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A dynamic repeated game model has been established based on heterogeneous expectations in
electric power triopoly. Theoretical analysis and numerical simulation show the complexity of
this model; suppose that the producers make decisions with naive expectation and bounded
rationality. The straight-line stabilization chaos control method was successfully applied to the
dynamic repeated game model. The results have important practical value for the producers in the
electric power oligopoly.
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1. Introduction

In economic system research on chaos theory, bifurcation theory based on differential
equations is the earliest chaotic dynamics branch with the most widespread application and
the deepest advancement [1, 2]. Whether the economic system is chaos or not has been a
new hot topic in economic studies. A series of research on the dynamic game model of the
output decision has been conducted. In references [3–7], the outputs would take on dynamic
characters including chaos when the feedback rates of producers changed. In 2003, Agiza and
Elsadany [7] studied the duopoly game model based on heterogeneous expectations, that is,
one player applied naive expectation rule and the other used bounded rationality rule.

In this paper, the model of duopoly [8] was modified to triopoly in the electric power
market. Supposing two producers determined on the optimal outputs with naive expectation
rule while the other with bounded rationality rule for the maximal profits. Theoretical
analysis and numerical simulations were performed in detail and the parameters leading
to the chaos were obtained in the definite range. Then the straight-line stabilization method
was used to control the period-doubling bifurcation and unstable periodic orbits in chaotic
attractor of the discrete nonlinear dynamic system [9]. The research results help the electric
power producers to decide appropriate outputs.
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2. The Model in Electric Power Triopoly

Suppose that there are three electric power producers in the given region, and they provide
electric power to consumers through the electric utilities. Each electric power producer makes
the optimal output decision and qi(t) is the t-output of producer i. At each period t, the price p
is determined by the total outputsQ(t) = q1(t)+q2(t)+q3(t). Suppose that the inverse demand
function p = p(Q) = m − nQ2, then m is the maximal price (corresponding to Q = 0) and n
is parameter of the price. The variable cost function VCi = VCi(qi) = biqi + ciq2

i (i = 1, 2, 3) is
nonlinear [10], too. Thereinto bi and ci are cost parameters. So the profit of the producer i in
period t would be

πi(t) = qi(t)
[
m − nQ2(t)

]
−
[
biqi(t) + ciq2

i (t)
]
− rqi(t), i = 1, 2, 3, (2.1)

where r is the wheeling rate [11].
In this game, the producers make the optimal output decisions for the maximal profits;

one of the methods to find out the Nash equilibrium is to let the partial differentiation of the
profit equal zero as

∂πi
∂qi

= m − nQ2(t) − 2nqiQ(t) − bi − 2ciqi − r = 0, i = 1, 2, 3. (2.2)

According to the Rational Expectation Theory, expectation rules include naive
expectation, adaptive expectation, and bounded rationality. Naive expectation is the simplest
and the most common expectation form. Suppose that the players decide the future outputs
according to the past [12] and take the output expectation in electric power market as an
example, then the expectant output of t + 1 equals the optimal output of t:

qi(t + 1) = q∗i (t). (2.3)

The boundedly rational company makes its output decision on the basis of a local
estimate of the marginal income ratio. The company decides to increase its production if it
has a positive marginal income ratio or to decrease its production if the marginal income ratio
is negative. According to the rules above, the dynamical equation of producer i has the form
as following [3]:

qi(t + 1) = qi(t) + αqi(t)
∂πi

∂qi
, 0 < α < 1, (2.4)

where α is the relative speed of adjustment; it is a positive parameter.
We suppose that two producers adopt naive expectation rule and the other bounded

rationality. Let q1(t) = x, q2(t) = y, q3(t) = z, q1(t + 1) = X, q2(t + 1) = Y , and q3(t + 1) = Z,
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then the nonlinear dynamic game model based on heterogeneous expectations in the electric
power market can be expressed as

X=
1

6n

(
−4ny − 4nz − 2c1+2

√
n2y2 + n2z2 + 2n2yz + 4nc1y + 4nc1z + c2

1 + 3mn − 3nb1 − 3nr
)
,

Y =
1

6n

(
−4nx − 4nz − 2c2+2

√
n2x2 + n2z2 + 2n2xz + 4nc2x + 4nc2z + c2

2 + 3mn − 3nb2 − 3nr
)
,

Z = z + αz
(
−3nz2 − nx2 − ny2 − 2nxy − 4nyz − 4nxz − 2c3z +m − b3 − r

)
.

(2.5)

3. Numerical Simulations of the System

Now only a few of simple dynamic systems can be concluded as the chaotic characters by
the analytical method, so the numerical analysis is the prime method in the research on
the chaotic phenomenon. In order to deduce some numerical chaotic evidences of system
(2.5), the inverse demand function and three cost functions will be taken as constants. The
parameters take the values of m = 5, n = 1, b1 = 0.8, c1 = 0.3, b2 = 0.6, c2 = 0.5,
b3 = 0.7, and c3 = 0.4. So the inverse function is p(Q) = 5 − Q2, and variable cost functions
are VC1(q1) = 0.8q1 + 0.3q2

1, VC2(q2) = 0.6q2 + 0.5q2
2, and VC3(q3) = 0.7q3 + 0.4q2

3,
respectively. Several numerical results have been concluded, such as bifurcation diagrams,
strange attractors, Lyapunov exponents, and the influence on the system with the changing
parameters.

3.1. The Chaotic Attractors of the System

When the parameters take the values of r = 0.4, α = 0.63 and the initial outputs are
(0.2, 0.5, 0.8), the system (2.5) has the chaotic attractor as shown in Figure 1. The Lyapunov
exponents of the system (2.5) are λ1 = 0.1125, λ2 = −0.6467, as well as λ3 = −0.6656, and the
Lyapunov dimension is d = 1 − λ1/λ2 = 1 + 0.1125/0.6467 = 1.1740. The fractal dimension is
less than 2, so the occupied space is small and the structure is sparse, which can be seen in
the chaotic attractor diagrams.

3.2. The Influence on the System of the Parameters Changing

Figure 2 shows the outputs bifurcation diagram when the parameters were set as r = 0.4, α =
[0, 0.63]. It is obvious that the outputs change from the initial status (0.2, 0.5, 0.8) to the
stable point then exhibit period-doubling bifurcations till chaos with the increase of output
modification speed parameter. It is concluded [13] that the market presents the out-of-order
phenomenon more easily when the modification speed parameter is larger. That is to say
that the feedback rate of producers to market can cause the outputs game model to show
complicated characteristics. The output modification speed parameter has limited value and
αmax = 0.6326 in system (2.5). In this study, two of the producers adopt the same decision
rules and the variable cost functions are similar quadratic function, so the evolvements of
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Figure 1: (a) Three-dimensional view of the chaotic attractor, (b) x-y phase plane strange attractor, (c) x-z
phase plane strange attractor, (d) y-z phase plane strange attractor with r = 0.4, α = 0.63.

their outputs are similar as shown in the bifurcation figures. The range of α emerging chaos
in the system (2.5) is [0.6185, 0.6326].

When r = 0.4, the diagram of the largest Lyapunov exponent is changing with the
parameter α in Figure 3. Different parameters α are accompanied by different Lyapunov
exponents. In addition, Figure 3 is in the same essence as that of Figure 2. When α < α∞,
the system is regular periodic, so the largest Lyapunov exponent is less than zero except at
the critical point (λ = 0). When α is larger than α∞, λ > 0 which means that the system is chaos
while λ < 0 at limited range of α corresponds to periodic windows in the chaotic region.

4. The Chaos Control of the System

The chaos control methods include perturbation feedback chaos control method and non-
feedback control method. The feedback objects are system parameters in the perturbation
feedback chaos control method, system variable, and external parameters. Small continuous
perturbation is regarded as control signal in feedback chaos control method. Even if the
perturbation is very small, the stable control of the specific goal can be realized.

Recently, Yang and Xu, and so forth, proposed a new control method called the
straight-line stabilization method [14, 15]. So we adopt this method to control the chaos



Discrete Dynamics in Nature and Society 5

0 0.2 0.4 0.6

α

0

0.2

0.4

0.6

0.8

1

x

(a)

0 0.2 0.4 0.6

α

0

0.2

0.4

0.6

0.8

1

y

(b)

0 0.2 0.4 0.6

α

0

0.2

0.4

0.6

0.8

1

z

(c)

Figure 2: The state of the outputs with r = 0.4, α = 0 − 0.63.
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Figure 3: The largest Lyapunov exponent of the system with r = 0.4, α = [0, 0.63].
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in the triopoly game model. Impose the external control signal en on the primary system,
therefore, we obtain

en =

⎛
⎜⎜⎝
e1(t)

e2(t)

e3(t)

⎞
⎟⎟⎠ =

(
ηI − J

)
⎛
⎜⎜⎝
q1(t) − q∗1
q2(t) − q∗2
q3(t) − q∗3

⎞
⎟⎟⎠, (4.1)

where |η| < 1 is the feedback control parameter, and q∗1, q∗2, q∗3 are the outputs at the fixed
points. Suppose that q∗1 = x∗, q∗2 = y∗, and q∗3 = z∗, then the controlled game model is attained
as

X =
1
6

(
−4y − 4z − 0.6 + 2

√
y2 + z2 + 2yz + 1.2y + 1.2z + 12.69 − 3r

)
+
(
ηI − J

)
(x − x∗),

Y =
1
6

(
−4x − 4z − 1 + 2

√
x2 + z2 + 2xz + 2x + 2z + 13.45 − 3r

)
+
(
ηI − J

)(
y − y∗

)
,

Z = z + αz
(
−3z2 − x2 − y2 − 2xy − 4yz − 4xz − 0.8z + 4.3 − r

)
+
(
ηI − J

)
(z − z∗),

(4.2)

where J is the Jacobian matrix of the primary system with r = 0.40 and α = 0.63 given as

J =

⎡
⎢⎢⎣

0 −0.5017 −0.5017

−0.4960 0 −0.4960

−2.3184 −2.3184 −4.1093

⎤
⎥⎥⎦. (4.3)

The fixed point of the system is (0.4830, 0.4848, 0.4840), which means that q∗1 = 0.4830,
q∗2 = 0.4848, and q∗3 = 0.4840, so the external control signal is

en =

⎛
⎜⎜⎝

η 0.5017 0.5017

0.4960 η 0.4960

2.3184 2.3184 η + 4.1093

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x − 0.4830

y − 0.4848

z − 0.4840

⎞
⎟⎟⎠. (4.4)

The primary system is chaotic with r = 0.40 and α = 0.63. Figure 4 is the third output
of controlled system with the initial outputs (0.2, 0.5, 0.8) and the external control signal η ∈
[−1, 1]. As can be seen from the figure, the controlling strategy is applied on the system by
the external control signal, and the controlled system is steady with η ∈ [−1, 0.0442]. The
range of η corresponding to the stable region is larger than that corresponding to the unstable
region. Figure 5(a) is the 4-period time series of the third output with r = 0.40, α = 0.63, and
η = 0.50. Figure 5(b) is the chaotic attractor of the controlled system with r = 0.40, α = 0.63,
and η = 0.80.
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Figure 4: The output of the controlled system with r = 0.40, α = 0.63, and η = [−1, 1].
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Figure 5: (a) The time series of the output with r = 0.40, α = 0.63, and η = 0.50; (b) the chaotic attractor of
the controlled system with r = 0.40, α = 0.63, and η = 0.80.

5. Conclusions

The chaotic dynamic theory is successfully applied to the electric power market. The discrete
game model is obtained based on heterogeneous expectation rules. Suppose that the inverse
demand function and cost functions are all nonlinear and take the wheeling rate into account,
then theoretic analysis and numerical simulation results show that the system is chaotic. The
influences on the market of the outputs modification speed parameters and the range of
the parameters leading to the chaos have been discussed. Then the straight-line stabilization
method has been used to control the period-doubling bifurcation and unstable periodic orbits
in chaotic attractor. Once a small perturbation is applied in the chaos region, the equilibrium
point arrived quickly, so the producer’s anticipated target will be achieved. The model is
closer to the economic reality and worth spreading in oligopoly though the dynamic analysis
is more complicated.
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