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tions are also obtained for the global asymptotic stability of the positive equilibrium of
the model.

Copyright © 2007 Liming Cai et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The classic Lotka-Volterra-type prey-predator system is an important population model
and has been studied by some authors (see [1–5]). It is assumed that each individual prey
admits the same risk to be attacked by predator. However, these assumptions provide only
an idealization of the natural world. In the natural world, there are many species who go
through two or more life stages while they proceed from birth to death. Different life
stages usually have different physical behaviors. Age-structured ecological models have
received much attention in recent years. This is not only because they are simpler than the
models governed by partial differential equations, but also they can exhibit phenomena
similar to those of partial differential models, and many important physiological parame-
ters can be incorporated (see [6]). Recently, papers [7–12] have studied the age-structured
population model with or without time delays. They study the effect of age structure on
the dynamical behavior of prey-predator system. In addition, a good overview on age-
structured models can be found in the recent book by Murdoch et al. [13, Chapter 5 in
particular].
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Motivated by recent works of Gourley and Kuang [9] and Zhang et al. [12], in this pa-
per, we consider the following plausible age-structured prey-predator interaction model:

dxj(t)

dt
= αx(t)− γxj(t)−αe−γτx(t− τ),

dx(t)
dt

= αe−γτx(t− τ)−μ1x(t)−mx2(t)−βx(t)y(t),

dy(t)
dt

= bβx(t− σ)y(t− σ)−μ2y(t)−ωy2(t),

(1.1)

where xj(t) and x(t) represent, respectively, the juvenile and adult prey densities at time
t; y(t) represents the predator density at time t. α, μ1, γ, μ2, β, τ, σ , m and ω are positive
constants.

The model is derived under the following assumptions.
(A1) We first assume that the life history of prey species is divided into two stages:

juvenile and adult. The delay τ denotes the time from birth to maturity of prey species.
We then assume that the juvenile prey reproduction rate is proportional to the existing
adult prey population with a proportionality constant α; γ is the death rate of the juvenile
populations. Finally, we assume that the juvenile preys born at time t− τ that survive to
time t exit from the the juvenile population and enter the the mature population at time
t. The term αe−γτx(t− τ) represents the the juvenile prey individuals who were born at
time t− τ and still survive at time t, and represents the transformation of the juvenile
prey population to the adult prey population.

(A2) We assume that the adult prey species have death and intraspecific competition
rate constants μ1 and m, respectively. μ2 and ω are, respectively, death and intraspecific
competition rate constants of the predator, β is the predation coefficient, and b (0≤ b ≤
1) is the coefficient in conversing prey into predator. It seems reasonable to assume that
the reproduction of predator after predating the prey will not be instantaneous, but medi-
ated by some discrete time delay required for gestation of predator (see [8, 14]). σ (σ > 0)
is the time required for the gestation of the predator.

(A3) It seems reasonable for many species of mammals, where immature preys con-
cealed in the mountain cave are raised by their parents; they do not necessarily go out to
seek food, so they are not attacked by the predators and the rate at which the predators
attack can be ignored.

The initial conditions for system (1.1) take the form of

xj(θ)= ϕj(θ)≥ 0, x(θ)= ϕ(θ)≥ 0, y(θ)= ψ(θ)≥ 0, θ ∈ [−h,0],

ϕj(0) > 0, ϕ(0) > 0, ψ(0) > 0,
(1.2)

where h=max{τ,σ}, Φ= (ϕj(θ),ϕ(θ),ψ(θ))∈ C([−h,0],R3
+0), the Banach space of con-

tinuous functions mapping the interval [−h,0] into R3
+0, where R3

+0 = {(xj ,x, y) : xj ≥
0, x ≥ 0, y ≥ 0}.
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The first equation of system (1.1) with initial conditions (1.2) can be rewritten as

xj(t)=
∫ t
t−τ

αe−γ(t−θ)x(θ)dθ. (1.3)

For continuity of the initial conditions, we further require xj(0)= ∫ 0
−τ αeγθϕ(θ)dθ.

Thus, xj(t) can be completely determined by x(t), y(t), respectively. Therefore, the
dynamics of system (1.1) are completely determined by the second and third equations.
In the rest of this paper, we will consider the following subsystem:

dx(t)
dt

= αe−γτx(t− τ)−μ1x(t)−mx2(t)−βx(t)y(t),

dy(t)
dt

= bβx(t− σ)y(t− σ)−μ2y(t)−ωy2(t).

(1.4)

In this paper, we will perform a global analysis for the age-structured prey-predator
model (1.4) to show the combined effects of age structure for prey and delay due to the
gestation of the predator on the dynamics of the model.

The organization of this paper is as follows. In the next section, stability of boundary
equilibria of the system is discussed. In Section 3, the sufficient conditions for the perma-
nence of the system are obtained. In Section 4, global stability of the positive equilibrium
is also discussed. The paper ends with brief remarks.

2. Stability of boundary equilibria

In this section, we first show the existence of equilibria and the local stability of boundary
equilibria for system (1.4).

Except for equilibrium E0(0,0), system (1.4) has also equilibria E1(x0,0), E∗(x∗, y∗),
where

x0 = αe−γτ −μ1

m
, x∗ = ω

(
αe−γτ −μ1

)
+βμ2

mω+ bβ2
, y∗ = bβ

(
αe−γτ −μ1

)−mμ2

mω+ bβ2
.

(2.1)

The boundary equilibrium E1(x0,0) exists if αe−γτ > μ1, and the existence condition for
the positive equilibrium E∗(x∗, y∗) is bβ(αe−γτ −μ1) >mμ2.

Theorem 2.1. (1) The equilibrium E0 of system (1.4) is stable if αe−γτ < μ1 and unstable if
αe−γτ > μ1.

(2) The equilibrium E1 of system (1.4) is locally asymptotically stable if bβ(αe−γτ −μ1) <
mμ2 and unstable if bβ(αe−γτ −μ1) >mμ2.

Proof. (1) The characteristic equation of the equilibrium E0(0,0) is

(
λ−αe−(γ+λ)τ +μ1

)(
λ+μ2

)= 0. (2.2)

Clearly, λ=−μ2 is a negative eigenvalue, while the other eigenvalue is given by the solu-
tions of λ= αe−(γ+λ)τ − μ1. If αe−γτ > μ1, we claim that the solutions of λ= αe−(γ+λ)τ − μ1
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have only negative real parts. Suppose that Reλ≥ 0. By computing the real parts of λ, we
get

Reλ= αe−γτe−τReλ cos(τ Imλ)−μ1 ≤ αe−γτ −μ1 < 0, (2.3)

a contradiction. Thus we have Reλ < 0.
If αe−γτ > μ1, we claim that λ = αe−(γ+λ)τ − μ1 has at least a positive solution. In fact,

set

f (λ)= λ−αe−(γ+λ)τ +μ1. (2.4)

We have f (0)= μ1−αe−γτ < 0 and f (+∞)= +∞. Hence, f (λ) has at least one positive
root and E0 is unstable.

(2) The characteristic equation of the equilibrium E1(x0,0) is

G(λ)
def= (λ−αe−γτe−λτ1 +μ1 + 2mx0)(λ− bβx0e−λσ +μ2

)= 0. (2.5)

Thus, all eigenvalues are given by the solutions λ = αe−γτe−λτ1 − μ1 − 2mx0 and λ =
bβx0e−λσ − μ2, respectively. Similar to the above arguments, if bβ(αe−γτ − μ1) < mμ2, we
obtain that all the roots for the equation G(λ) have only negative real parts, and E1 is
stable. Otherwise, E1 is unstable. The proof is complete. �

Similar to the arguments of paper [10, 15], we have the following lemmas.

Lemma 2.2. Let x(θ), y(θ)≥ 0, on −h≤ θ < 0, and x(0), y(0) > 0. Then solutions of system
(1.4) are positive for all t ≥ 0.

Lemma 2.3. Consider the following equation:

ẋ(t)= ax(t− τ)− bx(t)− cx2(t), (2.6)

where a,b,c,τ > 0; x(t) > 0, for −τ ≤ t ≤ 0. One has the following.
(i) If a > b, then limt→∞ x(t)= (a− b)/c.

(ii) If a < b, then limx→∞ x(t)= 0.

Lemma 2.4. Assume that bβ(αe−γτ − μ1) > mμ2. Then all solutions of system (1.4) with
initial conditions are bounded for all t ≥ 0.

Proof. Noting that bβ(αe−γτ −μ1) >mμ2, there exists an ε such that bβ((αe−γτ −μ1)/m+
ε) > μ2. From the first equation of system (1.4), we have

dx(t)
dt

≤ αe−γτx(t− τ)−μ1x(t)−mx2(t). (2.7)

Since αe−γτ > μ1, by Lemma 2.3 and comparison, we have limt→+∞ x(t) ≤ (αe−γτ −μ1)/
m. Thus, there exists a Tε > 0 such that x(t) ≤ (αe−γτ −μ1)/m+ ε for t > Tε. From the
second equation of system (1.4), we obtain that for t > Tε + σ ,

dy(t)
dt

≤ bβ
(
αe−γτ −μ1

m
+ ε
)
y(t− σ)−μ2y(t)−ωy2(t). (2.8)
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Since bβ((αe−γτ −μ1)/m+ ε) > μ2, by Lemma 2.3 and comparison, it is easy to obtain that
limt→+∞ y(t)≤ (αe−γτ −μ1)/mω+ ε. The proof is complete. �

Similar to the arguments of Lemma 2.4, it is easy to obtain the following conclusion.

Theorem 2.5. Assume that αe−γτ < μ1. Then solutions of system (1.4) satisfy x(t) → 0,
y(t)→ 0 as t→∞.

Now we give the sufficient conditions for the global stability of the boundary equilib-
rium (x, y)= (x0,0). The biological meaning of the condition is obvious: if the predators
recruitment rate bβ at the peak of adult prey abundance is no more than their death rate
μ2, then the predators face extinction.

Theorem 2.6. Assume that 0 < bβ((αe−γτ −μ1)/m) < μ2. Then the solutions of system (1.4)
satisfy x(t)→ x0, y(t)→ 0 as t→∞.

Proof. Noting that 0<bβ((αe−γτ−μ1)/m)<μ2, thus there exists an ε′ such that bβ((αe−γτ−
μ1)/m+ ε′) < μ2. It follows from the first equation of system (1.4) that

dx(t)
dt

≤ αe−γτx(t− τ)−μ1x(t)−mx2(t). (2.9)

Since αe−γτ > μ1, by Lemma 2.3 and comparison, we have limt→+∞ x(t)= (αe−γτ −μ1)/m.
Thus, there exists Tε′ > 0 such that x(t)≤ (αe−γτ −μ1)/m+ ε′, for all t > Tε′ > 0. Then for
t > Tε′ + σ , we have

dy

dt
≤ bβ

(
αe−γτ −μ1

m
+ ε′

)
y(t− σ)−μ2y(t)−ωy2(t). (2.10)

Therefore, by Lemma 2.3 and comparison, we have y(t)→ 0.
In the following, we will show that limt→∞ x(t)= x0, we consider two cases.

Case 1. x(t) is oscillatory about x0. Then for the bounded x(t), there must exist a sequence
{tk}, such that limk→∞ tk =∞, and x(tk) is a local maximum. That is, ẋ(tk)= 0, ẍ(tk) < 0.
Let

x̃ = lim
k→∞

sup
{
x
(
tk
)}
. (2.11)

We have 0 < x̃ < +∞ and limk→∞ supx(t) = x̃. We claim that x̃ ≤ (αe−γτ −μ1)/m. Other-
wise,

x̃ >
αe−γτ −μ1

m
. (2.12)

From the first equation of system (1.4), we obtain that at tk,

0= ẋ(tk)= αe−γτx(tk − τ)−μ1x
(
tk
)−mx2(tk)−βx(tk)y(tk), (2.13)

Let x̂ = limk→∞ sup{x(tk − τ)}.
We take a subsequence of {tk} and, without loss generality, rewrite {tk} such that

tk+1 > tk + τ, limtk→∞ x(tk) = x̃, limtk→∞ x(tk) = x̂. Thus, taking lim both sides of (2.13),
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and incorporating limt→∞ y(t)= 0 and (2.12), we obtain that

0= αe−γτ x̂−μ1x̃−mx̃2 < αe−γτ(x̂− x̃). (2.14)

Therefore, we have x̂ > x̃. This is a contradiction to the definition of tk and (2.11). Hence,
we have x̃ ≤ (αe−γτ −μ1)/m. That is, limt→∞ supx(t) ≤ (αe−γτ −μ1)/m. Similar to the
above arguments, we can obtain limt→∞ inf x(t) ≥ (αe−γτ −μ1)/m. Therefore, we have
limt→∞ x(t)= (αe−γτ −μ1)/m.

Case 2. x(t) is nonoscillatory. Then x(t) is eventually monotone. Thus for the bounded
x(t), there exists x, 0 < x < +∞, such that limt→∞ x(t)= x. It follows from the first equa-
tion of the system that limt→∞ ẋ(t) exists. As a consequence, [16] implies that
limt→∞ ẋ(t) = 0. Taking lim both sides of the first equation for system (1.4) and incor-
porating limt→∞ y(t)= 0 give 0= x(αe−γτ −μ1−mx). That is, x = (αe−γτ −μ1)/m.

The proof is complete. �

By Theorems 2.1-2.6, we directly obtain the following corollaries.

Corollary 2.7. The equilibrium E0(0,0) of system (1.4) is globally asymptotically stable if
αe−γτ < μ1 holds true.

Corollary 2.8. The equilibrium E1(x0,0) of system (1.4) is globally asymptotically stable
if 0 < bβ(αe−γτ −μ1) <mμ2 holds true.

3. Permanence of system (1.4)

In this section, we will apply the permanent theory for infinite-dimensional system from
[17] to obtain the permanence of system (1.4).

Lemma 3.1 (see [17, page 392]). Suppose that T(t) satisfies (H1) and the following condi-
tions hold:

(i) there is a t0 ≥ 0 such that T(t) is compact for t > t0;
(ii) T(t) is point dissipative in X ;

(iii) Ãb =
⋃
x∈Ab ω(x) is isolated and has an acyclic covering M̃, where

M̃ = {A1,A2, . . . ,An
}

; (3.1)

(iv) Ws(Ai)∩X0 = φ, for i= 1,2, . . . ,n. Then X0 is a uniform repeller with respect to X0,
that is, there is an ε > 0 such that for x ∈ X0, liminf t→+∞d(T(t)x,X0)≥ ε, where d
is the distance of T(t)x from X0.

Theorem 3.2. Assume that bβ(αe−γτ −μ1) >mμ2. Then system (1.4) is permanent.

Proof. We first begin by showing that the boundary planes of R2
+ = {(x, y) : x ≥ 0, y ≥ 0}

repel the positive solutions to system (1.4) uniformly. Let us define

C1 =
{

(ϕ,ψ)∈ C([−h,0],R2
+

)
: ϕ(θ)≡ 0, θ ∈ [−h,0]

}
,

C2 =
{

(ϕ,ψ)∈ C([−h,0],R2
+

)
: ϕ(θ) > 0, ψ(θ)≡ 0, θ ∈ [−h,0]

}
,

(3.2)
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where C([−h,0],R2
+) is the space of continuous functions mapping [−h,0] into R2

+. Set
C0 = C1

⋃
C2, X = C([−h,0],R2

+). Thus X0 = IntC([−h,0],R2
+), C0 = ∂X0.

We now verify that the conditions of Lemma 3.1 are satisfied.
By the definition of X0, ∂X0, and system (1.4), it is easy to see that X0 and ∂X0 are

invariant, hence (H1) is satisfied. System (1.4) possesses two constant solutions in C0 =
∂X0 :A1 ∈ C1, A2 ∈ C2 with

A1 =
{

(ϕ,ψ)∈ C([−τ,0],R2
+

)
: ϕ(θ)≡ ψ ≡ 0, θ ∈ [−τ,0]

}
,

A2 =
{

(ϕ,ψ)∈ C([− τ,0],R2
+

)
: ϕ(θ)≡ x0, ψ(θ)≡ 0, θ ∈ [−τ,0]

}
.

(3.3)

By Lemmas 2.2 and 2.4, conditions (i) and (ii) of Lemma 3.1 are clearly satisfied.
Consider condition (iii) of Lemma 3.1. We have ẋ(t)|(ϕ,ψ)∈C1 ≡ 0, then we get

x(t)|(ϕ,ψ)∈C1 ≡ 0, for all t ≥ 0. Using the second equation of system (1.4), we have
ẏ(t)|(ϕ,ψ)∈C1 = −μ2y(t)−ωy2(t) ≤ 0, hence all points in C1 approach A1, that is, C1 =
Ws(A1). On the other hand, note that ẏ(t)|(ϕ,ψ)∈C1 = 0, and thus y(t)|(ϕ,ψ)∈C1 = 0 for all
t ≥ 0. Accordingly, we have ẋ(t)|(ϕ,ψ)∈C2= αe−γτx(t− τ)−μ1x(t)−mx2(t). By Lemma 2.3,
we have limt→∞ x(t)= (αe−γτ − μ1)/m. It is obvious that we have that all points in C2 ap-
proach A2, that is, C2 =Ws(A2). Hence M̃ = {A1,A2}, and clearly it is isolated. Noting
that C1 ∩C2 = φ, it follows from these structural features that the flow in M̃ is acyclic,
satisfying condition(iii) of Lemma 3.1. Now we show that Ws(Ai)∩ X0 = φ, i = 1,2.
Since Lemmas 2.2 and 2.4 indicate that Ws(A1)∩X0 = φ, we only need to prove that
Ws(A2)∩X0 = φ.

Assume the contrary, that is, Ws(A2)∩X0 �= φ, thus there exists a positive solution
(x(t), y(t)) to system (1.4) with limt→∞(x(t), y(t))= (x0,0). Then for the sufficiently small
ε with (bβ(αe−γτ −μ1)−mμ2)/(bβ+ω)mω > ε, there exists a positive constant T = T(ε)
such that x(t) > (αe−γτ −μ1)/m− ε, y(t) < ε, for all t ≥ T . By the second equation of
system (1.4), we have

dy

dt
> bβ

(
αe−γτ −μ1

m
− ε
)
y(t− σ)−μ2y(t)−ωy2(t), t ≥ T + τ. (3.4)

By Lemma 2.3 and comparison, we have limt→∞ y(t) > u∗, where

u∗ = bβ
(
αe−γτ −μ1

)−mbβε−mμ2

mω
> ε. (3.5)

This is a contradiction to y(t) < ε. Therefore, the condition Ws(Ai)∩X0 = φ, i= 1,2,
of Lemma 3.1 holds. Thus system (1.4) satisfies all conditions of Lemma 3.1. Accordingly,
system (1.4) is uniformly persistent, that is, there exist positive constants ε and T = T(ε)
such that the solutions x(t), y(t) of system (1.4) satisfy x(t), y(t) ≥ ε for all t ≥ T . Fur-
thermore, Lemma 2.4 shows that (x(t), y(t)) are ultimately bounded. That is, system (1.4)
is dissipative, and this proves the permanence of system (1.4). �
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4. Global stability of the positive equilibrium

In the following, we first discuss the local asymptotic stability of the positive equilibrium
E∗(x∗, y∗) of system (1.4). Based on the permanence of solutions of system (1.4), we will
use the method of Lyapunov functionals.

Theorem 4.1. The positive equilibrium E∗ of system (1.4) is locally asymptotically stable
provided that (H2): θ1 > 0, θ2 > 0, where

θ1 = by∗

x∗
{

2mx∗ −αe−γττ[4αe−γτ + (2m+β)x∗
]−βσx∗[2αe−γτ + (bβ+m)x∗

]}
,

θ1 = μ2 + 2ωy∗−αe−γτbβy∗τ−bβσ{[2αe−γτ+ (m+2β+ bβ)x∗
]
y∗+2x∗

(
2βx∗ +ωy∗

)}
.

(4.1)

Proof. Let us linearize system (1.4) at E∗(x∗, y∗). Setting x = x∗ +w, y = y∗ + z, where
w and z are small, and linearizing give

ẇ(t)= Aw(t− τ) +A1w(t) +Bz(t),

ż(t)= Cw(t− σ) +Dz(t− σ) +D1z(t),
(4.2)

where

A= αe−γτ , A1 =−μ1− 2mx∗ −βy∗, B =−βx∗,

C = bβy∗, D = bβx∗, D1 =−μ2− 2ωy∗.
(4.3)

The first equation of (4.2) can be rewritten as

ẇ(t)= (A+A1
)
w(t) +Bz(t)−A

∫ t
t−τ

[
Aw(u− τ) +A1w(u) +Bz(u)

]
du. (4.4)

Set

V11(t)=w2(t). (4.5)

Calculating the derivation of V11(t) along solutions of (4.2), and using the inequality
2ab≤ (a2 + b2), we have

V̇11(t)≤ 2
(
A+A1

)
w2(t) + 2Bw(t)z(t) +A

(
A−A1−B

)
τw2(t)

+A
∫ t
t−τ

[
Aw2(u− τ)−A1w

2(u)−Bz2(u)
]
du.

(4.6)

Set

V12(t)= A
∫ t
t−τ

∫ t
v

[
Aw2(u− τ)−A1w

2(u)−Bz2(u)
]
dudv. (4.7)

It follows from (4.6) and (4.7) that

d
(
V11(t) +V12(t)

)
dt

≤ 2
(
A+A1

)
w2(t) + 2Bw(t)z(t) +A

(
A−A1−B

)
τ

×w2(t) +Aτ
[
Aw2(t− τ)−A1w

2(t)−Bz2(t)
]
du.

(4.8)
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Set

V1(t)=V11(t) +V12(t) +V13(t), (4.9)

where

V13 =A2τ
∫ t
t−τ

w2(u)du. (4.10)

It follows from (4.8) and (4.10) that

V̇1(t)≤ [2(A+A1
)

+A
(
2A− 2A1−B

)
τ
]
w2(t)−ABτz2(t) + 2Bw(t)z(t). (4.11)

Similarly, the second equation of (4.2) can be written as

ż(t)= (D+D1
)
z(t) +Cw(t)−C

∫ t
t−σ

[
Aw(u− τ) +A1w(u) +Bz(u)

]
du

−D
∫ t
t−σ

[
Cw(u− σ) +Dz(u− σ) +D1z(u)

]
du.

(4.12)

Set

V21(t)= z2(t). (4.13)

Then along the solutions of system (4.2), using the inequality 2ab ≤ a2 + b2, we have

V̇21(t)≤ 2
(
D+D1

)
z2(t) + 2Cw(t)z(t) +C

(
A−A1−B

)
σz2(t)

+D
(
C+D−D1

)
σz2(t) +C

∫ t
t−σ

[
Aw2(u− τ)−A1w

2(u)−Bz2(u)
]
du

+D
∫ t
t−σ

[
Cw2(u− σ) +Dz2(u− σ)−D1z

2(u)
]
du.

(4.14)

Set

V22(t)= C
∫ t
t−σ

∫ t
v

[
Aw2(u− τ)−A1w

2(u)−Bz2(u)
]
dudv

+D
∫ t
t−σ

∫ t
v

[
Cw2(u− σ) +Dz2(u− σ)−D1z

2(u)
]
dudv.

(4.15)

It follows from (4.14) and (4.15) that

d
(
V21(t) +V22(t)

)
dt

≤ 2
(
D+D1

)
z2(t) + 2Cw(t)z(t) +C

(
A−A1−B

)

× σz2(t) +D
(
C+D−D1

)
σz2(t)

+Cσ
[
Aw2(t− τ)−A1w

2(t)−Bz2(t)
]

+Dσ
[
Cw2(t− σ) +Dw2(t− σ)−D1w

2(t)
]
.

(4.16)
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Set

V2(t)=V21(t) +V22(t) +V23(t), (4.17)

where

V23(t)= ACσ
∫ t
t−τ

w2(u)du+Dσ
∫ t
t−σ

[
Cw2(u) +Dz2(u)

]
du. (4.18)

Then it follows from (4.16), (4.17), and (4.18) that

V̇2(t)≤ 2
(
D+D1

)
z2(t) + 2Cw(t)z(t) +C

(
A−A1− 2B

)
σz2(t)

+D
(
C+ 2D− 2D1

)
σz2(t) +Cσ

(
D+A−A1

)
w2(t).

(4.19)

Set

V(t)=−C
B
V1(t) +V2(t). (4.20)

Then it follows from (4.11), (4.19), and (4.20) that

V̇(t)≤−C
B

{[
2
(
A+A1

)
+A

(
2A− 2A1−B

)
τ
]
w2(t)−ABτz2(t) + 2Bw(t)z(t)

}

+ 2
(
D+D1

)
z2(t) + 2Cw(t)z(t) +C

(
A−A1− 2B

)
σz2(t)

+D
(
C+ 2D− 2D1

)
σz2(t) +Cσ

(
D+A−A1

)
w2(t)

=:−θ1w
2(t)− θ2z

2(t).

(4.21)

By assumption (H2), we have θ1 > 0, θ2 > 0. According to the Lyapunov theorem (see
[12]), we can derive that the zero solution of (4.2) is uniformly asymptotically stable.
Accordingly, the positive equilibrium E∗ of system (1.4) is uniformly asymptotically sta-
ble. �

Remark 4.2. From Theorem 4.1, it is easy to see that the positive instantaneous equi-
librium (i.e., when τ = 0, σ = 0) of the system (1.4) is locally uniformly asymptotically
stable. Then the local uniform asymptotic stability of E∗ for the delayed model (1.4) is
preserved for small τ and σ satisfying (H2).

Now we show the global attractivity of E∗ by using an iterative technique.

Theorem 4.3. Assume that bβω(αe−γτ −μ1) >mωμ2 > bβ2μ2 holds. Then solutions of sys-
tem (1.4) satisfy x(t)→ x∗, y(t)→ y∗ as t→∞.

Proof. It follows from bβω(αe−γτ −μ1) >mωμ2>bβ2μ2 that αe−γτ −μ1>0,
∑n

k=0 (mω)k(−
bβ2)n−k > 0 (n= 1,2,3, . . .) and the unique positive equilibrium (x∗, y∗) exists.

From the first equation of system (1.4), we obtain ẋ(t) ≤ αe−γτx(t − τ)− μ1x(t)−
mx2(t). Consider the following auxiliary equation:

du(t)
dt

= αe−γτu(t− τ)−μ1u(t)−mu2(t), satisfying u(0)= y(0). (4.22)
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Let P1 =m−1(αe−γτ − μ1). By Lemma 2.3, we have limt→+∞u(t)= P1. By comparison,
there are a T11 > 0 and sufficiently small ε1 > 0 such that x(t) ≤ u(t) ≤ P1 + ε1, t > T11.
Thus, for t > T11 + σ , we have

ẏ(t)≤ bβ(P1 + ε1
)
y(t− σ)−μ2y(t)−ωy2(t). (4.23)

Let

Q1 = bβ
(
P1 + ε1

)−μ1

ω
= bβ

(
αe−γτ −μ1

)−mμ2

mω
+
bβε1

ω
> 0. (4.24)

By Lemma 2.3 and comparison, for the above ε1, there exists T21 > T11, such that y(t)≤
Q1 + ε1, t > T21. Then we have

ẋ(t)≥ αe−γτx(t− τ)−μ1x(t)−β(Q1 + ε1
)
x(t)−mx2(t). (4.25)

Let

P2 = αe−γτ −μ1−β
(
Q1 + ε1

)
m

=
(
mω− bβ2

)(
αe−γτ −μ1

)
+mβμ2

ωm2
− bβ2 +ωβ

mω
ε1 > 0.

(4.26)

By Lemma 2.3 and comparison, for the above ε1, there is T22 > T21, such that x(t)≥ P2−
ε1, for t > T22. Therefore, we obtain for t > T22 + σ that

ẏ(t)≥ bβ(P2− ε1
)
y(t− σ)−μ2y(t)−ωy2(t). (4.27)

Let

Q2 = bβ
(
P2− ε1

)−μ2

ω

=
(
mω− bβ2

)(
bβ
(
αe−γτ −μ1

)−mμ2
)

m2ω2
− bβ

(
bβ2 + bβ+mω

)
mω2

ε1 > 0.

(4.28)

By Lemma 2.3 and comparison, for the above ε1, there is T31 > T22, such that y(t) ≥
Q2− ε1, t > T31. We obtain that for t > T31 + τ,

ẋ(t)≤ αe−γτx(t− τ)−μ1x(t)−β(Q2− ε1
)
x(t)−mx2

2(t). (4.29)

Let

P3 = αe−γτ −μ1−βQ2 +βε1

m

=
(
m2ω2−mωbβ2 + bβ4

)(
αe−γτ −μ1

)
+mβμ2

(
mω− bβ2

)
m3ω2

+
β
(
bβ2 +mω

)
(bβ+ω)

m2ω2
ε1 > 0.

(4.30)
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By Lemma 2.3 and comparison, for the above ε1, there is T32 > T31, such that x(t)≤ P3 +
ε1, for t > T32. Thus, for t > T32 + σ , we have

ẏ(t)≤ bβ(P3 + ε1
)
y(t− σ)−μ2y(t)−ωy2(t)

)
. (4.31)

Let

Q3 = bβ
(
P3 + ε1

)−μ2

ω

=
∑2

k=0 (mω)k
(− bβ2

)2−k(
bβ
(
αe−γτ −μ1

)−mμ2
)

m3ω3

+
mbβ

[
b2β4 +ωbβ2 +m2ω2 +βω

(
bβ2 +mω

)]
m2ω3

ε1 > 0.

(4.32)

By Lemma 2.3 and comparison, for the above ε1, there is T41 > T32, such that y(t) ≤
Q3 + ε1, t > T41. Then, for t > T41 + τ, we have

ẋ(t)≥ αe−γτx(t− τ)−μ1x(t)−β(Q3 + ε1
)
x(t)−mx2(t). (4.33)

Continuing this process and by induction, we obtain

x(t)≤ P2s−1 + ε2s−1

=
(
αe−γτ −μ1

)∑2s−2
k=0 (mω)k

(− bβ2
)2s−2−k

+mβμ2
∑2s−3

k=0 (mω)k
(− bβ2

)2s−3−k

m2s−1ω2s−2

+ ε2s−1, for t > T2s−1 s,

y(t)≤Q2s−1 + ε′2s−1

=
[
bβ
(
αe−γτ −μ1

)−mμ2
]∑2s−2

k=0 (mω)k
(− bβ2

)2s−2−k

m2s−1ω2s−1

+ ε′2s−1, for t > T2s 1 > T2s−1 s,

x(t)≥ P2s− ε2s

=
(
αe−γτ −μ1

)∑2s−1
k=0 (mω)k

(− bβ2
)2s−1−k

+mβμ2
∑2s−2

k=0 (mω)k
(− bβ2

)2s−2−k

m2sω2s−1

− ε2s, for t > T2s 2 > T2s 1,

y(t)≥Q2s− ε′2s =
[
bβ
(
αe−γτ −μ1

)−mμ2
]∑2s−1

k=0 (mω)k
(− bβ2

)2s−1−k

m2sω2s

− ε′2s, for t > T2s+1 2s−1 > T2s 2 (s= 2,3,4, . . .),
(4.34)

where

εn = β(mω+ bmβ)
∑s−2

k=0 (mω)k
(
bβ2
)s−2−k

mnωn−1
ε1 + ε1 (n= 2s− 1, 2s),

ε′n =
bmβ

(∑n−1
k=0 (mω)k

(
bβ2
)s−1−k

+βω
∑s−2

k=0 (mω)k
(
bβ2
)s−2−k)

ωnmn
ε1 + ε1.

(4.35)
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Therefore, we obtain

P2s− ε2s ≤ x(t)≤ P2s−1 + ε2s−1,

Q2s− ε′2s ≤ y(t)≤Q2s−1 + ε′2s−1,
for t > T2s+1 2s−1. (4.36)

By direct calculation, we obtain

lim
s→+∞P2s−1

= lim
s→+∞

(
αe−γτ −μ1

)∑2s−2
k=0 (mω)k

(− bβ2
)2s−2−k

+mβμ2
∑2s−3

k=0 (mω)k
(− bβ2

)2s−3−k

ω2s−2m2s−1

= lim
s→+∞

ω
(
αe−γτ −μ1

)[
(mω)2s−1− (− bβ2

)2s−1]
+mωμ2β

[
(mω)2s−2− (− bβ2

)2s−2]
ω2s−1m2s−1

(
mω+ bβ2

)

= lim
s→+∞

ω
(
αe−γτ −μ1

)(
q2s−1− 1

)
+mωμ2β

(− bβ2
)−1(

q2s−2− 1
)

q2s−1
(
mω+ bβ2

)

= ω
(
αe−γτ −μ1

)
+βμ2

mω+ bβ2

(
|q| = mω

bβ2
> 1
)

,

lim
s→+∞ε2s−1

= lim
s→+∞

(
β(mω+ bmβ)

∑2s−3
k=0 (mω)k

(
bβ2
)2s−3−k

b2s−2m2s−1
ε1 + ε1

)

= β
(
mn+ bβ2

)
ω
(
mω− bβ2

)ε1 + ε1.

(4.37)

Similarly, we have

lim
s→+∞P2s = ω

(
αe−γτ −μ1

)
+βμ2

mω+ bβ2
,

lim
m→+∞ε2s = β

(
mω+ bβ2

)
m
(
mω− bβ2

)ε1 + ε1.

(4.38)

Hence, we obtain

lim
t→+∞x(t)= ω

(
αe−γτ −μ1

)
+βμ2

mω+ bβ2
= x∗. (4.39)

By similar calculations, we can obtain

lim
t→+∞ y(t)= bβ

(
αe−γτ −μ1

)−mμ2

mω+ bβ2
= y∗. (4.40)

The proof is complete. �

By Theorems 4.1-4.3, we directly obtain the following corollary.
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Corollary 4.4. Let (H2) hold. Then the equilibrium E∗(x∗, y∗) of system (1.4) is globally
asymptotically stable provided that bβω(αe−γτ −μ1) >mωμ2 > bβ2μ2.

5. Concluding remarks

In this paper, by introducing the duration times of immature individuals into the clas-
sical Lotka-Volterra prey-predator model [1], we have performed a global analysis of
age-structured prey-predator system (1.4). By using the persistence theory for infinite-
dimensional systems, the sufficient conditions for the permanence of the system are ob-
tained. By constructing suitable Lyapunov functions and using an iterative technique,
verifiable sufficient conditions are also obtained for the global asymptotic stability of the
positive equilibrium of the model. Our results (Corollaries 2.7-2.8) extend the classi-
cal Lotka-Volterra prey-predator model [1], which suggests that system (1.4) has simi-
lar asymptotic behavior to those of the model [1]. Therefore, there is a good continuity
between the age-structured system (1.4) and the classical Lotka-Volterra prey-predator
model [1]. Our results also show the negative effect of age structure on the permanence
of species: suppose bβ(αe−γτ − μ1) > mμ2 holds (i.e., the unique positive equilibrium E∗

exists). Then Theorem 3.2 shows that all the populations in (1.4) can coexist. Now if we

enlarge the degree of age structure d (d
def= γτ) of the prey species gradually while keep-

ing all the other coefficients fixed, we will find that once d reaches large enough values,
conditions of Corollary 2.8 will be satisfied. This shows that a sufficient increase of the
degree of age structure for the prey species will lead to the predator’s extinction.

Here, we will point out that we are unable to show that system (1.4) admits periodic
solutions (or limit cycles) when the delays change. This is known to be true for the delayed
system (see [5, 13, 18]). We leave this for future investigations.
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