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1. Introduction

A time scale T is a nonempty closed subset of R. We make the blanket assumption that 0 and T
are points in T. By an interval (0, T), we always mean the intersection of the real interval (0, T)
with the given time scale, that is, (0, T) ∩ T.

In this paper, we will be concerned with the existence of positive solutions of the p-
Laplacian dynamic equations on time scales:

(φp(uΔ∇))
∇
+ a(t)f(t, u(t)) = 0, t ∈ (0, T), (1.1)

φp(uΔ∇(0)) =
m−2∑

i=1

aiφp(uΔ∇(ξi)), uΔ(0) = 0, u(T) =
m−2∑

i=1

biu(ξi), (1.2)

where φp(s) is p-Laplacian operator; that is, φp(s) = |s|p−2s, p > 1, φ−1
p = φq, 1/p+1/q = 1, 0 <

ξ1 < · · · < ξm−2 < ρ(T), and

(H1) ai, bi ∈ [0,+∞), i = 1, 2, . . . , satisfy 0 <
∑m−2

i=1 ai < 1 and
∑m−2

i=1 bi < 1;
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(H2) a(t) ∈ Cld([0, T], [0,+∞)) and there exists t0 ∈ (ξm−2, T) such that a(t0) > 0;

(H3) f ∈ C([0, T] × [0,+∞), [0,+∞)).

We point out that the Δ-derivative and the ∇-derivative in (1.2) and the Cld space in (H2) are
defined in Section 2.

Recently, there has been much attention paid to the existence of positive solutions for
third-order nonlinear boundary value problems of differential equations. For example, see
[1–10] and the listed references. Anderson [2] considered the following third-order nonlinear
problem:

x′′′(t) = f(t, x(t)), t1 ≤ t ≤ t3,
x(t1) = x′(t2) = 0, γx(t3) + δx′′(t3) = 0.

(1.3)

He used the Krasnoselskii and the Leggett and Williams fixed-point theorems to prove the
existence of solutions to the nonlinear problem (1.3). Li [6] considered the existence of single
andmultiple positive solutions to the nonlinear singular third-order two-point boundary value
problem:

u′′′(t) + λa(t)f(u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = u′′(1) = 0.
(1.4)

Under various assumptions on a and f , they established intervals of the parameter λ which
yield the existence of at least two and infinitely many positive solutions of the boundary value
problem by using Krasnoselski’s fixed-point theorem of cone expansion-compression type. Liu
et al. [7] discussed the existence of at least one or two nondecreasing positive solutions for the
following singular nonlinear third-order differential equations:

x′′′(t) + λα(t)f(t, x(t)) = 0, a < t < b,

x(a) = x′′(a) = x′(b) = 0.
(1.5)

Green’s function and the fixed-point theorem of cone expansion-compression type are utilized
in their paper. In [8], Sun considered the following nonlinear singular third-order three-point
boundary value problem:

u′′′(t) − λa(t)F(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(η) = u′′(1) = 0.
(1.6)

He obtained various results on the existence of single and multiple positive solutions to the
boundary value problem (1.6) by using a fixed-point theorem of cone expansion-compression
type due to Krasnosel’skii. In [10], Zhou andMa studied the existence and iteration of positive
solutions for the following third-order generalized right-focal boundary value problem with
p-Laplacian operator:

(φp(u′′))
′(t) = q(t)f(t, u(t)), 0 ≤ t ≤ 1,

u(0) =
m∑

i=1

αiu(ξi), u′(η) = 0, u′′(1) =
n∑

i=1

βiu
′′(θi).

(1.7)
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They established a corresponding iterative scheme for (1.7) by using the monotone iterative
technique.

On the other hand, the existence of positive solutions for third-order nonlinear boundary
value problems of difference equations is also extensively studied by a number of authors (see
[1, 3, 5, 9] and the listed references). The present work is motivated by a recent paper [4]. In
[4], Henderson and Yin considered the existence of solutions for a third-order boundary value
problem on a time-scale equation of the form

uΔ
3
= f(t, u, uΔ, uΔΔ), t ∈ T, (1.8)

which is uniform for the third-order difference equation and the third-order differential
equation.

2. Preliminaries and lemmas

For convenience, we list the following definitions which can be found in [4, 11–15].

Definition 2.1. Let T be a time scale. For t < supT and r > inf T, define the forward jump
operator σ and the backward jump operator ρ, respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T
(2.1)

for all t, r ∈ T. If σ(t) > t, t is said to be right-scattered, and if ρ(r) < r, r is said to be left-
scattered; if σ(t) = t, t is said to be right-dense, and if ρ(r) = r, r is said to be left-dense. If
T has a right-scattered minimum m, define Tk = T − {m}; otherwise set Tk = T. If T has a
left-scattered maximumM, define Tk = T − {M}; otherwise set Tk = T.

Definition 2.2. For f : T→R and t ∈ Tk, the delta derivative of f at the point t is defined to
be the number fΔ(t) (provided that it exists), with the property that for each ε > 0 there is a
neighborhoodU of t such that

|f(σ(t)) − f(s) − fΔ(t)(σ(t) − s)| ≤ ε|σ(t) − s| (2.2)

for all s ∈ U.

For f : T→R and t ∈ Tk, the nabla derivative of f at t is denoted by f∇(t) (provided that
it exists), with the property that for each ε > 0 there is a neighborhoodU of t such that

|f(ρ(t)) − f(s) − f∇(t)(ρ(t) − s)| ≤ ε|ρ(t) − s| (2.3)

for all s ∈ U.

Definition 2.3. A function f is left-dense continuous (i.e., ld-continuous) if f is continuous at
each left-dense point in T, and its right-sided limit exists at each right-dense point in T.
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Definition 2.4. If φΔ(t) = f(t), then one defines the delta integral by

∫b

a

f(t)Δt = φ(b) − φ(a). (2.4)

If F∇(t) = f(t), then one defines the nabla integral by

∫b

a

f(t)∇t = F(b) − F(a). (2.5)

To prove the main results in this paper, we will employ several lemmas. These lemmas
are based on the linear BVP

(φp(uΔ∇))
∇
+ h(t) = 0, t ∈ (0, T), (2.6)

φp(uΔ∇(0)) =
m−2∑

i=1

aiφp(uΔ∇(ξi)), uΔ(0) = 0, u(T) =
m−2∑

i=1

biu(ξi). (2.7)

Lemma 2.5. If
∑m−2

i=1 ai /= 1 and
∑m−2

i=1 bi /= 1, then for h ∈ Cld[0, T] the BVP (2.6)-(2.7) has the unique
solution

u(t) = −
∫ t

0
(t − s)φq

(∫ s

0
h(τ)∇τ −A

)
∇s + C, (2.8)

where

A = −
∑m−2

i=1 ai
∫ ξi
0 h(τ)∇τ

1 −∑m−2
i=1 ai

,

C =

∫T
0 (T − s)φq(

∫s
0h(τ)∇τ −A)∇s −∑m−2

i=1 bi
∫ ξi
0 (ξi − s)φq(

∫s
0h(τ)∇τ −A)∇s

1 −∑m−2
i=1 bi

.

(2.9)

Proof. (i) Let u be a solution, then we will show that (2.8) holds. By taking the nabla integral of
problem (2.6) on (0, t), we have

φp(uΔ∇(t)) = −
∫ t

0
h(τ)∇τ +A (2.10)

then

uΔ∇(t) = φq
(
−
∫ t

0
h(τ)∇τ +A

)
= −φq

(∫ t

0
h(τ)∇τ −A

)
. (2.11)

By taking the nabla integral of (2.11) on (0, t), we can get

uΔ(t) = −
∫ t

0
φq

(∫s

0
h(τ)∇τ −A

)
∇s + B. (2.12)
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By taking the delta integral of (2.12) on (0, t), we can get

u(t) = −
∫ t

0
(t − s)φq

(∫ s

0
h(τ)∇τ −A

)
∇s + Bt + C. (2.13)

Similarly, let t = 0 on (2.10), then we have φp(uΔ∇(0)) = A; let t = ξi on (2.10), then we have

φp(uΔ∇(ξi)) = −
∫ ξi

0
h(τ)∇τ +A. (2.14)

Let t = 0 on (2.12), then we have

uΔ(0) = B. (2.15)

Let t = T on (2.13), then we have

u(T) = −
∫T

0
(T − s)φq

(∫s

0
h(τ)∇τ −A

)
∇s + BT + C. (2.16)

Similarly, let t = ξi on (2.13), then we have

u(ξi) = −
∫ ξi

0
(ξi − s)φq

(∫s

0
h(τ)∇τ −A

)
∇s + Bξi + C. (2.17)

By the boundary condition (2.7), we can get

B = 0, (2.18)

A =
m−2∑

i=1

ai

(
−
∫ ξi

0
h(τ)∇τ +A

)
. (2.19)

Solving (2.19), we get

A = −
∑m−2

i=1 ai
∫ ξi
0 h(τ)∇τ

1 −∑m−2
i=1 ai

. (2.20)

By the boundary condition (2.7), we can obtain

−
∫T

0
(T − s)φq

(∫s

0
h(τ)∇τ −A

)
∇s + C =

m−2∑

i=1

bi

[
−
∫ ξi

0
(ξi − s)φq

(∫ s

0
h(τ)∇τ −A

)
∇s + C

]
.

(2.21)
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Substituting (2.20) in the above expression, one has

C =

∫T
0 (T − s)φq(

∫s
0h(τ)∇τ −A)∇s −∑m−2

i=1 bi
∫ ξi
0 (ξi − s)φq(

∫s
0h(τ)∇τ −A)∇s

1 −∑m−2
i=1 bi

. (2.22)

(ii) We show that the function u given in (2.8) is a solution.
Let u be as in (2.8). By [12, Theorem 2.10(iii)] and taking the delta derivative of (2.8), we

have

uΔ(t) = −
∫ t

0
φq

(∫s

0
h(τ)∇τ −A

)
∇s; (2.23)

moreover, we get

uΔ∇(t) = −φq
(∫ t

0
h(τ)∇τ −A

)
,

φp(uΔ∇) = −
(∫ t

0
h(τ)∇τ −A

)
.

(2.24)

Taking the nabla derivative of this expression yields (φp(uΔ∇))∇ = −h(t). Also, routine
calculation verifies that u satisfies the boundary value conditions in (2.7) so that u given in
(2.8) is a solution of (2.6) and (2.7). The proof is complete.

Lemma 2.6. Assume (H1) holds. For h ∈ Cld[0, T] and h ≥ 0, the unique solution u of (2.6) and (2.7)
satisfies

u(t) ≥ 0 for t ∈ [0, T]. (2.25)

Proof. Let

ϕ0(s) = φq
(∫ s

0
h(τ)∇τ −A

)
. (2.26)

Since

∫s

0
h(τ)∇τ −A =

∫s

0
h(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 h(τ)∇τ

1 −∑m−2
i=1 ai

≥ 0, (2.27)

then ϕ0(s) ≥ 0.
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According to Lemma 2.5, we get

u(0) = C =

∫T
0 (T − s)ϕ0(s)∇s −

∑m−2
i=1 bi

∫ ξi
0 (ξi − s)ϕ0(s)∇s

1 −∑m−2
i=1 bi

≥
∫T
0 (T − s)ϕ0(s)∇s −

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ0(s)∇s

1 −∑m−2
i=1 bi

=

∫T
0 (T − s)ϕ0(s)∇s −

∑m−2
i=1 bi(

∫T
0 (T − s)ϕ0(s)∇s −

∫T
ξi
(T − s)ϕ0(s)∇s)

1 −∑m−2
i=1 bi

=
∫T

0
(T − s)ϕ0(s)∇s +

∑m−2
i=1 bi

∫T
ξi
(T − s)ϕ0(s)∇s

1 −∑m−2
i=1 bi

≥ 0,

u(T) = −
∫T

0
(T − s)ϕ0(s)∇s + C

= −
∫T

0
(T − s)ϕ0(s)∇s +

∫T
0 (T − s)ϕ0(s)∇s −

∑m−2
i=1 bi

∫ ξi
0 (ξi − s)ϕ0(s)∇s

1 −∑m−2
i=1 bi

≥ −
∫T

0
(T − s)ϕ0(s)∇s +

∫T
0 (T − s)ϕ0(s)∇s −

∑m−2
i=1 bi

∫ ξi
0 (T − s)ϕ0(s)∇s

1 −∑m−2
i=1 bi

=

∑m−2
i=1 bi

∫T
ξi
(T − s)ϕ0(s)∇s

1 −∑m−2
i=1 bi

≥ 0.

(2.28)

If t ∈ (0, T), we have

u(t) = −
∫ t

0
(t − s)ϕ0(s)∇s + 1

1 −∑m−2
i=1 bi

[∫T

0
(T − s)ϕ0(s)∇s −

m−2∑

i=1

bi

∫ ξi

0
(ξi − s)ϕ0(s)∇s

]

≥ −
∫T

0
(T − s)ϕ0(s)∇s + 1

1 −∑m−2
i=1 bi

[∫T

0
(T − s)ϕ0(s)∇s −

m−2∑

i=1

bi

∫ ξi

0
(T − s)ϕ0(s)∇s

]

=
1

1 −∑m−2
i=1 bi

[
−
(
1 −

m−2∑

i=1

bi

)∫T

0
(T−s)ϕ0(s)∇s+

∫T

0
(T−s)ϕ0(s)∇s−

m−2∑

i=1

bi

∫ ξi

0
(T−s)ϕ0(s)∇s

]

=
1

1 −∑m−2
i=1 bi

m−2∑

i=1

bi

∫T

ξi

(T − s)ϕ0(s)∇s ≥ 0.

(2.29)

So u(t) ≥ 0, t ∈ [0, T].

Lemma 2.7. Assume (H1) holds. If h ∈ Cld[0, T] and h ≥ 0, then the unique solution u of (2.6) and
(2.7) satisfies

inf
t∈[0,T]

u(t) ≥ γ‖u‖, (2.30)
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where

γ =
∑m−2

i=1 bi(T − ξi)
T −∑m−2

i=1 biξi
, ‖u‖ = max

t∈[0,T]
|u(t)|. (2.31)

Proof. It is easy to check that uΔ(t) = −∫ t0ϕ0(s)∇s ≤ 0; this implies that

‖u‖ = u(0), min
t∈[0,T]

u(t) = u(T). (2.32)

It is easy to see that uΔ(t2) ≤ uΔ(t1) for any t1, t2 ∈ [0, T] with t1 ≤ t2. Hence, uΔ(t) is a
decreasing function on [0, T]. This means that the graph of u(t) is concave down on (0, T).

For each i ∈ {1, 2, . . . , m − 2}, we have

u(T) − u(0)
T − 0

≥ u(T) − u(ξi)
T − ξi , (2.33)

that is,

Tu(ξi) − ξiu(T) ≥ (T − ξi)u(0), (2.34)

so that

T
m−2∑

i=1

biu(ξi) −
m−2∑

i=1

biξiu(T) ≥
m−2∑

i=1

bi(T − ξi)u(0). (2.35)

With the boundary condition u(T) =
∑m−2

i=1 biu(ξi), we have

u(T) ≥
∑m−2

i=1 bi(T − ξi)
T −∑m−2

i=1 biξi
u(0). (2.36)

This completes the proof.

Let the norm on Cld[0, T] be the maximum norm. Then, the Cld[0, T] is a Banach space.
It is easy to see that BVP (1.1)-(1.2) has a solution u = u(t) if and only if u is a fixed point of the
operator

(Au)(t) = −
∫ t

0
(t − s)φq

(∫s

0
a(τ)f(τ, u(τ))∇τ − Ã

)
∇s + C̃, (2.37)

where

Ã = −
∑m−2

i=1 ai
∫ ξi
0 a(τ)f(τ, u(τ))∇τ
1 −∑m−2

i=1 ai
,

C̃=

∫T
0 (T −s)φq(

∫s
0a(τ)f(τ, u(τ))∇τ − Ã)∇s−∑m−2

i=1 bi
∫ ξi
0 (ξi − s)φq(

∫s
0a(τ)f(τ, u(τ))∇τ −Ã)∇s

1 −∑m−2
i=1 bi

.

(2.38)

Denote

K =
{
u | u ∈ Cld[0, T], u(t) ≥ 0, inf

t∈[0,T]
u(t) ≥ γ‖u‖}, (2.39)

where γ is the same as in Lemma 2.7. It is obvious that K is a cone in Cld[0, T]. By Lemma 2.7,
A(K) ⊂ K. So by applying Arzela-Ascoli theorem on time scales [16], we can obtain thatA(K)
is relatively compact. In view of Lebesgue’s dominated convergence theorem on time scales
[13], it is easy to prove that A is continuous. Hence, A : K→K is completely continuous.
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Lemma 2.8. A : K→K is completely continuous.

Proof. First, we show that Amaps bounded set into bounded set.
Assume c > 0 is a constant and u ∈ Kc = {u ∈ K : ‖u‖ ≤ c}. Note that the continuity of f

guarantees that there is c′ > 0 such that f(t, u(t)) ≤ φp(c′) for t ∈ [0, T]. So

‖Au‖ = max
t∈[0,T]

|Au(t)| ≤ C̃

≤
∫T
0 (T − s)φq(

∫s
0a(τ)f(τ, u(τ))∇τ − Ã)∇s
1 −∑m−2

i=1 bi

≤ c′
∫T
0 (T − s)φq(

∫s
0a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ/(1 −

∑m−2
i=1 ai))∇s

1 −∑m−2
i=1 bi

.

(2.40)

That is, AKc is uniformly bounded.
In addition, notice that for any t1, t2 ∈ [0, T], we have

|Au(t1) −Au(t2)|

=
∣∣∣∣

∫ t1

0
(t2−t1)φq

(∫ s

0
a(τ)f(τ, u(τ))∇τ−Ã

)
∇s+

∫ t2

t1

(t2−s)φq
(∫ s

0
a(τ)f(τ, u(τ))∇τ−Ã

)
∇s
∣∣∣∣

≤ c′|t1 − t2|
[∫T

0
φq

(∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

)
∇s

+ T max
s∈[0,T]

φq

(∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

)]
.

(2.41)

So, by applying Arzela-Ascoli theorem on time scales [16], we obtain that AKc is relatively
compact.

Finally, we prove that A : Kc→K is continuous. Suppose that {un}∞n=1 ⊂ Kc and
un(t) converges to u∗(t) uniformly on [0, T]. Hence, {Aun(t)}∞n=1 is uniformly bounded and
equicontinuous on [0, T]. The Arzela-Ascoli theorem on time scales [16] tells us that there
exists uniformly convergent subsequence in {Aun(t)}∞n=1. Let {Aun(m)(t)}∞m=1 be a subsequence
which converges to v(t) uniformly on [0, T]. In addition,

0 ≤ Aun(t) ≤
c′
∫T
0 (T − s)φq(

∫s
0a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ/(1 −

∑m−2
i=1 ai))∇s

1 −∑m−2
i=1 bi

. (2.42)

Observe the expression of {Aun(m)(t)}, and then lettingm→∞,we obtain

v(t) = −
∫ t

0
(t − s)φq

(∫s

0
a(τ)f(τ, u∗(τ))∇τ − Ã∗

)
∇s + C̃∗, (2.43)
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where

Ã∗ = −
∑m−2

i=1 ai
∫ ξi
0 a(τ)f(τ, u

∗(τ))∇τ
1 −∑m−2

i=1 ai
,

C̃∗ =
1

1 −∑m−2
i=1 bi

[∫T

0
(T − s)φq

(∫s

0
a(τ)f(τ, u∗(τ))∇τ − Ã∗

)
∇s

−
m−2∑

i=1

bi

∫ ξi

0
(ξi − s)φq

(∫s

0
a(τ)f(τ, u∗(τ))∇τ − Ã∗

)
∇s
]
.

(2.44)

Here, we have used the Lebesgue dominated convergence theorem on time scales [13]. From
the definition of A, we know that v(t) = Au∗(t) on [0, T]. This shows that each subsequence
of {Aun(t)}∞n=1 uniformly converges to Au∗(t). Therefore, the sequence {Aun(t)}∞n=1 uniformly
converges to Au∗(t). This means that A is continuous at u∗ ∈ Kc. So, A is continuous on Kc

since u∗ is arbitrary. Thus, A is completely continuous. This proof is complete.

Lemma 2.9. Let

ϕ(s) = φq
(∫s

0
a(τ)f(τ, u(τ))∇τ − Ã

)
. (2.45)

For ξi (i = 1, . . . , m − 2),

∫ ξi

0
(ξi − s)ϕ(s)∇s ≤ ξi

T

∫T

0
(T − s)ϕ(s)∇s. (2.46)

Proof. Since

∫ s

0
a(τ)f(τ, u(τ))∇τ − Ã =

∫s

0
a(τ)f(τ, u(τ))∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)f(τ, u(τ))∇τ
1 −∑m−2

i=1 ai

≥ 0,

(2.47)

then ϕ(s) ≥ 0. For all t ∈ (0, T], we have

(∫ t
0(t − s)ϕ(s)∇s

t

)∇
=
t
∫ t
0ϕ(s)∇s −

∫ t
0(t − s)ϕ(s)∇s

tρ(t)
≥ 0. (2.48)

In fact, let ψ(t) = t
∫ t
0ϕ(s)∇s−

∫ t
0(t− s)ϕ(s)∇s; taking the nabla derivative of this expression, we

have

ψ∇(t) =
∫ t

0
ϕ(s)∇s + tϕ(t) −

∫ t

0
ϕ(s)∇s = tϕ(t) ≥ 0. (2.49)

Hence, ψ(t) is a nondecreasing function on [0, T]. That is,

ψ(t) ≥ 0. (2.50)
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For all t ∈ (0, T],

∫ t
0(t − s)ϕ(s)∇s

t
≤
∫T
0 (T − s)ϕ(s)∇s

T
. (2.51)

By (2.51), for ξi (i = 1, . . . , m − 2), we have

∫ ξi

0
(ξi − s)ϕ(s)∇s ≤ ξi

T

∫T

0
(T − s)ϕ(s)∇s. (2.52)

Lemma 2.10 (see [17]). Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1,Ω2 are open
bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

F : K ∩ (Ω2 \Ω1)→K be a completely continuous operator such that

(i) ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Fu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1, and ‖Fu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2.

Then, F has a fixed point in K ∩ (Ω2 \Ω1).

Now, we introduce the following notations. Let

A0 =
{

1

1 −∑m−2
i=1 bi

∫T

0
(T − s)φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]
∇s
}−1

,

B0 =
{
T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

∫T

0
(T − s)φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]
∇s
}−1

.

(2.53)

For l > 0, Ωl = {u ∈ K : ‖u‖ < l}, and ∂Ωl = {u ∈ K : ‖u‖ = l},

α(l) = sup{‖Au‖ : u ∈ ∂Ωl}, β(l) = inf{‖Au‖ : u ∈ ∂Ωl}, (2.54)

by Lemma 2.6, where α and β are well defined.

3. Main results

Theorem 3.1. Assume (H1), (H2), and (H3) hold, and assume that the following conditions hold:

(A1) pi ∈ C([0,+∞), [0,+∞)), i = 1, 2, and

lim
l→0+

p1(l)
lp−1

< A
p−1
0 , lim

l→∞
p2(l)
lp−1

< A
p−1
0 ; (3.1)

(A2) ki ∈ L1([0, T], [0,+∞)), i = 1, 2;

(A3) there exist 0 < c1 ≤ c2 and 0 ≤ λ2 < p − 1 < λ1 such that

f(t, l) ≤ p1(l) + k1(t)lλ1 , (t, l) ∈ [0, T] × [0, c1],

f(t, l) ≤ p2(l) + k2(t)lλ2 , (t, l) ∈ [0, T] × [c2,+∞);
(3.2)
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(A4) there exists b > 0 such that

min{f(t, l) : (t, l) ∈ [0, T] × [γb, b]} ≥ (bB0)
p−1. (3.3)

Then, problem (1.1)-(1.2) has at least two positive solutions u∗1, u
∗
2 satisfying 0 < ‖u∗1‖ < b < ‖u∗2‖.

Theorem 3.2. Assume (H1), (H2), and (H3) hold, and assume that the following conditions hold:

(B1) pi ∈ C([0,+∞), [0,+∞)), i = 3, 4, and

lim
l→0+

p3(l)
lp−1

>

(
B0

γ

)p−1
, lim

l→∞

p4(l)
lp−1

>

(
B0

γ

)p−1
; (3.4)

(B2) ki ∈ L1([0, T], [0,+∞)), i = 3, 4;

(B3) there exist 0 < c3 ≤ c4 and 0 ≤ λ4 < p − 1 < λ3 such that

f(t, l) ≥ p3(l) − k3(t)lλ3 , (t, l) ∈ [0, T] × [0, c3],

f(t, l) ≥ p4(l) − k4(t)lλ4 , (t, l) ∈ [0, T] × [c4,+∞);
(3.5)

(B4) there exists a > 0 such that

max{f(t, l) : (t, l) ∈ [0, T] × [0, a]} ≤ (aA0)
p−1. (3.6)

Then, problem (1.1)-(1.2) has at least two positive solutions u∗3, u
∗
4 satisfying 0 < ‖u∗3‖ < a < ‖u∗4‖.

Proof of Theorem 3.1. Let

ε =
1
2
min

[
A
p−1
0 − lim

l→0+

p1(l)
lp−1

, A
p−1
0 − lim

l→∞
p2(l)
lp−1

]
, (3.7)

then there exist 0 < a1 ≤ c1 and c2 ≤ a2 < +∞ such that

p1(l) ≤ (Ap−1
0 − ε)lp−1, 0 ≤ l ≤ a1,

p2(l) ≤ (Ap−1
0 − ε)lp−1, a2 ≤ l ≤ +∞.

(3.8)

If 0 ≤ l ≤ a1, u ∈ ∂Ωl, then 0 ≤ u(t) ≤ l, 0 ≤ t ≤ T . By condition (A3), we have

f(t, u(t)) ≤ p1(u(t)) + k1(t)uλ1(t)
≤ (Ap−1

0 − ε)up−1(t) + k1(t)uλ1(t)
≤ (Ap−1

0 − ε)‖u‖p−1 + k1(t)‖u‖λ1

= (Ap−1
0 − ε)lp−1 + k1(t)lλ1

(3.9)
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so that∫ s

0
a(τ)f(τ, u(τ))∇τ − Ã

=
∫s

0
a(τ)f(τ, u(τ))∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)f(τ, u(τ))∇τ
1 −∑m−2

i=1 ai

≤
∫s

0
a(τ)[(Ap−1

0 − ε)lp−1 + k1(τ)lλ1]∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)[(A

p−1
0 − ε)lp−1 + k1(τ)lλ1]∇τ

1 −∑m−2
i=1 ai

.

(3.10)

Therefore,

‖Au‖ ≤ C̃ =
1

1 −∑m−2
i=1 bi

(∫T

0
(T − s)ϕ(s)∇s −

m−2∑

i=1

bi

∫ ξi

0
(ξi − s)ϕ(s)∇s

)

≤ 1

1 −∑m−2
i=1 bi

∫T

0
(T − s)ϕ(s)∇s

≤ 1

1 −∑m−2
i=1 bi

×
∫T

0
(T − s)φq

{∫ s

0
a(τ)[(Ap−1

0 − ε)lp−1 + k1(τ)lλ1]∇τ

+

∑m−2
i=1 ai

∫ ξi
0 a(τ)[(A

p−1
0 − ε)lp−1 + k1(τ)lλ1]∇τ

1 −∑m−2
i=1 ai

}
∇s.

(3.11)

It follows that
α(l)
l

≤ 1

1 −∑m−2
i=1 bi

×
∫T

0
(T − s)φq

{∫s

0
a(τ)[Ap−1

0 − ε + k1(τ)lλ1−p+1]∇τ

+

∑m−2
i=1 ai

∫ ξi
0 a(τ)[A

p−1
0 − ε + k1(τ)lλ1−p+1]∇τ

1 −∑m−2
i=1 ai

}
∇s.

(3.12)

Noticing λ1 − p + 1 > 0, we have

lim
l→0+

α(l)
l

≤ 1

1 −∑m−2
i=1 bi

∫T

0
(T − s)φq

[∫ s

0
a(τ)(Ap−1

0 − ε)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)(A

p−1
0 − ε)∇τ

1 −∑m−2
i=1 ai

]
∇s

=
(Ap−1

0 − ε)1/(p−1)

1 −∑m−2
i=1 bi

∫T

0
(T − s)φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]
∇s

= (Ap−1
0 − ε)1/(p−1)A−1

0

= (1 −A−(p−1)
0 ε)1/(p−1) < 1.

(3.13)

Therefore, there exist 0 < a1 < a1 such that α(a1) < a1. It implies that ‖Au‖ < ‖u‖, u ∈ ∂Ωa1 .
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If a2 ≤ l < +∞ and u ∈ ∂Ωl, then 0 ≤ u(t) ≤ l. Similar to the above argument, noticing
that λ2 − p + 1 < 0, we can get liml→∞(α(l)/l) < 1. Therefore, there exist 0 < a2 < a2 such that
α(a2) < a2. It implies that ‖Au‖ < ‖u‖, u ∈ ∂Ωa2 .

On the other hand, since f : [0, T] × [0,+∞)→[0,+∞) is continuous, by condition (A4),
there exist a1 < b1 < b < b2 < a2 such that

min{f(t, l) : (t, l) ∈ [0, T] × [γbi, bi]} ≥ (biB0)
p−1, i = 1, 2. (3.14)

If u ∈ ∂Ωb1 , then γb1 ≤ u(t) ≤ b1, 0 ≤ t ≤ T . Applying Lemma 2.9, it follows that

‖Au‖ = max
0≤t≤T

|(Au)(t)|

≥ −
∫T

0
(T − s)ϕ(s)∇s + 1

1 −∑m−2
i=1 bi

(∫T

0
(T − s)ϕ(s)∇s −

m−2∑

i=1

bi

∫ ξi

0
(ξi − s)ϕ(s)∇s

)

=
∑m−2

i=1 bi

1 −∑m−2
i=1 bi

∫T

0
(T − s)ϕ(s)∇s −

∑m−2
i=1 bi

∫ ξi
0 (ξi − s)ϕ(s)∇s

1 −∑m−2
i=1 bi

≥
∑m−2

i=1 bi

1 −∑m−2
i=1 bi

∫T

0
(T − s)ϕ(s)∇s −

∑m−2
i=1 biξi

T(1 −∑m−2
i=1 bi)

∫T

0
(T − s)ϕ(s)∇s

=
T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

∫T

0
(T − s)ϕ(s)∇s

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

∫T

0
(T − s)φq

[∫s

0
a(τ)(b1B0)

p−1∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)(b1B0)

p−1∇τ
1 −∑m−2

i=1 ai

]
∇s

=
T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

b1B0

∫T

0
(T − s)φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]
∇s

= b1B0B
−1
0 = b1 = ‖u‖.

(3.15)

In the same way, we can prove that if u ∈ ∂Ωb2 , then ‖Au‖ ≥ ‖u‖.

Now, we consider the operatorA onΩb1 \Ωa1 andΩa2 \Ωb2 , respectively. By Lemma 2.10,
we assert that the operator A has two fixed points u∗1, u

∗
2 ∈ K such that a1 ≤ ‖u∗1‖ ≤ b1 and

b2 ≤ ‖u∗2‖ ≤ a2. Therefore, u∗i , i = 1, 2, are positive solutions of problem (1.1)-(1.2).

Proof of Theorem 3.2. Let

ε =
1
2
min

[
lim
l→0+

p3(l)
lp−1

−
(
B0

γ

)p−1
, lim
l→∞

p4(l)
lp−1

−
(
B0

γ

)p−1]
, (3.16)
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then there exist 0 < b3 ≤ c3 and c4 ≤ b4 < +∞ such that

p3(l) ≥
[(

B0

γ

)p−1
+ ε
]
lp−1, 0 ≤ l ≤ b3,

p4(l) ≥
[(

B0

γ

)p−1
+ ε
]
lp−1, b4 ≤ l ≤ +∞.

(3.17)

If 0 ≤ l ≤ b3, u ∈ ∂Ωl, then γl ≤ u(t) ≤ l, 0 ≤ t ≤ T . By Lemma 2.9 and condition (B3), we have

‖Au‖ = max
0≤t≤T

|(Au)(t)|

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

∫T

0
(T − s)ϕ(s)∇s

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

×
∫T

0
(T − s)φq

{∫s

0
a(τ)[p3(u(τ)) − k3(τ)uλ3]∇τ

+

∑m−2
i=1 ai

∫ ξi
0 a(τ)[p3(u(τ)) − k3(τ)uλ3]∇τ

1 −∑m−2
i=1 ai

}
∇s

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

×
∫T

0
(T − s)φq

{∫s

0
a(τ)

[((
B0

γ

)p−1
+ ε
)
(γl)p−1 − k3(τ)lλ3

]
∇τ

+

∑m−2
i=1 ai

∫ ξi
0 a(τ)[((B0/γ)

p−1 + ε)(γl)p−1 − k3(τ)lλ3]∇τ
1 −∑m−2

i=1 ai

}
∇s.

(3.18)

It follows that

β(l)
l

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

×
∫T

0
(T − s)φq

{∫s

0
a(τ)[Bp−10 + γp−1ε − k3(τ)lλ3−p+1]∇τ

+

∑m−2
i=1 ai

∫ ξi
0 a(τ)[B

p−1
0 + γp−1ε − k3(τ)lλ3−p+1]∇τ
1 −∑m−2

i=1 ai

}
∇s.

(3.19)
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Noticing λ3 − p + 1 > 0, we get

lim
l→0+

β(l)
l

≥ T
∑m−2

i=1 bi −
∑m−2

i=1 biξi

T(1 −∑m−2
i=1 bi)

×
∫T

0
(T − s)φq

[∫s

0
a(τ)(Bp−10 + γp−1ε)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)(B

p−1
0 + γp−1ε)∇τ

1 −∑m−2
i=1 ai

]
∇s

= (Bp−10 + γp−1ε)1/(p−1)B−1
0

= (1 + γp−1B−(p−1)
0 ε)1/(p−1) > 1.

(3.20)

Therefore, there exists b3 with 0 < b3 < a such that β(b3) > b3. It implies that ‖Au‖ > ‖u‖ for
u ∈ ∂Ωb3 .

If b4 ≤ γl < +∞ and u ∈ ∂Ωl, then b4 ≤ γl ≤ u(t) ≤ l, 0 ≤ t ≤ T . Similar to the above
argument, noticing that λ4 − p + 1 < 0, we can get liml→+∞ (β(l)/l) > 1.

Therefore, there exist b4 with 0 < b4 < +∞ such that β(b4) > b4. It implies that ‖Au‖ > ‖u‖
for u ∈ ∂Ωb4 .

By condition (B4), we can see that there exist b3 < a3 < a < a4 < b4 such that

max{f(t, l) : (t, l) ∈ [0, T] × [0, ai]} ≤ (aiA0)
p−1, i = 3, 4. (3.21)

If u ∈ ∂Ωa3 , then 0 ≤ u(t) ≤ a3, 0 ≤ t ≤ T , and f(t, u(t)) ≤ (a3A0)
p−1. It follows that

‖Au‖ ≤ 1

1 −∑m−2
i=1 bi

∫T

0
(T − s)ϕ(s)∇s

≤ 1

1 −∑m−2
i=1 bi

a3A0

∫T

0
(T − s)φq

[∫s

0
a(τ)∇τ +

∑m−2
i=1 ai

∫ ξi
0 a(τ)∇τ

1 −∑m−2
i=1 ai

]
∇s

= a3 = ‖u‖.

(3.22)

Similarly, if u ∈ ∂Ωa4 , then ‖Au‖ ≤ ‖u‖.
Now, we study the operator A on Ωa3 \Ωb3 and Ωb4 \Ωa4 , respectively. By Lemma 2.10,

we assert that the operator A has two fixed points u∗3, u
∗
4 ∈ K such that b3 ≤ ‖u∗3‖ ≤ a3 and

a4 ≤ ‖u∗4‖ ≤ b4. Therefore, u∗i , i = 3, 4, are positive solutions of problem (1.1)-(1.2).

4. Further discussion

If the conditions of Theorems 3.1 and 3.2 are weakened, we will get the existence of single
positive solution of problem (1.1)-(1.2).

Corollary 4.1. Assume (H1), (H2), and (H3) hold, and assume that the following conditions hold:

(C1) p1 ∈ C([0,+∞), [0,+∞)), and liml→0+(p1(l)/lp−1) < A
p−1
0 ;

(C2) k1 ∈ L1([0, T], [0,+∞));
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(C3) there exist c1 > 0 and λ1 > p − 1 such that

f(t, l) ≤ p1(l) + k1(t)lλ1 , (t, l) ∈ [0, T] × [0, c1]; (4.1)

(C4) there exists b > 0 such that

min{f(t, l) : (t, l) ∈ [0, T] × [γb, b]} ≥ (bB0)
p−1. (4.2)

Then, problem (1.1)-(1.2) has at least one positive solution.

Corollary 4.2. Assume (H1), (H2), and (H3) hold, and assume that the following conditions hold:

(D1) p2 ∈ C([0,+∞), [0,+∞)), and liml→∞ (p2(l)/lp−1) < A
p−1
0 ;

(D2) k2 ∈ L1([0, T], [0,+∞));

(C3) there exist c2 > 0 and 0 ≤ λ2 < p − 1 such that

f(t, l) ≤ p2(l) + k2(t)lλ2 , (t, l) ∈ [0, T] × [c2,+∞); (4.3)

(D4) there exists b > 0 such that

min{f(t, l) : (t, l) ∈ [0, T] × [γb, b]} ≥ (bB0)
p−1. (4.4)

Then, problem (1.1)-(1.2) has at least one positive solution.

Corollary 4.3. Assume (H1), (H2), and (H3) hold, and assume that the following conditions hold:

(E1) p3 ∈ C([0,+∞), [0,+∞)), and liml→0+(p3(l)/l
p−1) > (B0/γ)

p−1;

(E2) k3 ∈ L1([0, T], [0,+∞));

(E3) there exist c3 > 0 and λ3 > p − 1 such that

f(t, l) ≥ p3(l) − k3(t)lλ3 , (t, l) ∈ [0, T] × [0, c3]; (4.5)

(E4) there exists a > 0 such that

max{f(t, l) : (t, l) ∈ [0, T] × [0, a]} ≤ (aA0)
p−1. (4.6)

Then, problem (1.1)-(1.2) has at least one positive solution.

Corollary 4.4. Assume (H1), (H2), and (H3) hold, and assume that the following conditions hold:

(F1) p4 ∈ C([0,+∞), [0,+∞)), and liml→∞(p4(l)/l
p−1) > (B0/γ)

p−1;

(F2) k4 ∈ L1([0, T], [0,+∞));

(F3) there exist c4 > 0 and 0 ≤ λ4 < p − 1 such that

f(t, l) ≥ p4(l) − k4(t)lλ4 , (t, l) ∈ [0, T] × [c4,+∞); (4.7)

(F4) there exists a > 0 such that

max{f(t, l) : (t, l) ∈ [0, T] × [0, a]} ≤ (aA0)
p−1. (4.8)

Then, problem (1.1)-(1.2) has at least one positive solution.

The proof of the above results is similar to those of Theorems 3.1 and 3.2; thus we omit
it.



18 Discrete Dynamics in Nature and Society

5. Some examples

In this section, we present a simple example to explain our results. We only study the case
T = R, (0, T) = (0, 1).

Let f(t, 0) ≡ 0. Consider the following BVP:

(φ3(u′′))
′ + f(t, u(t)) = 0, t ∈ (0, 1),

φ3(u′′(0)) =
1
2
φ3

(
u′′
(
1
2

))
, u′(0) = 0, u(1) =

1
2
u

(
1
2

)
,

(5.1)

where

f(t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

223u3 +min
{

1
√
t(1 − t)

,
2
u

}√
u5, (t, u) ∈ [0, 1] × [0, 1],

225, (t, u) ∈ [0, 1] × [1, 3],

74u +
√
3
6

min
{

1
√
t(1 − t)

,
2u
3

}√
u3, (t, u) ∈ [0, 1] × [3,+∞).

(5.2)

It is easy to check that f : [0, 1] × [0,+∞)→[0,+∞) is continuous. In this case, p = 3, a(t) ≡
1, m = 3, a1 = b1 = 1/2, and ξ1 = 1/2, and it follows from a direct calculation that

A0 =
[

1
1 − 1/2

∫1

0
(1 − s)φq

(
s +

(1/2)·(1/2)
1 − 1/2

)
ds

]−1
= 1.1062,

γ =
b1(1 − ξ1)
1 − b1ξ1 =

(1/2)(1 − 1/2)
1 − (1/2)·(1/2) =

1
3
.

(5.3)

We have

B0 =
[
b1 − b1ξ1
1 − b1

∫T

0
(1 − s)φq

(
s +

a1ξ1
1 − a1

)
ds

]−1

=
[
1/2 − (1/2)·(1/2)

1 − 1/2

∫1

0
(1 − s)

(
s +

(1/2)·(1/2)
1 − 1/2

)1/2

ds

]−1

= 4.4248 < 5.

(5.4)

Choosing c1 = 1, c2 = 3, b = 3, λ1 = 5/2, λ2 = 3/2, p1(u) = 223u3, p2(u) = 74u, and k1(t) =
k2(t) = 1/

√
t(1 − t), it is easy to check that

f(t, u) ≤ p1(u) + k1(t)u5/2, (t, u) ∈ [0, 1] × [0, 1],

f(t, u) ≤ p2(u) + k2(t)u3/2, (t, u) ∈ [0, 1] × [3,+∞),

lim
u→0

p1(u)
u2

= lim
l→0

223u3

u2
= 0 < A2

0 = (1.1062)2,

lim
u→∞

p2(u)
u2

= lim
l→∞

74u
u2

= 0 < A2
0 = (1.1062)2,

min{f(t, u) : (t, u) ∈ [0, 1] × [1, 3]} = 225 > (13.274)2 = (bB0)
2.

(5.5)
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It follows that f satisfies the conditions (A1)–(A4) of Theorem 3.1; then problem (5.1) has at
least two positive solutions.
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Birkhäuser, Boston, Mass, USA, 2001.

[15] M. Bohner and A. Peterson, Eds., Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston,
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