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1. Introduction

Recently, there has been an increasing interest in the study of qualitative analyses of rational
difference equations and systems of difference equations. Difference equations appear nat-
urally as discrete analogues and as numerical solutions of differential and delay differential
equations having applications in biology, ecology, economy, physics, and so forth. Although
difference equations are very simple in form, it is extremely difficult to understand thor-
oughly the global behaviors of their solutions (see [1–15] and the references cited therein).

In [9, 10] Papaschinopoluos and Schinas studied the behavior of the positive solutions
of the system of two Lyness difference equations

xn+1 =
byn + c

xn−1
, yn+1 =

dxn + e

yn−1
, n = 0, 1, 2, . . . , (1.1)

where b, c, d, e are positive constants and initial values x−1, x0, y−1, y0 are positive.
Iričanin and Stević [6] studied, among others, the following system:
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(1.2)

where k ∈ N.
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In [2], Amleh et al. proved that all positive solutions of the difference equations

xn+1 =
xn + xn−1xn−2
xnxn−1 + xn−2

, xn+1 =
xn−1 + xnxn−2
xnxn−1 + xn−2

, xn+1 =
xn + xn−1xn−2
xnxn−2 + xn−1

, (1.3)

where initial values x−2, x−1, x0 are positive, converge to 1 as n→∞.

Moreover, Xianyi and Deming [8] proved that the unique positive equilibrium of the
difference equation

xn+1 =
xnxn−1 + a

xn + xn−1
, n = 0, 1, 2, . . . , (1.4)

where a ∈ [0,∞) and x−1, x0 are positive, is globally asymptotically stable.
In [1], we extended the results obtained in [8] to the following difference equation:

xn+1 =
xnxn−k + a

xn + xn−k
, n = 0, 1, 2, . . . , (1.5)

where k is nonnegative integer, a ∈ [0,∞) and x−k, . . . , x0 are positive and are globally
asymptotically stable.

Also in [14], we extended the results obtained in [8] to the following system of
difference equations:

zn+1 =
zntn−1 + a

zn + tn−1
, tn+1 =

tnzn−1 + a

tn + zn−1
, n = 0, 1, 2, . . . , (1.6)

where a ∈ (0,∞) and the initial values (zk, tk) ∈ (0,∞) (for k = −1, 0) are globally
asymptotically stable.

In this paper, we consider the following system of difference equations:

zn+1 =
tnzn−1 + a

tn + zn−1
, tn+1 =

zntn−1 + a

zn + tn−1
, n = 0, 1, 2, . . . , (1.7)

where a ∈ (0,∞) and the initial values (zk, tk) ∈ (0,∞) (for k = −1, 0). Our main aim is to
investigate the global asymptotic behavior of its solutions.

It is clear that the change of variables

(
zn, tn

)
=
(√

axn,
√
ayn

)
(1.8)

reduces the system (1.7) to the system
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xn+1 =
ynxn−1 + 1
yn + xn−1

, yn+1 =
xnyn−1 + 1
xn + yn−1

, n = 0, 1, 2, . . . , (1.9)

where the initial values (xk, yk) ∈ (0,∞) for (k = −1, 0).
We need the following definitions and theorem.
Let I be some interval of real numbers and let

f, g : I × I −→ I (1.10)

be continuously differentiable functions. Then, for all initial values (xk, yk)εI, k = −1, 0, the
system of difference equations

xn+1 = f
(
xn, yn−1

)
, yn+1 = g

(
yn, xn−1

)
, n = 0, 1, 2, . . . , (1.11)

has a unique solution {(xn, yn)}∞n=−1.

Definition 1.1. A point (x, y) is called an equilibrium point of the system (1.11) if

x = f
(
x, y

)
, y = g

(
x, y

)
. (1.12)

It is easy to see that the system (1.9) has the unique positive equilibrium (x, y) =
(1, 1) [7].

Definition 1.2. Let (x, y) be an equilibrium point of the system (1.11).
(a)An equilibrium point (x, y) is said to be stable if for any ε > 0 there is δ > 0 such that

for every initial points (x−1, y−1) and (x0, y0) for which ‖(x−1, y−1)−(x, y)‖ +‖(x0, y0)−(x, y)‖ <
δ, the iterates (xn, yn) of (x−1, y−1) and (x0, y0) satisfy ‖(xn, yn) − (x, y)‖ < ε for all n > 0. An
equilibrium point (x, y) is said to be unstable if it is not stable (the Euclidean norm in R

2

given by ‖(x, y)‖ =
√
x2 + y2) is denoted by ‖·‖.

(b) An equilibrium point (x, y) is said to be asymptotically stable if there exists r >
0 such that (xn, yn)→ (x, y) as n→∞ for all (x−1, y−1) and (x0, y0) that satisfy ‖(x−1, y−1) −
(x, y)‖ + ‖(x0, y0) − (x, y)‖ < r [7].

Definition 1.3. Let (x, y) be an equilibrium point of a map F = (f, g), where f and g are
continuously differentiable functions at (x, y). The Jacobian matrix of F at (x, y) is the matrix

JF(x, y) =

⎡

⎢⎢⎢
⎣

∂f

∂x
(x, y)

∂f

∂y
(x, y)

∂g

∂x
(x, y)

∂g

∂y
(x, y)

⎤

⎥⎥⎥
⎦

. (1.13)
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The linear map JF(x, y) : R
2 →R

2 given by

JF(p, q)(x, y) =

⎡

⎢
⎢
⎢
⎣

∂f

∂x
(x, y)x +

∂f

∂y
(x, y)y

∂g

∂x
(x, y)x +

∂g

∂y
(x, y)y

⎤

⎥
⎥
⎥
⎦

(1.14)

is called the linearization of the map F at (x, y) [7].

Theorem 1.4 (linearized stability theorem [7]). Let F = (f, g) be a continuously differentiable
function defined on an open set I in R

2, and let (x, y) in I be an equilibrium point of the map F =
(f, g).

(a) If all the eigenvalues of the Jacobian matrix JF(x, y) have modulus less than one, then the
equilibrium point (x, y) is asymptotically stable.

(b) If at least one of the eigenvalues of the Jacobian matrix JF(x, y) has modulus greater than
one, then the equilibrium point (x, y) is unstable.

(c) An equilibrium point (x, y) of the map F = (f, g) is locally asymptotically stable if and
only if every solution of the characteristic equation

λ2 − trJF(x, y)λ + detJF(x, y) = 0 (1.15)

lies inside the unit circle, that is, if and only if

∣∣trJF(x, y)
∣∣ < 1 + detJF(x, y) < 2. (1.16)

Definition 1.5. Let (x, y) be positive equilibrium point of the system (1.11).
A “string” of consecutive terms {xs, . . . , xm} (resp., {ys, . . . , ym}), s ≥ −1, m ≤ ∞ is

said to be a positive semicycle if xi � x (resp., yi � y), iε{s, . . . ,m}, xs−1 < x (resp., ys−1 < y),
and xm+1 < x (resp., ym+1 < y).

A “string” of consecutive terms {xs, . . . , xm} (resp., {ys, . . . , ym}), s ≥ −1, m ≤ ∞ is
said to be a negative semicycle if xi < x (resp., yi < y), iε{s, . . . ,m}, xs−1 � x (resp., ys−1 � y),
and xm+1 � x (resp., ym+1 � y).

A “string” of consecutive terms {(xs, ys), . . . , (xm, ym)} is said to be a positive (resp.,
negative) semicycle if {xs, . . . , xm}, {ys, . . . , ym} are positive (resp., negative) semicycles.
Finally, a “string” of consecutive terms {(xs, ys), . . . , (xm, ym)} is said to be a semicycle
positive (resp., negative) with respect to xn and negative (resp., positive) with respect to
yn if {xs, . . . , xm} is a positive (resp., negative) semicycle and {ys, . . . , ym} is a negative (resp.,
positive) semicycle [9].

We now make new definitions. These definitions can be used for different subse-
quences of {xn} (resp., {yn}).
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Definition 1.6. Let (x, y) be positive equilibrium point of the system (1.11).
A “string” of consecutive terms {x2s, x2s+2, . . . , x2m} ( resp., {y2s, . . . , y2m}), s ≥ 1, m ≤

∞ is said to be a positive sub-semicycle associated with {x2n} (resp., {y2n}) if xi � x (resp.,
yi � y), iε{2s, 2s + 2, . . . , 2m}, x2s−2 < x (resp., y2s−2 < y), and x2m+2 < x (resp., y2m+2 < y).

A “string” of consecutive terms {x2s, x2s+2, . . . , x2m} ( resp., {y2s, . . . , y2m}), s ≥ 1, m ≤
∞ is said to be a negative sub-semicycle associated with {x2n} (resp., {y2n}) if xi < x (resp.,
yi < y), iε{2s, 2s + 2, . . . , 2m}, x2s−2 � x (resp., y2s−2 � y), and x2m+2 � x (resp., y2m+2 � y).

A “string” of consecutive terms {(x2s, y2s), (x2s+2, y2s+2), . . . , (x2m, y2m)} is said
to be a positive (resp., negative) sub-semicycle if {x2s, x2s+2, . . . , x2m}, {y2s, . . . , y2m}
are positive (resp., negative) sub-semicycles. Finally, a “string” of consecutive terms
{(x2s, y2s), (x2s+2, y2s+2), . . . , (x2m, y2m)} is said to be a sub-semicycle positive (resp., negative)
with respect to x2n and negative (resp., positive) with respect to y2n if {x2s, x2s+2, . . . , x2m}
is a positive (resp., negative) sub-semicycle and {y2s, . . . , y2m} is a negative (resp., positive)
sub-semicycle.

Definition 1.7. Let (x, y) be positive equilibrium point of the system (1.11).
A “string” of consecutive terms {x2s−1, x2s+1, . . . , x2m+1} (resp., {y2s−1, . . . , y2m+1}), s ≥

1, m ≤ ∞, is said to be a positive sub-semicycle associated with {x2n−1} (resp., {y2n−1}) if
xi � x (resp., yi � y), iε{2s + 1, 2s + 1, . . . , 2m + 1}, x2s−3 < x (resp., y2s−3 < y), and x2m+3 < x
(resp., y2m+3 < y).

A “string” of consecutive terms {x2s−1, x2s+1, . . . , x2m+1} (resp., {y2s−1, . . . , y2m+1}), s ≥
1, m ≤ ∞, is said to be a negative sub-semicycle associated with {x2n−1} (resp., {y2n−1}) if
xi < x (resp., yi < y), iε{2s − 1, 2s + 1, . . . , 2m + 1}, x2s−3 � x (resp., y2s−3 � y), and x2m+3 � x
(resp., y2m+3 � y).

A “string” of consecutive terms {(x2s−1, y2s−1), (x2s+1, y2s+1), . . . , (x2m+1, y2m+1)} is said
to be a positive (resp., negative) sub-semicycle if {x2s−1, x2s+1, . . . , x2m+1}, {y2s−1, . . . , y2m+1}
are positive (resp., negative) sub-semicycles. Finally, a “string” of consecutive terms
{(x2s−1, y2s−1), (x2s+1, y2s+1), . . . , (x2m+1, y2m+1)} is said to be a sub-semicycle positive
(resp., negative) with respect to x2n−1 and negative (resp., positive) with respect
to y2n−1, if {x2s−1, x2s+1, . . . , x2m+1} is a positive (resp., negative) sub-semicycle and
{y2s−1, y2s+1, . . . , y2m+1} is a negative (resp., positive) sub-semicycle.

2. Some auxiliary results

In this section, we give the following lemmas which show us the behavior of semicycles of
positive solutions of system (1.9). The proof of Lemma 2.1 is clear from (1.9). So, it will be
omitted.

Lemma 2.1. Assume that {(xn, yn)}∞n=−1 is a solution of the system (1.9) and consider the following
cases:

(Case a) x0 = x−1 = 1;
(Case b) y0 = y−1 = 1;
(Case c) x0 = y0 = 1;
(Case d) x−1 = y−1 = 1.
If one of the above cases occurs, then every positive solution of system (1.9) is equal to (1, 1).
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Lemma 2.2. Assume that {(xn, yn)}∞n=−1 is a positive solution of the system (1.9) which is not
eventually equal to (1, 1). Then the following statements are true:

(i) (xn+1 − xn−1)(xn−1 − 1) < 0 and (yn+1 − yn−1)(yn−1 − 1) < 0 for all n ≥ 0;

(ii) (xn+1 − 1)(xn−1 − 1)(yn − 1) > 0 and (yn+1 − 1)(yn−1 − 1)(xn − 1) > 0 for all n ≥ 0.

Proof. In view of system (1.9), we obtain

xn+1 − xn−1 =

(
1 − xn−1

)(
1 + xn−1

)

yn + xn−1
,

yn+1 − yn−1 =

(
1 − yn−1

)(
1 + yn−1

)

xn + yn−1
,

xn+1 − 1 =

(
xn−1 − 1

)(
yn − 1

)

yn + xn−1
,

yn+1 − 1 =

(
yn−1 − 1

)(
xn − 1

)

xn + yn−1

(2.1)

for n = 0, 1, 2, . . . , from which the inequalities in (i) and (ii) follow.

Lemma 2.3. Assume that {(xn, yn)}∞n=−1 is a solution of system (1.9) and suppose that the case,
(Case 1) xk, yk > 1 ( for k = −1, 0), holds.
Then, (x2n−1, y2n−1) and (x2n, y2n) are positive sub-semicycles of system (1.9) with an infinite

number of terms and they monotonically tend to the positive equilibrium (x, y) = (1, 1).

Proof. If xk, yk > 1 (for k = −1, 0), then by Lemma 2.2(ii), it follows that

x2n−1, x2n, y2n−1, y2n > 1 ∀ n ≥ 0, (2.2)

that is, these positive sub-semicycles have an infinite number of terms. Furthermore,
according to Lemma 2.2(i), we know that (x2n−1, y2n−1) and (x2n, y2n) are strictly decreasing
for all n ≥ 0. So, the limits

lim
n→∞

x2n−1 = l1, lim
n→∞

x2n = l2,

lim
n→∞

y2n−1 = l3, lim
n→∞

y2n = l4.
(2.3)

exist and are finite. From (1.9), we can write

x2n+1 =
y2nx2n−1 + 1
y2n + x2n−1

, y2n+1 =
x2ny2n−1 + 1
x2n + y2n−1

, n = 0, 1, 2, . . . , (2.4)

taking limits on both sides of (2.4), we have

l1 =
l4l1 + 1
l4 + l1

, l3 =
l2l3 + 1
l2 + l3

, (2.5)

and thus l1 = l3 = 1. Similarly, one can see that l2 = l4 = 1. Therefore, the proof is complete.
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Lemma 2.4. Assume that {(xn, yn)}∞n=−1 is a solution of system (1.9), and consider the following
cases:

(Case 2) x−1, y−1 > 1 and x0, y0 < 1;

(Case 3) x−1, y−1 < 1 and x0, y0 > 1;

(Case 4) x−1, x0 < 1 and y−1, y0 > 1;
(Case 5) x−1, x0 > 1 and y−1, y0 < 1;

(Case 6) x−1, y−1, y0 < 1 and x0 > 1;

(Case 7) x0, y−1, y0 < 1 and x−1 > 1;

(Case 8) x−1, x0, y−1 < 1 and y0 > 1;

(Case 9) x−1, x0, y0 < 1 and y−1 > 1;

(Case 10) x−1, x0, y−1, y0 < 1.

If one of the above cases occurs, then the following hold.

(i) Every positive sub-semicycle associated with {x2n−1} and {x2n} (resp., {y2n−1} and {y2n})
of system (1.9) consists of one term.

(ii) Every negative sub-semicycle associated with {x2n−1} and {x2n} (resp., {y2n−1} and {y2n})
of system (1.9) consists of two terms.

(iii) Every positive sub-semicycle of length one is followed by a negative sub-semicycle of length
two.

(iv) Every negative sub-semicycle of length two is followed by a positive sub-semicycle of length
one.

Proof. If Case 2 occurs, then in view of inequality (ii) of Lemma 2.2 we have: x1, y1 <
1; x3, y3 < 1 and

x6n+5, y6n+5 > 1; x6n+7, y6n+7 < 1, x6n+9, y6n+9 < 1 ∀n ≥ 0, (2.6)

which imply that every positive sub-semicycle associated with {x2n−1} and {y2n−1} of system
(1.9) of length one is followed by a negative sub-semicycle of length two, which in turn is
followed by a positive sub-semicycle of length one.

Similarly, if Case 2 occurs, then in view of inequality (ii) of Lemma 2.2 we have

x6n+2, y6n+2 > 1; x6n+4, y6n+4 < 1, x6n+6, y6n+6 < 1 ∀n ≥ 0, (2.7)

which imply that every positive sub-semicycle associated with {x2n} and {y2n} of system
(1.9) of length two is followed by a negative sub-semicycle of length four, which in turn is
followed by a positive sub-semicycle of length two.

Proofs of the other cases are similar, so they will be omitted. Therefore, the proof is
complete.

We omit the proofs of the following two results since they can easily be obtained in a
way similar to the proof of Lemma 2.4.
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Lemma 2.5. Assume that {(xn, yn)}∞n=−1 is a solution of system (1.9) and consider the following
cases:

(Case 11) x−1, y−1, y0 > 1 and x0 < 1;
(Case 12) x−1, x0, y0 > 1 and y−1 < 1;
(Case 13) x−1, y0 > 1 and x0, y−1 < 1.
If one of the above cases occurs, then the following hold.

(i) (x2n−1, y2n) is a positive sub-semicycle of system (1.9) with an infinite number of terms
(monotonically tend to the positive equilibrium (x, y) = (1, 1)).

(ii) Every positive sub-semicycle associated with {x2n} and {y2n−1} of system (1.9) consists of
one term.

(iii) Every negative sub-semicycle associated with {x2n} and {y2n−1} of system (1.9) consists of
two terms.

(iv) Every positive sub-semicycle of length one is followed by a negative sub-semicycle of length
two.

(v) Every negative sub-semicycle of length two is followed by a positive sub-semicycle of length
one.

Lemma 2.6. Assume that {(xn, yn)}∞n=−1 is a solution of system (1.9) and consider the following
cases:

(Case 14) x−1, x0, y−1 > 1 and y0 < 1;
(Case 15) x0, y−1, y0 > 1 and x−1 < 1;
(Case 16) x0, y−1 > 1 and x−1, y0 < 1.
If one of the above cases occurs, then the following hold.

(i) (x2n, y2n−1) is a positive sub-semicycle of system (1.9) with an infinite number of terms
(monotonically tend to the positive equilibrium (x, y) = (1, 1)).

(ii) Every positive sub-semicycle associated with {x2n−1} and {y2n} of system (1.9) consists of
one term.

(iii) Every negative sub-semicycle associated with {x2n−1} and {y2n} of system (1.9) consists of
two terms.

(iv) Every positive sub-semicycle of length one is followed by a negative sub-semicycle of length
two.

(v) Every negative sub-semicycle of length two is followed by a positive sub-semicycle of length
one.

3. Main result

Theorem 3.1. The positive equilibrium point (x, y) = (1, 1) of the system (1.9) is globally
asymptotically stable.

Proof. We must show that the positive equilibrium point (x, y) = (1, 1) of the system
(1.9) is both locally asymptotically stable and (xn, yn)→ (x, y) as n→∞ (or equivalently
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(x2n−1, y2n−1)→ (x, y) and (x2n, y2n)→ (x, y) as n→∞). The characteristic equation of the
system (1.9) about the positive equilibrium point (x, y) = (1, 1) is

λ2 − 0.λ + 0 = 0, (3.1)

and so it is clear from Theorem 1.4 that positive equilibrium point (x, y) = (1, 1) of the
system (1.9) is locally asymptotically stable. It remains to verify that every positive solution
{(xn, yn)}∞n=−1 of the system (1.9) converges to (x, y) = (1, 1) as n→∞. Namely, we want to
prove

lim
n→∞

x2n = lim
n→∞

x2n−1 = x = 1,

lim
n→∞

y2n = lim
n→∞

y2n−1 = y = 1.
(3.2)

If the solution {(xn, yn)}∞n=−1 of (1.9) is nonoscillatory about the positive equilibrium
point (x, y) = (1, 1) of the system (1.9), then according to Lemmas 2.1 and 2.3, respectively,
we know that the solution is either eventually equal to (1, 1) or an eventually positive one
which has an infinite number of terms and monotonically tends the positive equilibrium
point (x, y) = (1, 1) of the system (1.9) and so (3.2) holds. Therefore, it suffices to prove
that (3.2) holds for strictly oscillatory solutions. Now, let {(xn, yn)}∞n=−1 be strictly oscillatory
about the positive equilibrium point (x, y) = (1, 1) of the system (1.9). By virtue of
Lemmas 2.2(ii) and 2.4, one can see that every positive sub-semicycle associated with
{x2n−1} (resp. {x2n}, {y2n−1}, {y2n}) of this solution has one term, and every negative sub-
semicycle associated with {x2n−1} (resp., {x2n}, {y2n−1}, {y2n}) except perhaps for the first has
exactly two terms. Every positive sub-semicycle of length one is followed by a negative sub-
semicycle of length two.

We consider the sub-semicycles associated with {x2n} and {y2n}.
For the convenience of statement, without loss of generality, we use the following

notation. We denote by x2p and y2p the terms of a positive sub-semicycle of length one,
followed by x2p+2, x2p+4 and y2p+2, y2p+4 which are the terms of a negative sub-semicycle of
length two. Afterwards, there are the positive sub-semicycles x2p+6 and y2p+6 in turn followed
by the negative sub-semicycles, and so on.

Therefore, we have the following sequences consisting of positive and negative sub-
semicycles (for n = 0, 1, . . .):

{x2p+6n}∞n=0, {x2p+6n+2, xp+6n+4}∞n=0, {y2p+6n}∞n=0, {y2p+6n+2, y2p+6n+4}∞n=0. (3.3)

We have the following assertions:

(i) x2p+6n+2 < x2p+6n+4 and y2p+6n+2 < y2p+6n+4;

(ii) x2p+6nx2p+6n+2 > 1 and y2p+6ny2p+6n+2 > 1;

(iii) x2p+6n+4x2p+6n+6 < 1 and y2p+6n+4y2p+6n+6 < 1.
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In fact, inequality (i) immediately follows from Lemma 2.2(i). From the observations
that

x2p+6n+2 =
y2p+6n+1x2p+6n + 1
y2p+6n+1 + x2p+6n

>
y2p+6n+1x2p+6n + 1

y2p+6n+1x
2
2p+6n + x2p+6n

=
1

x2p+6n
,

y2p+6n+2 =
x2p+6n+1y2p+6n + 1
x2p+6n+1 + y2p+6n

>
x2p+6n+1y2p+6n + 1

x2p+6n+1y
2
2p+6n + y2p+6n

=
1

y2p+6n
,

(3.4)

one can see that (ii) is valid.
As for (iii), it is obtained from

x2p+6n+6 =
y2p+6n+5x2p+6n+4 + 1
y2p+6n+5 + x2p+6n+4

<
y2p+6n+5x2p+6n+4 + 1

y2p+6n+5x
2
2p+6n+4 + x2p+6n+4

=
1

x2p+6n+4
,

y2p+6n+6 =
x2p+6n+5y2p+6n+4 + 1
x2p+6n+5 + y2p+6n+4

<
x2p+6n+5y2p+6n+4 + 1

x2p+6n+5y
2
2p+6n+4 + y2p+6n+4

=
1

y2p+6n+4
,

(3.5)

for n = 0, 1, 2, . . . .
Combining the above inequalities, we derive

1
x2p+6n

< x2p+6n+2 < x2p+6n+4 <
1

x2p+6n+6
,

1
y2p+6n

< y2p+6n+2 < y2p+6n+4 <
1

y2p+6n+6
.

(3.6)

From (3.6), one can see that {x2p+6n+2}∞n=0 and {y2p+6n+2}∞n=0 are increasing with upper
bound 1. So the limits

lim
n→∞

x2p+6n+2 = L1, lim
n→∞

y2p+6n+2 = L2 (3.7)

exist and are finite. Accordingly, in view of (3.6), we obtain

lim
n→∞

x2p+6n+4 = L1, lim
n→∞

x2p+6n+6 =
1
L1

,

lim
n→∞

y2p+6n+4 = L2, lim
n→∞

y2p+6n+6 =
1
L2

.

(3.8)

Now, we consider the sub-semicycles associated with {x2n−1} and {y2n−1}.
Similarly, for the convenience of statement, without loss of generality, we use the

following notation. We denote by x2p+1 and y2p+1 the terms of a positive sub-semicycle of
length one, followed by x2p+3, x2p+5 and y2p+3, y2p+5 which are the terms of a negative sub-
semicycle of length two. Afterwards, there are the positive sub-semicycles x2p+7 and y2p+7 in
turn followed by the negative sub-semicycles, and so on.
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Therefore, we have the following sequences consisting of positive and negative sub-
semicycles (for n = 0, 1, . . .):

{x2p+6n+1}∞n=0, {x2p+6n+3, xp+6n+5}∞n=0, {y2p+6n+1}∞n=0, {y2p+6n+3, y2p+6n+5}∞n=0. (3.9)

We have the following assertions:

(i) x2p+6n+3 < x2p+6n+5 and y2p+6n+3 < y2p+6n+5;

(ii) x2p+6n+1x2p+6n+3 > 1 and y2p+6n+1y2p+6n+3 > 1;

(iii) x2p+6n+5x2p+6n+7 < 1 and y2p+6n+5y2p+6n+7 < 1.

Combining the above inequalities, we derive

1
x2p+6n+1

< x2p+6n+3 < x2p+6n+5 <
1

x2p+6n+7
,

1
y2p+6n+1

< y2p+6n+3 < y2p+6n+5 <
1

y2p+6n+7
.

(3.10)

From (3.10), one can see that {x2p+6n+3}∞n=0 and {y2p+6n+3}∞n=0 are increasing with upper
bound 1. So the limits

lim
n→∞

x2p+6n+3 = L3, lim
n→∞

y2p+6n+3 = L4 (3.11)

exist and are finite. Accordingly, in view of (3.10), we obtain

lim
n→∞

x2p+6n+5 = L3, lim
n→∞

x2p+6n+7 =
1
L3

,

lim
n→∞

y2p+6n+5 = L4, lim
n→∞

y2p+6n+7 =
1
L4

.

(3.12)

It suffices to verify that

L1 = L2 = L3 = L4 = 1. (3.13)

To this end, note that

x2p+6n+6 =
y2p+6n+5x2p+6n+4 + 1
y2p+6n+5 + x2p+6n+4

, y2p+6n+6 =
x2p+6n+5y2p+6n+4 + 1
x2p+6n+5 + y2p+6n+4

. (3.14)

Take the limits on both sides of the above equality and obtain

1
L1

=
L4·L1 + 1
L4 + L1

,
1
L2

=
L3·L2 + 1
L3 + L2

, (3.15)

which imply that L1 = L2 = 1. Similarly, one can see that L3 = L4 = 1.
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Moreover, by virtue of Lemmas 2.2(ii) and 2.5 (resp., 2.6), one can see that (3.2) holds.
Therefore, the proof is complete.
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[3] K. S. Berenhaut, J. D. Foley, and S. Stević, “The global attractivity of the rational difference equation
yn = (yn−kyn−m)/(1 + yn−kyn−m),” Applied Mathematics Letters, vol. 20, no. 1, pp. 54–58, 2007.
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