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Based on the work of domestic and foreign scholars and the application of chaotic systems theory,
this paper presents an investigation simulation of retailer’s demand and stock. In simulation of the
interaction, the behavior of the system exhibits deterministic chaos with consideration of system
constraints. By the method of space’s reconstruction, the maximal Lyapunov exponent of retailer’s
demand model was calculated. The result shows the model is chaotic. By the results of bifurcation
diagram of model parameters k, r and changing initial condition, the system can be led to chaos.

Copyright q 2008 J. Ma and Y. Feng. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

A supply chain is a complex system which involves multiple entities encompassing activities
from the raw material to the final delivery stage. A simple supply chain system includes not
only supplier, manufacturers, retailers, and customers, but also all the flow of information
and funds. So there exist various types of uncertainties along the chain, for example, demand
uncertainty, production uncertainty, and lead time uncertainty. As a result, the supply chains
are much more dynamic. Such a dynamic and complex environment presents a big challenge
for researcher to handle uncertainty in an efficient and effective way. One type of uncertain
behaviors is bullwhip effect [1], which increases the variability of demand in the supply
chain. Lee et al. [2] identified four uncertain causes of the bullwhip effect: demand forecast,
reorder batching, pricing fluctuation, and shortage gaming. Later, Chen et al. [3] quantify
the effect in a simple two-stage supply system with statistics method and AR(1) demand
process. However, statistic method only deals with continuous time and linear problems,
the uncertain activities generate interactions among customers, and suppliers usually lead to
discrete time and nonlinear dynamic behaviors or even chaos. Many researches focus on the
uncertainty field with chaotic theory.

Chaos is disorderly looking for long-term evolution occurring in a deterministic
nonlinear system. Chaos theory is concerned with chaos behavior in nonlinear dynamical
systems from a number of aspects. The origin of chaos theory dates back to Lorenz’s [4] study
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in weather forecasting system. Subsequently, many researchers have contributed to greater
interest in studying and applying chaos theory to inventory, management, and supply chain
studies. It was reported that a chaotic demand for liquid detergent exists at the interface of a
manufacturer and its distributors [5]. Kumara et al. [6] demonstrated that in a queuing model
of supply chain logistics systems, the behaviors of the system exhibit chaos. Wang et al. [7]
explore an efficient approach for identifying chaotic phenomena in demands and develops a
production lot-sizing method for chaotic demands. Makui and Madadi [8] use the maximal
Lyapunov exponent, a chaos parameter, to measure the bullwhip effect and get some useful
results on the behavior of the bullwhip effect. Wu and Zhang [9] present an investigation of
interaction between customers and suppliers in a three-tier supply chain system, and found
that the attractors of the model move with the environment and the initial states. Hwarng
and Xie [10] investigate how this class of variability, chaos, may occur in a multilevel supply
chain and offer insights into how to manage relevant supply chain factors to eliminate or
reduce system chaos.

A system of chaos is often characterized by a number of distinct features, for example,
nonrandomness and nonlinearity, apparent disorder: the motion of the variables looks
disorganized and irregular; strange attractor: pattern can be found in phase space; and
sensitivity to initial conditions: a small change in initial conditions can have a large effect
on the evolution of the system.

Chaotic behaviors can be either qualitatively identified by figure patterns methods
which identify chaos or show whether a system is stable, periodic, quasiperiodic, or chaotic,
such as Poincare map, phase plots, and power spectrum. Graphs and plots are visually
efficient in showing trends and patterns. Another more accurate alternative is to calculate
some quantifies, such as capacity dimension, correlative dimension, Kolmogorov entropy,
and the maximal Lyapunov exponent. For example, provided the maximal Lyapunov
exponent is a positive number, the investigated dynamic model is likely to be chaotic.

This paper is concerned with the model of retailer’s demand and calculates the system
chaotic parameter which decides the chaotic system. By plotting the bifurcation diagram, the
parameter of model can lead the system to the chaotic behavior.

2. Demand model

There were various supply chain models studied previously. Most of them were based
on a simple beer distribution model [11] which includes three levels: brewery or factory,
wholesaler, and retailer. In this system, orders propagate from customers to factory. In order
to distinguish the traditional beer model, this paper focuses on the model of retailer’s demand
decision and study the complex behavior between retailer and the whole supply chain. The
model is constructed on a customer-supplier system, including customers, a retailer, and a
manufacturer. The customers buy products from the retailer. The demand of the customers
depends on the price offered by the retailer. The retailer forecasts the demand based on the
previous sales and makes the new order to the manufacturer accordingly. The manufacturer
makes only what the retailer is ordered. However, the manufacturer does not accept the order
with quantity in excess of its capacity. The retailer determines the sales price for the next
period according to the current stock. If the stock level is high, the retailer offers a discount to
encourage the customer to buy more. The process is deterministic on the basis of settled rules
or formulae and repeats automatically in the next period.

It is assumed that the amount of the stock increase is the difference of the amount
received, which is ordered in the previous period, and the amount of sales to customers as
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given by Steman [12]. That is,

St+1 = qt+1 + St −Dt, (2.1)

where Dt is the actual demand at t period. qt+1 is the order from retailer to manufacture and
is equal to Pt+1 which is the output of manufacturer at t period.

It is assumed [12] that the retailer sends a request for quotation of the product in a
quantity as forecasted. On receiving the request, the manufacture plans the production and
accepts the order with limited production capacity in the period. If the production capacity is
infinite, the Pt+1 should be equal to the expected demand ̂Dt+1 which is the expected demand
of customer in next period. Then,

St+1 = ̂Dt+1 + St −Dt. (2.2)

The retailer forecasts the demand by simple exponential smoothing by Towill [13], the
expected demand at time t can be defined as follows:

̂Dt = ωDt−1 + (1 −ω) ̂Dt−1, 0 < ω < 1, (2.3)

where Dt is the actual demand of customer. ω is an exponential constant which determines
how fast expectations are updated; when ω = 1, the expected demand ̂Dt at t period is equal
to the actual demand Dt−1 at t − 1 period. At the ω = 0, ̂Dt = ̂Dt−1, the actual demand can be
ignored.

If the new stock level St+1 excesses a threshold, T , the retailer regards the level as
overstock and prepares to make a discount offer to reduce the stock. An overstock rate vt+1 is
calculated as

vt+1 =
St+1 − T

T
. (2.4)

The parameter T is a policy parameter for the retail to evaluate the stock level and determine
whether to offer a price discount or not. Price discount is an effect behavior to alleviate the
inventory’s pressure and magnify the customer’s demand at short time. But the discount
offer is only valid for one period. The discount for the next period will be re-evaluated by the
overstock rate at the end of the period. The relationship between overstock rate and discount
rate is hence calculated by

rt+1 =
vt+1

q
, (2.5)

where q is a constant. When the rt+1increases, the price will be decreased. As a result, the
customer’s demand will increase. The trend of demand’s increase is the result of the retailers’
active behaviors and avoids the venture which changes from the uncertain demand to actual
inventory.

Because the customers are myopic, the customer’s demand Rt+1 is deterministic by the
price. If there is no discount, the customer’ demand is equal to the last period actual demand
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Dt, referred to as basic demand. When a discount rate is offered, the demand increases based
on the basic demand [9]:

Rt+1 =
Dt

(1 − rt+1/a)
k
, (2.6)

where a is the upper limit of the discount, k is a parameter which determines the demand
under discount, 0 < k < 1. If not considering the price fluctuation, the customer’s demand
Rt+1 is equal to the retailer’s actual demand Dt+1 among the linear models of demand. But
the linear relationship cannot describe the dynamic demand model more realistic, many
researchers prefer the nonlinear function for the demand model. According to the model of
Qi et al. [14], the market’s actual demand is a downside nonlinear function of retail price:

Dt+1 = Dp−2r , (2.7)

where r is a coefficient of price sensitivity, D is the maximum market scale and presents the
customer’s forecast demand in market. So the maximum scale D is equal to the customer’s
demand Rt+1.

From (2.6) and (2.7), the actual demand and price can be expressed as

Dt+1 =
Dtp

−2r

(1 − rt+1/a)
k
. (2.8)

Form (2.4), (2.5), and (2.8),

Dt+1 =
(qaT)kp−2r

[

(qa + 1)T − St+1
]k
Dt. (2.9)

The model above can be expressed as a high-demand piecewise map in the following
mathematical form:

xt+1 =
(qaT)kp−2rxt

[

(qa + 1)T − yt+1
]k
,

yt+1 = yt + zt+1 − xt,
zt+1 = ωxt + (1 −ω)zt.

(2.10)

3. Chaos’s identifying method

A simple chaotic system has two characters: sensitivity to initial conditions and the strange
attractor with fractal structure. For the model (2.10), this paper uses the time series of
retailer’s actual demand to reflect the system behavior. The chaotic character can be identified
through calculating the embedding dimension of a scalar time series. If we only consider one
variable and make it invariable based on Cao [15] theorem, an equal reconstructed space will
be identified from the new point which is taken as the new dimension on the time delay point.
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When embedding dimension accumulates to a new level, the reconstructed space has all the
same dynamic characters as the actual system and also does not rely on the reconstructed
detail of process.

The method presented in this paper supposes a time series. The time-delay vectors can
be reconstructed as follows:

Xn = {x(n), x(n + τ), . . . , x(n + (m − 1)τ)}, n = 1, 2, . . . ,N − (m − 1)τ, (3.1)

where m is the embedding dimension and τ is the time delay. Note that Xn means the ith
reconstructed vector with embedding dimension m. Similar to the idea of the false neighbor
method, it is defined as follows:

a(i,m) =
‖XNN+1 −Xn+1‖m+1

‖XNN −Xn‖m
, i = 1, 2, . . . ,N −mτ, (3.2)

where ‖·‖ is some measurement of Euclidian distance and is given in this paper by the
maximum or the mean value of all a(i,m)’s:

E(m) =
1

N −mτ

N−mτ
∑

i=1

a(i,m), (3.3)

where E(m) is dependent only on the dimension m and the lag τ . To investigate its variation
from m to m + 1, let E1(m) = E(m + 1)/E(m). However, E1(m) stops changing when m is
greater than some value m0; if the time series comes from an attractor, then m0 + 1 is the
minimum embedding dimension.

Before numerical tests, it is necessary to define another quantity which is useful to
distinguish deterministic signals from stochastic signals. Let

E∗(m) =
1

N −mτ

N−mτ
∑

i=1

|x(i +mτ) − x(NN +mτ)|, (3.4)

where the meaning of (NN + mτ) is the same as above, that is, it is the integer such that
a(i,m) is the nearest neighbor of a(i,m). Let

E2(m) =
E∗(m + 1)
E∗(m)

. (3.5)

For time series data from a random set of numbers, E1(m), in principle, will never
attain a saturation value as m increases. But in practical computations, it is difficult to resolve
whether the E1(m) is slowly increasing or has stopped changing if m is sufficiently large. In
fact, since available observed data samples are limited, it may happen that the E1(m) stops
changing at some m although the time series is random. It is recommended calculating both
E1(m) andE2(m) for determining the minimum embedding dimension of a scalar time series,
and distinguishing deterministic data from random data.



6 Discrete Dynamics in Nature and Society

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
1(
m
)

&
E

2(
m
)

0 2 4 6 8 10 12

m

E2(m)
E1(m)

Figure 1: The values E1(m) and E2(m) for the data from the retailer’s model.

Above on the describe, we numerate the model (2.10) with step 0.01, and record
the time series data from the numerical solution with sampling time 6 after all transients
have been diminished. The results for this time series are shown in Figure 1, where τ = 1,
sampling time. One can see that the E1(m) attains its saturation value at m = 2 and the
E2(m) = 1 at m = 8, it shows that the time series is chaotic series. Therefore, m = 2 should be
the minimum embedding dimension for the time series in our model. Obviously, the result
does not strongly depend on how many data points are used. Because the E1(m) attains its
saturation at m = 2, the models of retail’s demand have clearly chaotic behaviors.

After getting the embedding dimension of time series, it is necessary to calculate the
maximal Lyapunov exponent for the chaotic model. It is assumed that the retailer’s demand,
which is the origin of (2.10), is located in a reconstructed space like (3.1). The analysis
presented here first identifies the starting point xj (in the space) which is closest to the initial
reference point xi. The distance between the two points is defined as

dj(xi, xj , t) = |xj+m−1+t − xi+m−1+t|. (3.6)

Let

S(t) =
1
N

N
∑

j=1

In

(

1
|Uj |

∑

i∈Uj

dj(xj , xi, t)

)

, (3.7)

where Uj is the E-neighborhood included xi, xj . When S(t) increase as the t, the regression
curve will be plotted by the method of least squares. Calculating the slope of regression curve
in the S(t) − t plot and the value of slope is the maximal Lyapunov exponent.

Figure 2 shows the maximal Lyapunov exponent of retailer’s demand. In the S(t) − t
plot, the slope of S(t)’s curve equals 0.05297. It clearly confirmed that the dynamic system
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Figure 2: The maximal Lyapunov exponent of retailer’s demand.

Table 1: The parameters and initial data.

Item Value
Initial retailer’s demand, D0 500
Initial stock, S0 1000
Initial expected demand ̂D0 0
Discount threshold, T 600
Ratio of overstock, q 1.2
Discount, a 70%
Exponential constant, ω 0.82
p−2r 1

based on (2.10) has chaotic behavior. In the next step, simulation of the model is necessary to
prove that the chaotic behavior is sensitive to initial conditions.

4. Simulation results and discussion

The initial data, as show in Table 1, for running the model described above were chosen
arbitrarily. But the value of price must be equal to 1, it easy to find the relationship between
the actual stock and expected demand.

Because the flow of demand or stock cam reflects the operational complexity of system,
the investigation of the system behavior in the paper will concentrate on the stock and
demand held by retailer. All the bifurcation diagrams in the following, wherever it is not
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Figure 3: The bifurcation diagram of actual stock and expected demand.

specified, were generated with a series time of 10000 iterations. Figure 3 shows the chaotic
behavior of retail’s actual and expected demand, which is based on (2.10). It is clear in the
bifurcation diagram that the dynamic system does not attain an equilibrium state in the
simulated interval between 0.1 and 1 of parameter k. Aperiodic behavior happens in two
intervals (0.16, 0.19) and (0.404, 1) and the stock and demand appear to be periodically
oscillatory in the intervals from 0.1 to 1.0.

4.1. Impact of the price fluctuation

The above results show that the retailer’s demand model based on (2.10) under the given
conditions, including initial states as described previously, will go into chaos in certain ranges
of k. So it is necessary to investigate the impact of the price fluctuation on the system. Based
on formula (2.7), Dt+1 = Dp−2r , the retailer’s price is decided by the parameter r which is
the exponential forms. The results of simulation of exponential parameter r and retailer’s
demand are shown in Figure 4. It is clearly chaotic behavior in retailer’s demand as the r
increases. When r varies from 0.48 to 1.2, the retailer’s demand shows the chaotic behavior.
At r = 0.48, the period doubling bifurcation which appeared and decreased the initial r to
0.14 will bring the system shifts from oscillation to equilibrium.

When price decreases, it is normal that the customer’s demand will increase. If the
amount of stock is enough to satisfy the demand, which is called no stockout , the demand is
positive like the diagram at r ∈ (0, 0.48) in Figure 4. When r > 0.48, the demand is negative, it
obviously means that the stockout happened. As a result, the system of (2.10) shows chaotic
behavior. So the stockout is the uncertain behavior and can lead the system to the chaos.
Please refer to the Xu et al.’s article [16] for the further discussion about the coefficient of the
price sensitivity r.

The above results show that r > 0.48 would lead the system into chaos and stockout.
It is necessary to discuss the equilibrium point when the stockout does not happen. Figure 5
shows the retail’s stock bifurcation as the r changes and the system of (2.10) shows chaotic
behavior. When the coefficient 0.41 > r > 0.48, the retail’s stock into oscillation and r > 0.48,
the system from oscillation to chaos.
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Figure 4: The bifurcation diagram of retail’s demand (k = 0.6, p = 10).
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Figure 5: The bifurcation diagram of retail’s stock (k = 0.6, p = 10).

Whether the stockout happened or not, according to Figures 4 and 5, r > 0.48 can lead
the system of (2.10) to chaos. Because coefficient of price sensitivity r is decided by

Dt+1 = Dp−2r , (4.1)

r > 0.48, 2r > 1, p2r ≥ p1, the price is not a fluctuation at 2r = 1. As an increase of r from 0.48,
the price fluctuation gets worsened, the stockout and chaos happened. The system of (2.10)
shows the chaotic behavior.

4.2. Impact of the initial condition

It is well known [17] that attractors of a high-order map can be sensitive to initial conditions.
Any change of initial stock or demand can be regarded as a disturbance of system and can
lead to chaos. Figure 6 shows the bifurcation diagrams when the initial stock increases by 5%
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Figure 6: Bifurcation diagram of 5% and 10% increase of initial stock.
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Figure 7: Bifurcation diagram of 5% and 10% increase of initial demand.

and 10%, respectively. In the case of initial stock increase by 5%, the major aperiodic interval
moves to 0.68. In the case of initial stock increase by 10%, the bifurcation diagram shows
much less chaotic behavior. It should be noted that the change of initial stock also caused
variance of the bifurcation diagram sharps.

The impact of other initial data was also investigated. Figure 7 shows the bifurcation
diagrams when the initial demand increases by 5% and 10%, respectively. It is clear that the
change of initial demand also leads the system to chaos.

The above results show that the system state and the behavior depend not only on the
model’s parameters, but also on the initial state. As a state—at any time—can be an initial
state for future evolution, the behavior of such a system is thus sensitive to disturbances. A
disturbance to the system states could eventually lead the system into equilibrium or chaos.

4.3. Adaptive adjustment

Despite the model of retailer’s demand shows the chaotic behavior, the mechanism of
stabilizing the chaotic process in the actual supply chain is still under discussion. In the
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dynamic system, Huang and Zhang [18] advanced the theory of the adaptive adjustment
which is the effective method to smooth the chaotic behavior. In Huang’s discussion [19],
conventional adaptive expectations as a mechanism of stabilizing an unstable economic
process are reexamined through a generalization to an adaptive adjustment framework.
The generic structures of equilibrium that can be stabilized through adaptive adjustment
mechanisms are identified theoretically and numerically. The adaptive adjustment schemes
can be applied to a broader class of discrete economic processes, such as in cobweb dynamics,
price adjustment, tariff game, population control model.

5. Conclusion

This paper has presented a model of retailer’s demand. In simulation of the interaction, the
behavior of the system exhibits deterministic chaos with consideration to system constraints.
By the method of space-reconstructed , this paper calculates the minimum embedding
dimension and the maximal Lyapunov exponent of retailer’s demand model. The result
shows that the model is chaotic. In the last, simulations have demonstrated that the
parameters k and r can lead the system to the chaotic behavior.

As a result of simulation, the model exhibits different behaviors as the initial condition
varies. The sensitivity of the chaotic behavior to initial conditions makes the system easy to
be disturbed in a changing environment. In reality, the system keeps disturbed all the time
by various factors and the disturbance could be amplified in this way. Thus, the later state of
the system remains unpredictable.

The simulation model discussed in this paper can inflect that the real supply chain is
much more complex and its behavior is hence much more complicated. The managers should
smoothen the uncertain behavior in supply chain. As a result, the behavior of the system can
be much less chaotic than simulated.
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