12] PSO-based search (proposed)

Route failure ratio
Average 0.1712 0.0015

standard deviation 0.1067 0.0016

Table 4.3. Different testing conditions for test number 1.

Case
study

Network used in [13]:
(nodes, edges,
optimal path cost)

Network used
here: (nodes, edges,
optimal path cost)

Population
size

Number of
generations
used in [13]

Number of PSO
iterations/noising
method trials

I (6,10,10) (6, 10,11) 10 100 10/1000

II (32,66,205) (32, 66,228) 20 200 10/1000

III (70,211,2708) (70,224,2780) 40 400 10/1000

PSO-based search attains an average route failure ratio of 0.0015 (99.85% route optimal-
ity) compared to 0.1712 for the GA search [12]. The standard deviation of route failure
ratio for the proposed PSO-based hybrid algorithm amounts 0.0016 compared to 0.1067
for GA search. Clearly, the proposed algorithm outperforms the GA-based algorithm for
this problem.

4.3. Performance comparison with GA-based search using indirect path encoding. For
performance comparison of PSO-based hybrid search algorithm, that is, PSO and
noising-method-based local search, using proposed encoding/decoding technique with
those reported in [13] using GA-based search and indirect encoding scheme, the same
testing conditions are simulated. However, [13] only reports the number of nodes and
edges in all the used networks and no information on the cost of the edges is provided.
Thus, the closest possible network is generated in this study where the number of nodes
of each network is exactly the same used in [13] and the number of edges is as close as
possible to those of [13]. The results are summarized as follows.

(a) Test number 1. Three random networks of different sizes are generated. The testing
conditions are given in Table 4.3. The statistical results for frequency of obtaining optimal
path over 400 independent runs (with different seeds) are compared in Table 4.4. Clearly,
the proposed PSO-based search performs better.

(b) Test number 2. In this test, the effects of population size on convergence characteris-
tics are compared. The number of generations/iterations in every run is fixed. The testing
conditions are number of PSO iterations = 10 (200 iterations in [13]), the chosen net-
work is that mentioned for case study III (only) in Table 4.3 for respective algorithms,
and the population sizes for both are varied from 10 to 100. The comparisons of fre-
quency for obtaining optimal path obtained from 200 random runs (for each population

A. W. Mohemmed and N. C. Sahoo 21

Table 4.4. Comparison of statistical results between GA-based search [13] and proposed algorithm
for test number 1.

Case study
Frequency for obtaining the optimal path

GA-based search [13] Proposed PSO-based hybrid algorithm

I 100% 100%

II 98% 100%

III 64% 99%

Table 4.5. Comparison of statistical results between GA-based search [13] and proposed algorithm
for test number 2.

Population size
Frequency for obtaining the optimal path

GA-based search [13] Proposed PSO-based hybrid algorithm

10 21% 55%

40 64% 93%

60 83% 98%

100 92% 100%

Table 4.6. Comparison of statistical results between GA-based search [13] and proposed algorithm
for test number 3.

Number of
generations/iterations

Frequency for obtaining optimal path

GA-based search [13]
(population size = 10)

Proposed PSO-based
hybrid algorithm

100 10% 55%

400 42% 95%

800 66% 97%

1200 76% 98%

2000 92% 99%

3000 94% 99%

size) are summarized in Table 4.5. As anticipated, the frequency for obtaining optimal
solution increases with population size for both approaches. The superior performance
of the proposed PSO-based hybrid search algorithm is again highlighted in the results.

(c) Test number 3. In this test, the convergence characteristics of search algorithms are
compared when the population size is fixed and the number of generations/iterations is
gradually increased from 100 to 3000. The chosen networks for both the search algo-
rithms are again the respective networks given in case study III in Table 4.3. The results
over 200 runs for each case are summarized in Table 4.6.

22 Discrete Dynamics in Nature and Society

4.4. Overall remarks on performance of the proposed algorithm. In general, the results
show that the hybridization of PSO with the noising-method-based local search improves
the overall performance. Using pure PSO while increasing iterations or population size
does not improve performance and it is also computationally expensive. In the proposed
hybrid PSO algorithm, the number of PSO iterations and the number of noising method
trials play a role in improving performance and reducing computation time. Generally,
PSO iteration is more expensive than noising method trial. Also, PSO iterations involve
velocity and position updating for the whole population, while noising method trial in-
volves only an elementary transformation and updating a new (better) solution found
for one particle. Therefore, a balance between the two schemes is necessary to get better
quality of solution with reasonable computation-time efficiency. A population size of 30
with 80(−100) PSO iterations and 4000 noising-method-based local search trials seems
to give good results in reasonable time for the complex network of 100 nodes and 281
edges. If a near-optimum solution is enough for smaller-size networks, then less number
of iterations can be used.

5. Conclusions

In this paper, a hybrid PSO/noising method algorithm is presented and tested for solv-
ing the shortest-path problem in networks. A new cost-priority-based particle encod-
ing/decoding scheme has also been devised so as to incorporate the network-specific
heuristic information in the path construction process. The simulation results on a wide
variety of random networks show that the proposed algorithm produces good results
in terms of higher success rates for getting the optimal path, which is also better than
those reported in the literature for the shortest-path problem using GA-based search al-
gorithms. In hybrid techniques, one technique can be used to overcome the disadvantage
of the other. It is believed that there is still a room for improving the performance of the
algorithm by adding more techniques like the Tabu search. The advantage of this pro-
posed heuristic algorithm is that it can be easily extended to solve the other variants of
the shortest-path problems like the constrained shortest path, multicriteria shortest path,
and so forth, which are known to be NP-hard and no polynomial-time solution is known
for them. This is under investigation in our future work.

References

[1] F. B. Zahn and C. E. Noon, “Shortest path algorithms: an evaluation using real road networks,”
Transportation Science, vol. 32, no. 1, pp. 65–73, 1998.

[2] J. Moy, “Open shortest path first Version 2. RFQ 1583,” Internet Engineering Task Force, 1994
http://www.ietf.org/.

[3] G. Desaulniers and F. Soumis, “An efficient algorithm to find a shortest path for a car-like robot,”
IEEE Transactions on Robotics and Automation, vol. 11, no. 6, pp. 819–828, 1995.

[4] N. Deo and C. Y. Pang, “Shortest-path algorithms: taxonomy and annotation,” Networks, vol. 14,
no. 2, pp. 275–323, 1984.

[5] E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
New York, NY, USA, 1976.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, Calif, USA, 1979.

http://www.ietf.org/

A. W. Mohemmed and N. C. Sahoo 23

[7] M. K. M. Ali and F. Kamoun, “Neural networks for shortest path computation and routing in
computer networks,” IEEE Transactions on Neural Networks, vol. 4, no. 6, pp. 941–954, 1993.

[8] J. Wang, “A recurrent neural network for solving the shortest path problem,” in Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS ’94), vol. 6, pp. 319–322, London,
UK, May-June 1994.

[9] F. Araujo, B. Ribeiro, and L. Rodrigues, “A neural network for shortest path computation,” IEEE
Transactions on Neural Networks, vol. 12, no. 5, pp. 1067–1073, 2001.

[10] M. Munemoto, Y. Takai, and Y. Sato, “A migration scheme for the genetic adaptive routing algo-
rithm,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 3,
pp. 2774–2779, San Diego, Calif, USA, October 1998.

[11] J. Inagaki, M. Haseyama, and H. Kitajima, “A genetic algorithm for determining multiple routes
and its applications,” in Proceedings of IEEE International Symposium on Circuits and Systems
(ISCAS ’99), vol. 6, pp. 137–140, Orlando, Fla, USA, May-June 1999.

[12] C. W. Ahn and R. S. Ramakrishna, “A genetic algorithm for shortest path routing problem and
the sizing of populations,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 6, pp.
566–579, 2002.

[13] M. Gen, R. Cheng, and D. Wang, “Genetic algorithms for solving shortest path problems,” in
Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 401–406, In-
dianapolis, Ind, USA, April 1997.

[14] G. Raidl and B. A. Julstrom, “A weighted coding in a genetic algorithm for the degree-
constrained minimum spanning tree problem,” in Proceedings of the ACM Symposium on Applied
Computing (SAC ’00), vol. 1, pp. 440–445, Como, Italy, March 2000.

[15] Z. Fu, A. Kurnia, A. Lim, and B. Rodrigues, “Shortest path problem with cache dependent path
lengths,” in Proceedings of the Congress on Evolutionary Computation (CEC ’03), vol. 4, pp. 2756–
2761, Canberra, Australia, December 2003.

[16] J. Kuri, N. Puech, M. Gagnaire, and E. Dotaro, “Routing foreseeable light path demands us-
ing a tabu search meta-heuristic,” in Proceedings of IEEE Global Telecommunication Conference
(GLOBECOM ’02), vol. 3, pp. 2803–2807, Taipei, Taiwan, November 2002.

[17] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proceedings of IEEE In-
ternational Conference on Neural Networks, vol. 4, pp. 1942–1948, Perth, Western Australia,
November-December 1995.

[18] R. Hassan, B. Cohanim, O. L. DeWeck, and G. Venter, “A comparison of particle swarm op-
timization and the genetic algorithm,” in Proceedings of the 1st AIAA Multidisciplinary Design
Optimization Specialist Conference, Austin, Tex, USA, April 2005.

[19] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among five evolutionary-based optimiza-
tion algorithms,” Advanced Engineering Informatics, vol. 19, no. 1, pp. 43–53, 2005.

[20] C. R. Mouser and S. A. Dunn, “Comparing genetic algorithms and particle swarm optimization
for an inverse problem exercise,” The Australian & New Zealand Industrial and Applied Mathe-
matics Journal, vol. 46, part C, pp. C89–C101, 2005.

[21] R. C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm opti-
mization,” in Proceedings of the 7th International Conference on Evolutionary Programming, pp.
611–616, Springer, San Diego, Calif, USA, March 1998.

[22] D. W. Boeringer and D. H. Werner, “Particle swarm optimization versus genetic algorithms for
phased array synthesis,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 3, pp. 771–
779, 2004.

[23] A. Salman, I. Ahmad, and S. Al-Madani, “Particle swarm optimization for task assignment prob-
lem,” Microprocessors and Microsystems, vol. 26, no. 8, pp. 363–371, 2002.

[24] K.-P. Wang, L. Huang, C.-G. Zhou, and W. Pang, “Particle swarm optimization for traveling
salesman problem,” in Proceedings of the 2nd International Conference on Machine Learning and
Cybernetics (ICMLC ’03), vol. 3, pp. 1583–1585, Xi’an, China, November 2003.

24 Discrete Dynamics in Nature and Society

[25] M. Clerc, “Discrete particle swarm optimization illustrated by the traveling salesman problem,”
2000, http://www.mauriceclerc.net/.

[26] L. Cagnina, S. Esquivel, and R. Gallard, “Particle swarm optimization for sequencing problem: a
case study,” in Proceedings of the IEEE Conference on Evolutionary Computation (CEC ’04), vol. 1,
pp. 536–541, Portland, Ore, USA, June 2004.

[27] X. Hu, R. C. Eberhart, and Y. Shi, “Swarm intelligence for permutation optimization: a case
study of n-queens problem,” in Proceedings of the IEEE Swarm Intelligence Symposium (SIS ’03),
pp. 243–246, Indianapolis, Ind, USA, April 2003.

[28] I. Charon and O. Hudry, “The noising method: a new method for combinatorial optimization,”
Operations Research Letters, vol. 14, no. 3, pp. 133–137, 1993.

[29] I. Charon and O. Hurdy, “The noising methods: a generalization of some metaheuristics,” Euro-
pean Journal of Operational Research, vol. 135, no. 1, pp. 86–101, 2001.

[30] X. Hu, Y. Shi, and R. C. Eberhart, “Recent advances in particle swarm,” in Proceedings of the
Congress on Evolutionary Computation (CEC ’04), vol. 1, pp. 90–97, Portland, Ore, USA, June
2004.

[31] Y. Shi, “Particle swarm optimization,” Feature article, IEEE Neural Networks Society, February
2004.

[32] J. Kennedy and R. Mendes, “Population structure and particle swarm performance,” in Proceed-
ings of the Congress on Evolutionary Computation (CEC ’02), vol. 2, pp. 1671–1676, Honolulu,
Hawaii, USA, May 2002.

[33] J. Kennedy, “Small worlds and mega-minds: effects of neighborhood topology on particle swarm
performance,” in Proceedings of the Congress on Evolutionary Computation (CEC ’99), vol. 3, pp.
1931–1938, Washington, DC, USA, July 1999.

[34] M. Clerc, “The swarm and queen: towards a deterministic and adaptive particle swarm opti-
mization,” in Proceedings of the Congress on Evolutionary Computation (CEC ’99), vol. 3, pp.
1951–1957, Washington, DC, USA, July 1999.

[35] R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm
optimization,” in Proceedings of the Congress on Evolutionary Computation (CEC ’00), vol. 1, pp.
84–88, La Jolla, Calif, USA, July 2000.

[36] P. J. Angeline, “Evolutionary optimization versus particle swarm optimization: philosophy and
performance difference,” in Proceedings of the 7th International Conference on Evolutionary Pro-
gramming, pp. 601–610, San Diego, Calif, USA, March 1998.

[37] P. Srinivas and R. Battiti, “The gregarious particle swarm optimizer (G-PSO),” in Proceedings
of the 8th Annual Conference Genetic and Evolutionary Computation (GECCO ’06), pp. 67–74,
Seattle, Wash, USA, July 2006.

[38] X.-F. Xie, W.-J. Zang, and Z.-L. Yang, “Dissipative particle swarm optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC ’02), vol. 2, pp. 1456–1461, Honolulu, Hawaii,
USA, May 2002.

[39] M. Iqbal, A. A. Freitas, and C. G. Johnson, “Varying the topology and probability of re-
initialization in particle swarm optimization,” in Proceedings of the 7th International Conference
on Artificial Evolution, Lille, France, October 2005.

[40] F. Rothlauf, D. E. Goldberg, and A. Heinzl, “Network random keys: a tree network representa-
tion scheme for genetic and evolutionary algorithms,” Evolutionary Computation, vol. 10, no. 1,
pp. 75–97, 2002.

[41] V. Kelner, F. Capitanescu, O. Léonard, and L. Wehenkel, “A hybrid optimization technique cou-
pling evolutionary and local search algorithms,” in Proceedings of the 3rd International Con-
ference on Advanced Computational Methods in Engineering (ACOMEN ’05), Ghent, Belgium,
May-June 2005.

[42] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search procedures,” Journal of
Global Optimization, vol. 6, no. 2, pp. 109–133, 1995.

http://www.mauriceclerc.net/

A. W. Mohemmed and N. C. Sahoo 25

[43] K. Yasuda and T. Kanazawa, “Proximate optimality principle based Tabu search,” in Proceedings
of IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1560–1565, October
2003.

[44] B. M. Waxman, “Routing of multipoint connections,” Journal of Selected Areas in Communica-
tions, vol. 6, no. 9, pp. 1617–1622, 1988.

[45] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of
the Congress on Evolutionary Computation (CEC ’99), vol. 3, pp. 1945–1950, Washington, DC,
USA, July 1999.

[46] A. Carlisle and G. Dozier, “An off-the-shelf PSO,” in Proceedings of the Workshop on Particle
Swarm Optimization, pp. 1–6, Indianapolis, Ind, USA, April 2001.

[47] M. Clerc and J. Kennedy, “The particle swarm explosion, stability, and convergence in a multi-
dimensional complex space,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp.
58–73, 2002.

Ammar W. Mohemmed: Faculty of Engineering and Technology, Multimedia University,
Jalan Ayer Keroh Lama, Melaka 75450, Malaysia
Email address: ammar.wmohemmed@mmu.edu.my

Nirod Chandra Sahoo: Faculty of Engineering and Technology, Multimedia University,
Jalan Ayer Keroh Lama, Melaka 75450, Malaysia
Email address: nirodchandra.sahoo@mmu.edu.my

mailto:ammar.wmohemmed@mmu.edu.my
mailto:nirodchandra.sahoo@mmu.edu.my

	1. Introduction
	2. Basic particle swarm optimization algorithm
	2.1. Basic steps of PSO algorithm
	2.2. Modifications to basic PSO algorithm

	3. Shortest-path computation by PSO and noising metaheuristics
	3.1. Existing path encoding techniques
	3.2. Proposed cost-priority-based particle encoding/decoding
	3.3. Noising metaheuristics-based local search for performance enhancement
	3.4. Complete PSO and noising-method-based algorithm for SPP

	4. Computer simulation results and discussion
	4.1. Performance assessment of proposed hybrid PSO
	4.2. Performance comparison with GA-based search using direct path encoding
	4.3. Performance comparison with GA-based search using indirect path encoding
	4.4. Overall remarks on performance of the proposed algorithm

	5. Conclusions
	References

