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1. Introduction

In recent years, a number of papers have added important contributions to the existing
literature on the relation between exponential dichotomy of systems and solvability
properties of associated difference or differential equations, or the so-called admissibility
properties with sequence or function spaces (see [1–10]). In the case of classical differential
equations, the literature on this subject is rich and the main techniques are presented in the
valuable contributions of Coffman and Schäffer [11], Coppel [12], Daleckii and Kreı̆n [13],
and Massera and Schäffer [14]. In the last few years, the methods have been improved and
extended for general cases like those of evolution families or variational equations. The recent
development in the theory of linear skew-product flows led to important generalizations of
the classical results (see [4, 6, 7, 15–17]). A significant achievement was obtained in [15],
where Chow and Leiva deduced the structure of the stable and unstable subspaces for an
exponentially dichotomic linear skew-product flow. Various discrete-time characterizations
for uniform exponential dichotomy of linear skew-product flows were obtained in [4, 6, 7].
In [4] Chow and Leiva introduced and characterized the concept of pointwise discrete
dichotomy for a skew-product sequence over X ×Θ, with X a Banach space and Θ a compact
Haussdorff space.
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Let X be a Banach space, let Θ be a metric space, and let π = (Φ, σ) be a linear skew-
product flow on E = X×Θ, that is, σ : Θ×R → Θ, σ(θ, 0) = θ and σ(θ, t+s) = σ(σ(θ, t), s), for
all (θ, t, s) ∈ Θ × R

2, and the mapping Φ : Θ × R+ → L(X) satisfies the following conditions:
Φ(θ, 0) = I, (the identity operator on X), Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈
Θ × R

2
+ and there are M ≥ 1, ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ × R+. We

associate with π the variational discrete-time system

x(θ)(n + 1) = Φ(σ(θ, n), 1)x(θ)(n), ∀(θ, n) ∈ Θ × N. (Aπ)

Using the consequences given by the pointwise behavior, Chow and Leiva established in [4]
an important result concerning the exponential dichotomy of linear skew-product flows.

Theorem 1.1. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ. Then π is uniformly
exponentially dichotomic if and only if the system (Aπ) is uniformly exponentially dichotomic.

A direct proof of the above theoremwas presented in [6], without requiring continuity
properties.

The impressive development of difference equations in the past few years (see, e.g.,
[1–4, 6–10, 15–25] and the references therein) led to important contributions at the study of
the qualitative behavior of solutions of variational equations via discrete-time techniques. If
{A(θ)}θ∈Θ ⊂ L(X), then one considers the linear system of variational difference equations

x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), (θ, n) ∈ Θ × N, (A)

and associates to (A) the control system:

γ(θ)(m + 1) = A(σ(θ,m))γ(θ)(m) + s(m + 1), (θ,m) ∈ Θ × Z. (SA)

We denote by (QA) the restriction of (SA) to N. One of the main results in [6] states that
a linear skew-product flow is uniformly exponentially dichotomic if and only if the pair
(c0(N, X), c00(N, X)) is admissible with respect to the system (QA) and the space X may
be decomposed at every moment into a sum of stable fiber and unstable fiber, that is,
X = S0(θ) +U0(θ), for all θ ∈ Θ. Here, c0(N, X) denotes the space of all sequences s : N → X
with limn→∞s(n) = 0 and c00(N, X) = {s ∈ c0(N, X) : s(0) = 0}.

In [7], we introduced distinct concepts of admissibility considering as the input
space Δ(Z, X)-the space of all sequences of finite support and we gave a unified treatment
considering both cases when the output space is �p(Z, X) or c0(Z, X) := {s : Z →
X : limk→±∞s(k) = 0}. The approach given in [7] relies on the unique solvability of
the discrete-time system (SA) between certain sequence spaces. The main results in [7]
expressed the uniform exponential dichotomy of a discrete linear skew-product flow π in
terms of the uniform q-admissibility (q ∈ (1,∞]) of one of the pairs (�p(Z, X),Δ(Z, X)) and
(c0(Z, X),Δ(Z, X)), with respect to the system (SA).

The natural question arises whether in the characterization of the exponential
dichotomy the unique solvability of the associated discrete control system can be dropped.
Another question is which are the connections between the solvability of the system (SA) and
the solvability of the system (QA). Using constructive techniques, we will provide complete
answers for both questions andwewill obtain new and optimal characterizations for uniform



Discrete Dynamics in Nature and Society 3

exponential dichotomy of variational difference equations. We denote by Δ0(N, X) the space
of sequences s : N → X with finite support and s(0) = 0. The admissibility concepts
introduced in the present paper are new and simplify the solvability conditions in [6].
Specifically, the input space considered is the smallest possible input space, the solvability
study is reduced to the behavior on the half-line and the boundedness condition is imposed
only on the unstable fiber. Moreover we extend the applicability area to the general context
of discrete variational systems.

Another purpose of this paper is to provide a complete study concerning the
relation between the discrete admissibility on the whole line and the corresponding discrete
admissibility on the half-line. Our main strategy will be to provide an almost exhaustive
analysis, providing the connections between admissibility of concrete pairs of sequence
spaces defined on N and the uniform exponential dichotomy of a general system of discrete
variational equations, emphasizing the appropriate techniques for each case considered
therein. Finally, applying the main results, we will deduce new characterizations for uniform
exponential dichotomy of linear skew-product flows, in terms of the uniform q-admissibility
of the pairs (�p(N, X),Δ0(N, X)) and (c0(N, X),Δ0(N, X)).

2. Uniform Exponential Dichotomy of
Variational Difference Equations

Let X be a real or complex Banach space, let (Θ, d) be a metric space and let E = X × Θ. The
norm on X and on L(X)-the Banach algebra of all bounded linear operators on X will be
denoted by || · ||.

Notations

Let Z denote the set of the integers, let N be the set of the nonnegative integers (m ∈ Z, m ≥ 0)
and let Z− be the set of the nonpositive integers (m ∈ Z, m ≤ 0). For every A ⊂ Z, let χA

denote the characteristic function of A. If J ∈ {Z,N,Z−} let Δ(J,X) be the linear space of
all sequences s : J → X with the property that the set {k ∈ J : s(k)/= 0} is finite and let
Δ0(N, X) := {s ∈ Δ(N, X) : s(0) = 0}.

If p ∈ [1,∞) let �p(J,X) denote the set of all sequences s : J → X with the property
that

∑
j∈J‖s(j)‖p < ∞, which is a Banach space with respect to the norm

‖s‖p :=

⎛

⎝
∑

j∈J

∥
∥s(j)

∥
∥p

⎞

⎠

1/p

. (2.1)

Let �∞(J,X) be the set of all bounded sequences s : J → X, which is a Banach space with
respect to the norm ‖s‖∞ := supj∈J ||s(j)||. Ifω ∈ {−∞,∞}, then c0(J,X)-the set of all sequences
s : J → X with limj→ωs(j) = 0, is a closed linear subspace of �∞(J,X). For p ∈ [1,∞], we set
�
p

0 (N, X) := {s ∈ �p(N, X) : s(0) = 0}. Similarly, c00(N, X) := {s ∈ c0(N, X) : s(0) = 0}.

Definition 2.1. A mapping σ : Θ × Z → Θ is called discrete flow on Θ if σ(θ, 0) = θ and
σ(θ,m + n) = σ(σ(θ,m), n), for all (θ,m, n) ∈ Θ × Z

2.
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Let {A(θ)}θ∈Θ ⊂ L(X). We consider the linear system of variational difference
equations (A). The discrete cocycle associated with the system (A) is

Φ : Θ × N −→ L(X), Φ(θ, n) =

⎧
⎨

⎩

A(σ(θ, n − 1)) · · ·A(θ), n ∈ N
∗,

I, n = 0,
(2.2)

where I is the identity operator on X. It is easy to see that Φ(θ,m + n) = Φ(σ(θ, n), m)Φ(θ, n),
for all (θ,m, n) ∈ Θ × N

2.

Definition 2.2. The system (A) is said to be uniformly exponentially dichotomic if there exist a
family of projections {P(θ)}θ∈Θ ⊂ L(X) and two constants K ≥ 1 and ν > 0 such that the
following properties hold:

(i) Φ(θ, n)P(θ) = P(σ(θ, n))Φ(θ, n), for all (θ, n) ∈ Θ × N;

(ii) ‖Φ(θ, n)x‖ ≤ Ke−νn‖x‖, for all x ∈ Im P(θ) and all (θ, n) ∈ Θ × N;

(iii) ‖Φ(θ, n)y‖ ≥ (1/K)eνn‖y‖, for all y ∈ Ker P(θ) and all (θ, n) ∈ Θ × N;

(iv) the restriction Φ(θ, n)| : Ker P(θ) → Ker P(σ(θ, n)) is an isomorphism, for all
(θ, n) ∈ Θ × N.

For every θ ∈ Θ we denote by F(θ) the linear space of all sequences ϕ : Z− → X with
the property ϕ(m) = A(σ(θ,m − 1))ϕ(m − 1), for all m ∈ Z−.

Let p ∈ [1,∞]. For every θ ∈ Θ we consider the stable space

Sp(θ) = {x ∈ X : Φ(θ, ·)x ∈ �p(N, X)}, (2.3)

and the unstable space

Up(θ) =
{
x ∈ X : there exists ϕ ∈ F(θ) ∩ �p(Z−, X)with ϕ(0) = x

}
. (2.4)

We note that Sp(θ) and Up(θ) are linear subspaces, for every θ ∈ Θ.

Remark 2.3. If the system (A) is uniformly exponentially dichotomic and

sup
θ∈Θ

‖A(θ)‖ < ∞, (2.5)

then the family of projections given by Definition 2.2 is uniquely determined and

sup
θ∈Θ

‖P(θ)‖ < ∞. (2.6)

Moreover, for every p ∈ [1,∞], we have that Im P(θ) = Sp(θ) and Ker P(θ) = Up(θ), for all
θ ∈ Θ (see [7, Proposition 2.1]).

We associate to the system (A) the input-output control system (SA).
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Definition 2.4. Let p, q ∈ [1,∞]. The pair (�p(Z, X),Δ(Z, X)) is said to be uniformly q -admissible
for the system (SA) if the following assertions hold:

(i) for every s ∈ Δ(Z, X) there is a unique γs : Θ → �p(Z, X) solution of the system
(SA) corresponding to the input sequence s;

(ii) there is λ > 0 such that ‖γs(θ)‖p ≤ λ ‖s‖q, for all (θ, s) ∈ Θ ×Δ(Z, X).

For the proof of the next result we refer to [7, Theorem 3.6].

Theorem 2.5. Let p, q ∈ [1,∞] be such that (p, q)/= (∞, 1). The following assertions hold:

(i) if the pair (�p(Z, X),Δ(Z, X)) is uniformly q-admissible for the system (SA), then the
system (A) is uniformly exponentially dichotomic;

(ii) if p ≥ q and supθ∈Θ‖A(θ)‖ < ∞, then the system (A) is uniformly exponentially
dichotomic if and only if the pair (�p(Z, X),Δ(Z, X)) is uniformly q-admissible for the
system (SA).

We consider the input-output system

α(θ)(n + 1) = A(σ(θ, n))α(θ)(n) + u(n + 1), (θ, n) ∈ Θ × N. (QA)

Themain question arises whether in the characterization of the exponential dichotomy
the unique solvability of the associated discrete equation can be dropped. Another question
is which are the connections between the solvability of the system (QA) and the solvability
of the system (SA). In what follows we will give complete answers for both questions, our
study focusing on these central purposes.

Definition 2.6. Let p, q ∈ [1,∞]. The pair (�p(N, X),Δ0(N, X)) is said to be uniformly q-
admissible for the system (QA) if there is λ > 0 such that the following assertions hold:

(i) for every u ∈ Δ0(N, X) there is α : Θ → �p(N, X) solution of the system (QA)
corresponding to u;

(ii) if u ∈ Δ0(N, X) and α : Θ → �p(N, X) is a solution of (QA) corresponding to uwith
the property that α(θ)(0) ∈ Up(θ), for every θ ∈ Θ, then

‖α(θ)‖p ≤ λ ‖u‖q, ∀θ ∈ Θ. (2.7)

Lemma 2.7. Let p, q ∈ [1,∞]. If the pair (�p(Z, X),Δ(Z, X)) is uniformly q-admissible for the
system (SA) then Sp(θ) +Up(θ) = X, for all θ ∈ Θ.

Proof. Let x ∈ X. We consider the sequence s : Z → X, s(k) = χ{0}(k)x. From hypothesis,
there is γs solution of the system (SA) corresponding to s.

Let θ ∈ Θ. From γs(θ)(n) = Φ(θ, n)γs(θ)(0) for all n ∈ N and since γs(θ) ∈ �p(Z, X) we
deduce that γs(θ)(0) ∈ Sp(θ). In addition, considering the sequence ϕθ : Z− → X,ϕθ(k) =
χ{0}(k)x − γs(θ)(k)we have that ϕθ ∈ F(θ) and ϕθ ∈ �p(Z−, X). This shows that x − γs(θ)(0) =
ϕθ(0) ∈ Up(θ). It follows that x = γs(θ)(0) + (x − γs(θ)(0)) ∈ Sp(θ) + Up(θ). Since θ ∈ Θ was
arbitrary, the proof is complete.
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The first main result of this section is as follows.

Theorem 2.8. Let p, q ∈ [1,∞]. The following assertions are equivalent:

(i) the pair (�p(Z, X),Δ(Z, X)) is uniformly q-admissible for the system (SA);

(ii) the pair (�p(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QA) and Sp(θ) +
Up(θ) = X, for all θ ∈ Θ.

Proof. (i)⇒(ii) Let λ > 0 be given by Definition 2.4. Let u ∈ Δ0(N, X). Then the sequence
su : Z → X, su(k) = χN(k)u(k) belongs to Δ(Z, X). From the uniform q-admissibility of the
pair (�p(Z, X),Δ(Z, X)) it follows that there is a unique γu : Θ → �p(Z, X) solution of (SA)
corresponding to su. Moreover

∥
∥γu(θ)

∥
∥
p ≤ λ ‖su‖q, ∀θ ∈ Θ. (2.8)

Taking

αu : Θ −→ �p(N, X), αu(θ)(n) = γu(θ)(n), (2.9)

we have that αu is a solution of (QA) corresponding to u.
Let α : Θ → �p(N, X) be a solution of (QA) corresponding to u with the property

that α(θ)(0) ∈ Up(θ), for all θ ∈ Θ. Then for every θ ∈ Θ, there is ϕθ ∈ �p(Z−, X) with
ϕθ(0) = α(θ)(0) and

ϕθ(m) = A(σ(θ,m − 1))ϕθ(m − 1), ∀m ∈ Z−. (2.10)

Considering the sequence

γθ : Z −→ X, γθ(m) =

⎧
⎨

⎩

α(θ)(m), m ∈ N,

ϕθ(m), m ∈ Z \N,
(2.11)

we obtain that γθ ∈ �p(Z, X) and

γθ(m + 1) = A(σ(θ,m))γθ(m) + su(m + 1), ∀m ∈ Z. (2.12)

This implies that

γ̃ : Θ −→ �p(Z, X), γ̃(θ) = γθ (2.13)

is solution of the system (SA) corresponding to su. From the uniqueness, we deduce that
γ̃ = γu. Then, using (2.8)we have that

‖α(θ)‖p ≤ ∥∥γθ
∥
∥
p =
∥
∥γu(θ)

∥
∥
p ≤ λ ‖su‖q = λ ‖u‖q, ∀θ ∈ Θ. (2.14)
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Taking into account that λ does not depend on u or θ we obtain that the pair
(�p(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QA).

In addition, from Lemma 2.7 we have that Sp(θ) +Up(θ) = X, for all θ ∈ Θ.

(ii)⇒(i) Let λ > 0 be given by Definition 2.6.
Let s ∈ Δ(Z, X). Then, there is h ∈ Z− such that s(j) = 0, for all j ≤ h.
Consider the sequence u : N → X, u(n) = s(n + h). Then u ∈ Δ0(N, X). From the

uniform q-admissibility of the pair (�p(N, X),Δ0(N, X)) there is α : Θ → �p(N, X) solution of
the system (QA) corresponding to u.

Let θ ∈ Θ. Since Sp(θ) + Up(θ) = X there is xθ
s ∈ Sp(θ) and xθ

u ∈ Up(θ) such that
α(θ)(0) = xθ

s + xθ
u. Let

δθ : N −→ X, δθ(n) = α(θ)(n) −Φ(θ, n)xθ
s . (2.15)

Then δθ ∈ �p(N, X), δθ(0) = xθ
u and

δθ(n + 1) = A(σ(θ, n))δθ(n) + u(n + 1), ∀n ∈ N. (2.16)

From xθ
u ∈ Up(θ) it follows that there is ϕθ ∈ �p(Z−, X) with ϕθ(0) = xθ

u and

ϕθ(m) = A(σ(θ,m − 1))ϕθ(m − 1), ∀m ∈ Z−. (2.17)

Let

vθ : Z −→ X, vθ(k) =

⎧
⎨

⎩

δθ(k), k ∈ N,

ϕθ(k), k ∈ Z \ N.
(2.18)

Then vθ ∈ �p(Z, X) and from (2.16) and (2.17)we obtain that

vθ(m + 1) = A(σ(θ,m))vθ(m) + s(m + h + 1), ∀m ∈ Z. (2.19)

We define

γ : Θ −→ �p(Z, X), γ(θ)(m) = vσ(θ,h)(m − h). (2.20)

Then, using (2.19)we have that

vσ(θ,h)(m + 1) = A(σ(θ,m + h))vσ(θ,h)(m) + s(m + h + 1), ∀m ∈ Z, ∀θ ∈ Θ, (2.21)

which implies that

γ(θ)(k + 1) = A(σ(θ, k))γ(θ)(k) + s(k + 1), ∀k ∈ Z, ∀θ ∈ Θ. (2.22)

This shows that γ is a solution of the system (SA) corresponding to s.
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Let γ̃ : Θ → �p(Z, X) be a solution of (SA) corresponding to s and let β = γ̃ − γ . Then

β(θ)(m + 1) = A(σ(θ,m))β(θ)(m), ∀(m, θ) ∈ Z ×Θ. (2.23)

Let m ∈ Z. Considering

α : Θ → �p(N, X), α(θ)(n) = β(σ(θ,−m))(n +m), (2.24)

we have that α(θ)(n + 1) = A(σ(θ, n))α(θ)(n), for all (n, θ) ∈ N × Θ, so α is a solution of
the system (QA) corresponding to w = 0. From (2.23) it follows that α(θ)(0) ∈ Up(θ), for all
θ ∈ Θ. Then, from the uniform q-admissibility of the pair (�p(N, X),Δ0(N, X)) we obtain that
α = 0. In particular β(θ)(m) = α(σ(θ,m))(0) = 0, for all θ ∈ Θ. Since m ∈ Z was arbitrary it
follows that β(θ) = 0, for all θ ∈ Θ, so γ was uniquely determined.

It remains to verify that condition (ii) in Definition 2.4 is fulfilled. Let s ∈ Δ(Z, X) and
let γ ∈ �p(Z, X) be the solution of (SA) corresponding to the input s. Let h ∈ Z− be such that
s(j) = 0, for all j ≤ h. We consider the sequence uh : N → X, uh(n) = s(n + h) and let

αh : Θ −→ �p(N, X), αh(θ)(n) = γ(σ(θ,−h))(n + h). (2.25)

Then we have that αh is the solution of the system (QA) corresponding to uh. From

γ(θ)(m) = A(σ(θ,m − 1))γ(θ)(m − 1), ∀m ≤ h, ∀θ ∈ Θ, (2.26)

we deduce that

γ(σ(θ,−h))(k + h) = A(σ(θ, k − 1))γ(σ(θ,−h))(k + h − 1), ∀k ∈ Z−, ∀θ ∈ Θ. (2.27)

Let θ ∈ Θ. Denoting by ϕθ : Z− → X, ϕθ(k) = γ(σ(θ,−h))(k + h)we deduce that

ϕθ(k) = A(σ(θ, k − 1))ϕθ(k − 1), ∀k ∈ Z−. (2.28)

Moreover, since γ(θ̃) ∈ �p(Z, X), for all θ̃ ∈ Θ, it follows that ϕθ ∈ �p(Z−, X).
This implies that αh(θ)(0) = ϕθ(0) ∈ Up(θ), for all θ ∈ Θ. From the uniform q-

admissibility of the pair (�p(N, X),Δ0(N, X)) we obtain that

‖αh(θ)‖p ≤ λ ‖uh‖q, ∀θ ∈ Θ. (2.29)

Since ||uh||q = ||s||q, from (2.29) we deduce that

⎛

⎝
∞∑

j=0

∥
∥αh(θ)(j)

∥
∥p

⎞

⎠

1/p

≤ λ ‖s‖q, ∀θ ∈ Θ, (2.30)
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which is equivalent with

⎛

⎝
∞∑

j=0

∥
∥γ(σ(θ,−h))(j + h)

∥
∥p

⎞

⎠

1/p

≤ λ ‖s‖q, ∀θ ∈ Θ, (2.31)

and, respectively, with

( ∞∑

k=h

∥
∥γ(θ)(k)

∥
∥p
)1/p

≤ λ ‖s‖q, ∀θ ∈ Θ. (2.32)

Since relation (2.32) holds for all h ∈ Z− with the property that s(j) = 0, for all j ≤ h,
for h → −∞ in (2.32) we obtain that ||γ(θ)||p ≤ λ ||s||q, for all θ ∈ Θ. Taking into account
that λ does not depend on θ or s, we conclude that the pair (�p(Z, X),Δ(Z, X)) is uniformly
q-admissible for the system (SA) and the proof is complete.

The second main result of this section is as follows.

Theorem 2.9. Let p, q ∈ [1,∞] be such that (p, q)/= (∞, 1). The following assertions hold:

(i) if the pair (�p(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QA) and Sp(θ)+
Up(θ) = X, for all θ ∈ Θ, then the system (A) is uniformly exponentially dichotomic;

(ii) if p ≥ q and supθ∈Θ‖A(θ)‖ < ∞, then the system (A) is uniformly exponentially
dichotomic if and only if the pair (�p(N, X),Δ0(N, X)) is uniformly q-admissible for the
system (QA) and Sp(θ) +Up(θ) = X, for all θ ∈ Θ.

Proof. This follows from Theorems 2.5 and 2.8.

Remark 2.10. Naturally, the question arises whether, generally, the uniform 1-admissibility of
the pair (�∞(N, X),Δ0(N, X)) for the system (QA) and the property that S∞(θ) +U∞(θ) = X,
for all θ ∈ Θ, implies the uniform exponential dichotomy of the system (A). The answer is
negative, as the following example shows.

Example 2.11. Let W be a Banach space and let X = W × W . On X we consider the norm
||(w1, w2)|| = ||w1||W + ‖w2‖W . Let

f : Z −→ (0,∞), f(k) =

⎧
⎨

⎩

1
k + 1

, k ∈ N,

1 − k, k ∈ Z \ N.
(2.33)

Let Θ = Z and let σ : Θ × Z → Θ, σ(θ,m) = θ +m. For every θ ∈ Θ we consider the operator

A(θ) : X −→ X, A(θ)(w1, w2) =
(
f(θ + 1)
f(θ)

w1,
f(θ)

f(θ + 1)
w2

)

. (2.34)
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The discrete cocycle associated with the system

x(θ)(n + 1) = A(σ(θ, n))x(θ)(n), ∀(θ, n) ∈ Θ × N, (A′)

is given by

Φ(θ, n) : X −→ X, Φ(θ, n)(w1, w2) =
(
f(θ + n)
f(θ)

w1,
f(θ)

f(θ + n)
w2

)

(2.35)

for all (θ, n) ∈ Θ × N.

Step 1. We prove that S∞(θ) +U∞(θ) = X, for all θ ∈ Θ.
Let θ ∈ Θ. Using (2.35) it is easy to see that S∞(θ) = W × {0}. We prove that U∞(θ) =

{0}×W . Indeed, if x = (0, w) ∈ {0}×W , by defining ϕ : Z− → X,ϕ(m) = (f(θ)/f(θ +m)) x,
we observe that ϕ ∈ F(θ) and ϕ(0) = x. This shows that x ∈ U∞(θ), so {0} ×W ⊂ U∞(θ).

Conversely, let x ∈ U∞(θ). Then there is ϕ ∈ F(θ) ∩ �∞(Z−, X) with ϕ(0) = x. If
ϕ = (ϕ1, ϕ2), in particular, we have that

ϕ1(0) =
f(θ)

f(θ + k)
ϕ1(k), ∀k ∈ Z−. (2.36)

Since ϕ ∈ �∞(Z−, X) we have that ϕ1 ∈ �∞(Z−,W). Then, from (2.36) we obtain that

∥
∥ϕ1(0)

∥
∥ ≤ f(θ)

f(θ + k)

∥
∥ϕ1
∥
∥
∞, ∀k ∈ Z−. (2.37)

As k → −∞ in (2.37) it follows that ϕ1(0) = 0. Then x = (0, ϕ2(0)) ∈ {0} ×W . This shows that
U∞(θ) = {0} ×W . So, S∞(θ) +U∞(θ) = X, for all θ ∈ Θ.

Step 2. We prove that the pair (�∞(N, X),Δ0(N, X)) is uniformly 1-admissible for the system
(QA). Let u ∈ Δ0(N, X) and let θ ∈ Θ. If u = (u1, u2), then we define

αθ : N −→ X, αθ(n) =

(
n∑

k=0

f(θ + n)
f(θ + k)

u1(k),−
∞∑

k=n+1

f(θ + k)
f(θ + n)

u2(k)

)

. (2.38)

Since u ∈ Δ0(N, X) there is l ∈ N
∗ such that u(k) = 0, for all k ≥ l. Then

αθ(n) =

(

f(θ + n)
l∑

k=0

u1(k)
f(θ + k)

, 0

)

, ∀n ≥ l. (2.39)

From (2.39) it follows that αθ ∈ c0(N, X), so, in particular, αθ ∈ �∞(N, X). We define α : Θ →
�∞(N, X), α(θ) = αθ and an easy computation shows that α is a solution of the system (QA)
corresponding to u.

Let α̃ = (α̃1, α̃2) : Θ → �∞(N, X) be a solution of (QA) corresponding to u with the
property that α̃(θ)(0) ∈ U∞(θ), for all θ ∈ Θ.
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Let θ ∈ Θ. From α̃(θ)(0) ∈ U∞(θ) and Step 1 it follows that α̃1(θ)(0) = 0. This implies
that α̃1(θ)(1) = u1(1), so

‖α̃1(θ)(2)‖ ≤
2∑

k=1

‖u1(k)‖. (2.40)

Inductively, we obtain that

‖α̃1(θ)(n)‖ ≤
n∑

k=1

‖u1(k)‖, ∀n ∈ N (2.41)

so

‖α̃1(θ)‖∞ ≤ ‖u1‖1. (2.42)

Since u(k) = 0, for all k ≥ l, we have that

α̃2(θ)(k) =
f(θ + l − 1)
f(θ + k)

α̃2(θ)(l − 1), ∀k ≥ l − 1. (2.43)

Taking into account that α̃(θ) ∈ �∞(N, X), using relation (2.43) we deduce that

‖α̃2(θ)(l − 1)‖ ≤ f(θ + k)
f(θ + l − 1)

‖α̃2(θ)‖∞, ∀k ≥ l − 1. (2.44)

For k → ∞ in (2.44)we obtain that α̃2(θ)(l−1) = 0. Then, from (2.43) it follows that α̃2(θ)(k) =
0, for all k ≥ l − 1. Moreover, if l ≥ 2, from

0 = α̃2(θ)(l − 1) =
f(θ + l − 2)
f(θ + l − 1)

α̃2(θ)(l − 2) + u2(l − 1), (2.45)

we deduce that ‖α̃2(θ)(l − 2)‖ ≤ ‖u2(l − 1)‖. Inductively, it follows that

∥
∥α̃2(θ)

(
j
)∥
∥ ≤

l−1∑

k=j+1

‖u2(k)‖, ∀j ∈ {0, . . . , l − 2}. (2.46)

In particular, this implies that

‖α̃2(θ)‖∞ = sup
j∈{0,...,l−2}

∥
∥α̃2(θ)

(
j
)∥
∥ ≤ ‖u2‖1. (2.47)

From relations (2.42) and (2.47) we obtain that ‖α̃(θ)‖∞ = ‖α̃1(θ)‖∞ + ‖α̃2(θ)‖∞ ≤ ‖u1‖1 +
‖u2‖1 = ‖u‖1, for all θ ∈ Θ. This shows that the pair (�∞(N, X),Δ0(N, X)) is uniformly 1-
admissible for the system (QA).
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Step 3. We prove that the system (A) is not uniformly exponentially dichotomic.
Supposing that the system (A) is uniformly exponentially dichotomic, there exists a

family of projections {P(θ)}θ∈Θ and two constants K, ν > 0 given by Definition 2.2. Then

‖Φ(θ, n)x‖ ≤ Ke−νn‖x‖, ∀x ∈ Im P(θ), ∀(θ, n) ∈ Θ × N. (2.48)

According to Remark 2.3 and Step 1 we have that Im P(θ) = S∞(θ) = W × {0}, for all θ ∈ Θ.
Then (2.48) yields f(θ + n)/f(θ) ≤ Ke−νn, for all (θ, n) ∈ Θ × N. In particular, for θ = 0, from
the above inequality we obtain that 1/(n + 1) ≤ Ke−νn, for all n ∈ N, which is absurd. This
shows that the system (A) is not uniformly exponentially dichotomic.

Definition 2.12. Let q ∈ [1,∞). The pair (c0(Z, X),Δ(Z, X)) is said to be uniformly q-admissible
for the system (SA) if the following assertions hold:

(i) for every s ∈ Δ(Z, X) there is a unique γs : Θ → c0(Z, X) solution of the system
(SA) corresponding to s;

(ii) there is λ > 0 such that ‖γs(θ)‖∞ ≤ λ ‖s‖q, for all (θ, s) ∈ Θ ×Δ(Z, X).

For the proof of next theorem we refer to [7, Theorem 3.7].

Theorem 2.13. Let q ∈ (1,∞). The following assertions hold:

(i) if the pair (c0(Z, X),Δ(Z, X)) is uniformly q-admissible for the system (SA), then the
system (A) is uniformly exponentially dichotomic;

(ii) if supθ∈Θ‖A(θ)‖ < ∞, then the system (A) is uniformly exponentially dichotomic if and
only if the pair (c0(Z, X),Δ(Z, X)) is uniformly q-admissible for the system (SA).

For every θ ∈ Θwe consider the subspaces

S0(θ) = {x ∈ X : Φ(θ, ·)x ∈ c0(N, X)},
U0(θ) =

{
x ∈ X : there is ϕ ∈ F(θ) ∩ c0(Z−, X) with ϕ(0) = x

}
.

(2.49)

Definition 2.14. Let q ∈ [1,∞). The pair (c0(N, X),Δ0(N, X)) is said to be uniformly
q-admissible for the system (QA) if there is λ > 0 such that the following assertions hold:

(i) for every u ∈ Δ0(N, X) there is α : Θ → c0(N, X) solution of the system (QA)
corresponding to u;

(ii) if u ∈ Δ0(N, X) and α : Θ → c0(N, X) is a solution of (QA) corresponding to u with
the property that α(θ)(0) ∈ U0(θ) for every θ ∈ Θ, then ‖α(θ)‖∞ ≤ λ ‖u‖q for all
θ ∈ Θ.

Working with the subspaces S0(θ),U0(θ) and using similar arguments with those in
Lemma 2.7 and Theorem 2.8 we obtain the following.
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Theorem 2.15. Let q ∈ [1,∞). The following assertions are equivalent:

(i) the pair (c0(Z, X),Δ(Z, X)) is uniformly q-admissible for the system (SA);

(ii) the pair (c0(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QA) and S0(θ) +
U0(θ) = X, for all θ ∈ Θ.

As a consequence of Theorems 2.13 and 2.15 we deduce the following result.

Theorem 2.16. Let q ∈ (1,∞). The following assertions hold:

(i) if the pair (c0(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QA) and S0(θ)+
U0(θ) = X, for all θ ∈ Θ, then the system (A) is uniformly exponentially dichotomic;

(ii) if supθ∈Θ‖A(θ)‖ < ∞, then the system (A) is uniformly exponentially dichotomic if and
only if the pair (c0(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QA) and
S0(θ) +U0(θ) = X, for all θ ∈ Θ.

Remark 2.17. It is easy to see that the system presented in Example 2.11 has the property that
S0(θ) +U0(θ) = X, for all θ ∈ Θ. Using similar arguments with those from Example 2.11, we
deduce that the pair (c0(N, X),Δ0(N, X)) is uniformly 1-admissible for the system (QA). But,
for all that, the system (A) is not uniformly exponentially dichotomic.

Remark 2.18. As an immediate consequence of Theorem 2.16 we obtain the main result of the
paper [6]. The techniques involved in the proofs from [6] are different from those presented
above.

3. Applications for Uniform Exponential Dichotomy of
Linear Skew-Product Flows

In this section we apply the results obtained in the previous section in order to deduce
characterizations for uniform exponential dichotomy of linear skew-product flows.

Let X be a real or complex Banach space, let (Θ, d) be a metric space and let E = X ×Θ.
A mapping σ : Θ ×R → Θ is called a flow on Θ if σ(θ, 0) = θ and σ(θ, t + s) = σ(σ(θ, t), s), for
all (θ, t, s) ∈ Θ × R

2.

Definition 3.1. A pair π = (Φ, σ) is called a linear skew-product flow if σ is a flow on Θ and the
mapping Φ : Θ × R+ → L(X) satisfies the following conditions:

(i) Φ(θ, 0) = I, (the identity operator), for all θ ∈ Θ;

(ii) Φ(θ, t + s) = Φ(σ(θ, t), s)Φ(θ, t), for all (θ, t, s) ∈ Θ × R
2
+;

(iii) there are M ≥ 1 and ω > 0 such that ||Φ(θ, t)|| ≤ Meωt, for all (θ, t) ∈ Θ × R+.

Definition 3.2. A linear skew-product flow π = (Φ, σ) is said to be uniformly exponentially
dichotomic if there are a family of projections {P(θ)}θ∈Θ and two constants K, ν > 0 such that
the following properties hold:

(i) Φ(θ, t)P(θ) = P(σ(θ, t))Φ(θ, t), for all (θ, t) ∈ Θ × R+;

(ii) ||Φ(θ, t)x|| ≤ Ke−νt||x||, for all (θ, t) ∈ Θ × R+ and x ∈ Im P(θ);
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(iii) ||Φ(θ, t)x|| ≥ (1/K)eνt||x||, for all (θ, t) ∈ Θ × R+ and x ∈ Ker P(θ);

(iv) for every (θ, t) ∈ Θ × R+, the operator Φ(θ, t)| : Ker P(θ) → Ker P(σ(θ, t)) is
invertible.

Remark 3.3. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ. We associate with
π the variational discrete-time system (Aπ). The discrete cocycle associated with the system
(Aπ) is {Φ(θ, n)}(θ,n)∈Θ×N

.

If π = (Φ, σ) is a linear skew-product flow on E = X ×Θ, we consider the system

α(θ)(n + 1) = Φ(σ(θ, n), 1)α(θ)(n) + u(n + 1), ∀(θ, n) ∈ Θ × N. (QAπ )

As consequences of the main results from the previous section we deduce the
following.

Theorem 3.4. Let π = (Φ, σ) be a linear skew-product flow on E = X × Θ and let p, q ∈ [1,∞] be
such that (p, q)/= (∞, 1). The following assertions hold:

(i) if the pair (�p(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QAπ ) and
Sp(θ) +Up(θ) = X, for all θ ∈ Θ, then π is uniformly exponentially dichotomic;

(ii) if p ≥ q, then π is uniformly exponentially dichotomic if and only if the pair
(�p(N, X),Δ0(N, X)) is uniformly q-admissible for the system (QAπ ) and Sp(θ)+Up(θ) =
X, for all θ ∈ Θ.

Proof. This follows from Theorems 2.9 and 1.1.

Theorem 3.5. Let π = (Φ, σ) be a linear skew-product flow on E = X ×Θ and let q ∈ (1,∞). Then
π is uniformly exponentially dichotomic if and only if the pair (c0(N, X),Δ0(N, X)) is uniformly
q-admissible for the system (QAπ ) and S0(θ) +U0(θ) = X, for all θ ∈ Θ.

Proof. This follows from Theorems 2.16 and 1.1.

4. Conclusions

In order to study the existence of exponential dichotomy of a variational difference equation
(A), we associate to (A) the linear control system:

γ(θ)(m + 1) = A(σ(θ,m))γ(θ)(m) + s(m + 1), (θ,m) ∈ Θ × J (4.1)

which is denoted by (SA) if J = Z and by (QA) if J = N. The uniform exponential dichotomy of
(A)may be expressed either in terms of the unique solvability of the system (SA) or using the
solvability of the system (QA) in certain hypotheses, provided (in both cases) that the norm
of the solution of the control system satisfies a boundedness condition with respect to the
norm of the input sequence. In the first case the smaller input space is Δ(Z, X), while in the
second case the smaller input space may be consideredΔ0(N, X). When the associated control
system is on the half-line, then the uniqueness of solution may be dropped. In this case, the
space X should be the sum between the stable and the unstable space at every point θ ∈ Θ,
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but the boundedness condition may hold only for output sequences starting in the unstable
space. Our study is explicitly done for the case when the output space is an �p(J,X)-space
as well as when this a c0(J,X)-space, emphasizing the particular properties of each case. In
base of Theorem 1.1 the main results are applicable not only to the general case of variational
difference equations but also to the class of linear skew-product flows in infinite-dimensional
spaces, without requiring measurability or continuity properties.
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