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As well known, the existence and nonexistence of solutions for nonlinear algebraic systems are
very important since they can provide the necessary information on limiting behaviors of many
dynamic systems, such as the discrete reaction-diffusion equations, the coupled map lattices, the
compartmental systems, the strongly damped lattice systems, the complex dynamical networks,
the discrete-time recurrent neural networks, and the discrete Turing models. In this paper, both
the existence of nonzero solution pairs and the nonexistence of nontrivial or nonzero solutions for
a nonlinear algebraic system will be considered by using the critical point theory and Lusternik-
Schnirelmann category theory. The process of proofs on the obtained results is simple, the
conditions of theorems are also easy to be verified, however, some of them improve the known
ones even if the system is reduced to the precial cases, in particular, others of them are still new.
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1. Introduction

In this paper, the nonlinear algebraic system,

Ax = λf(x), (1.1)

will be considered, where λ > 0 is a parameter,

x = (x1, x2, . . . , xn)T , f(x) =
(
f1(x1), f2(x2), . . . , fn(xn)

)T (1.2)

are column vectors with fk is a continuous function defined on R and fk(−u) = −fk(u) for
u ∈ R and k ∈ {1, 2, . . . , n} = [1, n], and n is a positive integer. Also A = (aij)n×n is an n × n
square matrix that there exists a positive n × n diagonal matrix D = diag(d1, d2, . . . , dn) such
that DA is nonnegative definite. The letter T will denote transposition.
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For a given λ > 0, a column vector x = (x1, x2, . . . , xn)
T ∈ Rn is said to be a solution of

(1.1) corresponding to it if substitution of λ and x into (1.1) renders it an identity. The vector
x is said to be positive if xk > 0 for k ∈ [1, n], negative if xk < 0 for k ∈ [1, n], and nonzero
if xk /= 0 for k ∈ [1, n]. Positive, negative, and (strongly) nonzero vector x are denoted by
x > 0, x < 0 and x ∦ 0 respectively. If there exists k0 ∈ [1, n] such that xk0 /= 0, it will be called
nontrivial solution of (1.1). In this case, it is denoted by x /= 0.

First note that x = 0 is always a trivial solution of (1.1). Also note that if x is a solution
of (1.1), then −x is a solution of (1.1) as well. Therefore, we always consider solution pairs,
±x.

Nonlinear systems of the form (1.1) arise in many applications such as the discrete
models of steady-state equations of reaction–diffusion equations (see [1–6]), the discrete
analogue of the periodic boundary value problems (see [7–11]), the steady-state equations
of coupled map lattices (see [12–25]), the discrete periodic boundary value problems (see
[26–29]), the steady-state equations of compartmental system (see [30–34]), the steady-state
models on complex dynamical network ([35–39]), the steady-state systems of discrete Turing
instability models (see [5, 33, 40–68]). Thus, the existence and the nonexistence of solutions
on (1.1) are very important.

In fact, the special cases of (1.1) have been extensively studied by a number of authors,
see [26–29, 36–38] and the listed references therein. However, our results improve and extend
the known ones even if (1.1) is reduced to their cases, in particular, some of them are new.

In this paper, the existence of solution pairs for the nonlinear algebraic system (1.1)
will be considered by using the critical point theory and Lusternik-Schnirelmann category
theory [69] or [70]. The nonexistence of nontrivial and nonzero solutions of (1.1) will also
be established. The present paper is organized as follows. In Section 2, problems in various
areas are transformed into system (1.1). In Section 3, we discuss turing instability. Then the
nonexistence of solutions for (1.1) will be studied in Section 4, here, all results are new.
Furthermore, in Section 5, the existence of solution pairs for (1.1) will be considered, some
known results will be extended and improved, in particular, the method of proofs is different
from previous ones. Some applications will be presented in Section 6.

2. Problems Expressed by (1.1)

A lot of problems in various areas can be expressed by (1.1). In this section, we will pick some
typical examples.

2.1. Periodic Boundary Value Problems

As well known, steady-state equations of many important models in application, such as the
nonlinear reaction—diffusion equations [6], the generalized reaction Duffing model [4], and
the Fisher equation [1], can be expressed by the following equation:

−(r(t)x′(t)
)′ + q(t)x = f(t, x). (2.1)

Thus, existence of solutions for second-order differential equation with periodic boundary
value condition has been extensively studied by a number of authors (see [8–11]).



Discrete Dynamics in Nature and Society 3

By using finite differences [7], discrete analogue of the periodic boundary value
problem

−(r(t)x′(t)
)′ + q(t)x = f(t, x), t ∈ (0, 1),

x(0) = x(1), x′(0) = x′(1),
(2.2)

can be written by

−akxk−1 + bkxk − ckxk+1 = λfk(xk) for k ∈ [1, n],

x0 = xn, xn+1 = x1,
(2.3)

where r ∈ C1[0, 1] with r(t) ≥ rmin > 0, q(t) ∈ C[0, 1] with q(t) ≥ 0, f(t,−x) = −f(t, x) for all
(t, x) ∈ [0, 1] × R, xk = kh, h = 1/n and

ak =
2rk−1/2

h
, ck =

2rk+1/2
h

,

bk =
2(rk−1/2 + rk+1/2)

h
+ 2hqk,

fk(xk) = f(k, xk),

λ = 2h.

(2.4)

In view of (2.3), we can obtain (1.1) with the n × n square matrix A having the form

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

b1 −c1 0 · · · −a1

−a2 b2 −c2 · · · 0

· · · · · ·
0 · · · −an−1 bn−1 −cn−1

−cn · · · 0 −an bn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (2.5)

The conditions r(t) ≥ rmin > 0 and q(t) ≥ 0 lead to ak, bk, ck > 0, bk ≥ ak + ck for k ∈ [1, n]. At
the same time, the matrix A has a zero eigenvalue and all other eigenvalues are positive, see
[7].

Let

d2 = d > 0, dk =
k−1∏

i=2

ci
ai+1

for k ∈ [3, n − 1], (2.6)

the conditions

c1 = da2, a1 = cn, an = cn−1
n−2∏

i=2

ci
ai+1

(2.7)
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imply that the matrix DA is symmetric. As an simiple example, we consider

A =

⎛

⎜
⎜
⎝

2 −1 −1
−0.5 1 −0.5
−1 −1 2

⎞

⎟
⎟
⎠, (2.8)

then there exists the positive diagonal matrix D = diag(1, 2, 1) such that

DA =

⎛

⎜
⎜
⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎟
⎟
⎠ (2.9)

which is nonnegative definite.
Pattern dynamics in coupled map lattices (CMLs) have been extensively studied (see

[12–19, 22]). It has been found that CMLs exhibit a variety of space-time patterns such as
kink-antikinks, traveling waves, space-time periodic structures, space-time intermittence and
spatiotemporal chaos. It is believed that CMLs possess the potential to explain phenomena
associated with turbulence and other spatiotemporal systems.

Consider the following coupled map lattice:

ut+1
n = ut

n + α
(
ut
n−1 − 2ut

n + ut
n+1

)
+ βf

(
ut
n

)
, (2.10)

where t ∈ N denotes the time and n ∈ Z denotes the spatial coordinate, β/α is positive and
treated as a parameter. This is a discrete analogue of the well-knownNagumo equation of the
form

∂u

∂t
= D

∂2u

∂x2
+ f(u), x ∈ R, t ∈ R+, (2.11)

where D is a positive constant. The continuous Nagumo equation (2.11) is used as a model
for the spread of genetic traits [2] and for the propagation of nerve pulses in a nerve axon,
neglecting recovery [3, 5].

Solution {ut
n} of (2.10) is said to be stationary wave solution if ut+1

n = ut
n for all n ∈ Z

and t ∈ N. In view of (2.10), we have

0 = α
(
ϕ(n − 1) − 2ϕ(n) + ϕ(n + 1)

)
+ βf

(
ϕ(n)

)
. (2.12)
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Now, we consider the existence of ω-periodic solution of (2.12). Clearly, this is equal to the
existence of solutions for (1.1), ω ×ω nonnegative definite matrix,

A =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

2 −1 0 · · · −1
−1 2 −1 · · · 0

· · · · · · · · ·
0 · · · −1 2 −1
−1 · · · 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

ω×ω

. (2.13)

Recently, Zhou et al. [29] consider the discrete time second order dynamical systems

Xk+1 − 2Xk +Xk−1 + g(k,Xk) = 0, k ∈ Z, (2.14)

where g(g1, g2, . . . , gl)
T ∈ C(Z × Rl, Rl) and g(k + ω,U) = g(k,U) for any (k,U) ∈ Z × Rl.

Our results are also valid for the problem (2.14). In this case, the corresponding results also
improve and extend the main theorem in [29].

Cai et al. [27] considered existence and multiplicity of periodic solution for the fourth-
order difference equation

Δ4xk−2 − λf(k, xk) = 0, k ∈ Z, (2.15)

by using linking theorem, where the function f(k, u) is defined on Z × R with f(k + ω, u) =
f(k, u) for a given positive integer ω and f(k,−u) = −f(k, u) for all (k, u) ∈ Z × R.

However, (2.15) is equal to (1.1), where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

6 −4 1 0 · · · 0 0 1 −4
−4 6 −4 1 · · · 0 0 0 1

1 −4 6 −4 0 0 0 0

0 1 −4 6 · · ·
0 0 · · · 0

· · · · · · 6 −4 1 0

0 0 0 0 · · · −4 6 −4 1

1 0 0 0 1 −4 6 −4
−4 1 0 0 · · · 0 1 −4 6

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ω×ω

(2.16)

which is nonnegative definite.
Clearly, xk and f of (2.15) can also be replaced by Xk and g of (2.14), respectively. In

this case, our all results are new.
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2.2. Compartmental System

Dynamic models of many processes in the biological and physical sciences give systems of
ordinary differential equations called compartmental systems (see [30–34] and references
therein). For example, Jacquez and Simon [32] considered the following system:

q̇i(t) =
n∑

j=1

fijqj(t) + Ii, i ∈ [1, n], (2.17)

where qi represents the mass of compartment i. fii = −(f0i +
∑

j /= i fji), fij is the transfer or
rate coefficient from compartment j to compartment i, f0i is the transfer coefficient from
compartment i to environment, Ii represents the flows into the compartment i from outside
the system, or inflow. The entries of the matrix F = (fij)n×n have three properties:

fii ≤ 0 ∀i ≥ 0,

fij ≥ 0 ∀i /= j,

n∑

i=1

fij =
∑

i /= j

fij + fjj ≤ 0 ∀j ≥ 0.

(2.18)

A system of the form of (2.17) for which F = (fij)n×n satisfies (2.18) is called a compartmental
system.

Considering the compartmental system that the transfer coefficient from compartment
j to compartment i is equal to that from compartment i to compartment j for all the
compartments in the system, and the inflow Ii is determined by the mass of compartment
i, say, Ii = gi(qi). Then steady-state equation of this kind compartmental system is

−
n∑

j=1

fijqj = gi
(
qi
)
, i ∈ [1, n]. (2.19)

When gi is an odd function, we can obtain (1.1) with the n × n square matrix −F having the
form

⎛

⎜⎜⎜⎜⎜
⎝

−f11 −f12 · · · −f1n
−f21 −f22 · · · −f2n
· · ·
−fn1 −fn2 · · · −fnn

⎞

⎟⎟⎟⎟⎟
⎠

. (2.20)

By using (2.18), we can get that the matrix −F is nonnegative definite. To our knowledge, few
results on the system (2.19) are found in literature.
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2.3. Strongly Damped Lattice System

Recently, Li and Zhou [21] considered the following second-order lattice dynamic system:

üi + k(Bu̇)i + (Au)i + h(u̇i) + f(ui) = gi, (2.21)

where i = (i1, i2, . . . , in) ∈ Zn
m = Zn ∩ {i1, i2, . . . , in ∈ [1, m]}, k ≥ 0, h, f ∈ C1(R,R), gi ∈

R (i ∈ Zn
m) are given, u = (ui)i∈Zn

m
is a vector with the components ui and can be ordered as

the following form of 1-dimensional vector in Rmn
:

u =
(
u(1,1,...,1), u(2,1,...,1), . . . , u(m,1,...,1), . . . , u(1,m,...,m), . . . , u(m,m,...,m)

)T

= (u1, u2, . . . , uν, . . . , umn)T ∈ Rmn

,
(2.22)

where ν = i1+m(i2−1)+ · · ·+mn−1(in−1), i1, i2, . . . , in ∈ [1, m], u̇ = (u̇i)i∈Zn
m
.A is a nonnegative

definite matrix on Rmn
with eigenvalues λs ≥ 0 (0 ≤ s ≤ mn − 1), and 0 is the simple and

minimal eigenvalue with corresponding eigenvector e = (1, . . . , 1)T ∈ Rmn
. Also (Au̇)i, (Au)i

denote the ith component of Au̇, Au, respectively. An example of A is A = −Δ, at this time,
(2.21) can be regarded as the discrete analogue of the initial-boundary value problem of the
following continuous strongly damped wave equation:

utt − kΔut −Δu + h(ut) + f(u) = g(x), (2.23)

which arises in wave phenomena in various areas inmathematical physics (see [20, 21, 23–25]
and references therein).

Steady-state equation of (2.21) is

(Au)k = Fk(uk), k ∈ [1, mn], (2.24)

where

Fk(uk) = −f(uk) − h(0) + gk. (2.25)

When Fk is an odd function, (2.24) can be expressed by (1.1). Thus, the existence of (2.24) is
important, however, to our knowledge few results are seen in literature.

2.4. Complex Dynamical Network

Recently, complex dynamical network have been considered by Li et al. in [35]. Suppose
that a complex network consists of N identical linearly and diffusively coupled nodes, with
each node being an m-dimensional dynamical system. The state equations of this dynamical
network are given by

x′
i = f(xi) +

N∑

j=1,j /= i

cijaijΓ
(
xj − xi

)
, i ∈ [1,N], (2.26)
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where xi = (xi1, xi2, . . . , xim)
T ∈ Rm are the state variables of node i, the constant cij > 0

represents the coupling strength between node i and node j, Γ = (τij) ∈ Rm×m is a matrix
linking coupled variables, and if some pairs (i, j), 1 ≤ i, j ≤ m, with τij /= 0, then it means two
coupled nodes are linked through their ith and jth state variables, respectively. The coupling
matrix A = (aij) ∈ RN×N represents the coupling configuration of the network, which is
assumed as a random network described by the E-R model or a scale-free network described
by the B-A model. If there is a connection between node i and node j (i /= j), then aij = aji = 1;
otherwise, aij = aji = 0 (i /= j). If the degree ki of node i is defined to be the number of its
outreaching connections, then

N∑

j=1,j /= i

aij =
N∑

j=1,j /= i

aji = ki, i ∈ [1,N]. (2.27)

Let the diagonal elements be aii = −ki, i ∈ [1,N].
In [35] the authors assumed there exists a generous stationary state for network (2.26)

which is defined as

x1 = x2 = · · · = xn = x, f(x) = 0. (2.28)

They suppose that Γ is positive semidefinite and apply the pinning control strategy on a small
fraction of the nodes to achieves the stabilization control of the goal (2.28). The network (2.26)
can be rewritten by the system

X′ = −DX + F(X), (2.29)

where X = (x1, x2, . . . , xmN)T is the state vector, and the F(X) denotes the mN-dimensional
functional value vector of X, and

D =
(
dij

)
mN×mN

(2.30)

is nonnegative definite in [35].
When F(−X) = −F(X), steady-state equation of (2.29) can be expressed by (1.1). We

think that the assumption (2.28) is not fact for a complex dynamical network. Thus, it is
necessary to consider the existence of the other solutions. On the other hand, for any i ∈
[1,N], we also obtain a nonlinear algebraic system from (2.26), which is the special case of
(1.1).

2.5. Discrete Neural Networks

Recently, Zhou et al. [39] considered the following discrete-time recurrent neural networks,
which is thought to describe the dynamical characteristics of transiently chaotic neural
network:

vi(t + 1) = kvi(t) +
n∑

j=1

wijuj(t) + ai −wiia0i, i ∈ [1, n], (2.31)
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where vi is the internal state of neuron i, ui is the output of neuron i, ai is the input bias of
neuron i, a0i is the self-recurrent bias of neuron i, k represents the damping factor of nerve
membrane, and wij is the connection weight from neuron j to neuron iwhich is written as

W =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

w11 w12 · · · w1n

w21 w22 · · · w2n

...
... · · · ...

wn1 wn2 · · · wnn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2.32)

In order to obtain the results on asymptotically stability, authors in [39], assume that the
input-output function is ui(t) = s(vi(t)), inverse function s−1(y) of s(x) exists, 0 < s′(x) ≤ M,
there exists a matrixD = diag(d1, d2, . . . , dn)with di > 0 for i ∈ [1, n] such that (DW)T = DW ,
and ((1 + k)/M)D + DW (k ≥ 0) is positive definite, this implies that the matrix DW is
nonnegative definite.

The steady-state equation of (2.31) is

n∑

j=1

wijuj = fi(ui), i ∈ [1, n], (2.33)

where

fi(ui) = (1 − k)s−1(ui) − ai +wiia0i. (2.34)

When fi is an odd function, (2.33) can be expressed by (1.1).
On the other hand, Wang and Cheng [36–38] considered the existence of steady-state

solutions for the discrete neural networks

xt+1
i − xt

i = xt
i−1 + xt

i+1 − f
(
i, xt

i

)
,

xt+1
i = xt

i−1 + xt
i+1 + gi

(
xt
i

)
,

(2.35)

with the periodic boundary value conditions:

xt
0 = xt

ω, xt
1 = xt

ω+1. (2.36)

Our results are also valid for their problems and improve their theorems. In particular, for the
more general system of the form

Xk+1 +Xk−1 − g(k,Xk) = 0, (2.37)

our results are also valid, where Xk and g are similar with (2.14).
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3. Turing Instability

In 1952, Turing [68] suggested that, under certain conditions, chemicals can react and
diffusion in such a way as to produce steady-state heterogeneous spatial patterns of chemical
of morphogenic concentration. His idea is a simple but profound one. In view of Turing’s
theory framework, many Turing’s patterns have been obtained by the observations, the
numerical simulations, the animal coat patterns, the wavelength of the electrochemical
system, the vegetation in many semiarid regions, the skeletal pattern formation of chick limb,
and so forth, see [33, 40–43, 45–47, 49, 53–57, 62–67].

However, the mathematical theory of Turing’s patterns is not clear, see the recent
papers [44, 50–52, 59–61]. In fact, when the diffusion term is added, the steady-state solutions
are different with the primary model. Some new solutions will be increased. On the other
hand, all numerical simulations will use the discrete analogue of the corresponding reaction
diffusion equations or systems. Thus, it is necessary to consider the existence of solutions for
the discrete steady-state equations. In general, such equation can be expressed by a partial
difference equation of the form

Δ2
1xi−1,j + Δ2

2xi,j−1 + λfij
(
xij

)
= 0 (3.1)

with the periodic boundary value conditions

x0,j = xn,j , x1,j = xn+1,j , j ∈ [1, m],

xi,0 = xi,m, xi,1 = xi,m+1, i ∈ [1, n].
(3.2)

However, we will give the other explanation in the later.
Because the existence of solutions of (3.1)-(3.2) is equal to (1.1), see Zhang et al. [71]

or Zhang and Feng [72]. Clearly, xk and f of (3.1) can also be replaced by Xk and g of (2.14),
respectively.

4. Nonexistence

Usually, the existence of solutions is important. In fact, the nonexistence is also important
because it can give some useful information for the existence of solutions. Thus, in this
section, we will firstly give the nonexistence results of nontrivial solutions and nonzero
solutions on the system (1.1). The obtained results are new.

When the matrix DA is nonnegative definite, we know that its eigenvalues are
nonnegative and denote

0 = γ1 = γ2 = · · · = γm0 < γm0+1 ≤ · · · ≤ γn, (4.1)

and the corresponding orthonormal eigenvectors are v1, v2, . . . , vn.
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First of all, we let x be a nontrivial solution of (1.1). Multiplying (1.1) by xTD on the
left we get

xTBx − λ
n∑

k=1

dkxkfk(xk) = 0, (4.2)

which implies that

xTBx

xTx
= λ

∑n
k=1 dkxkfk(xk)

xTx
. (4.3)

In view of the reference [73], we know that

max
x /= 0

xTBx

xTx
= γn, min

x /= 0

xTBx

xTx
= γ1 = 0. (4.4)

Thus, we have

0 = γ1 = γ2 = · · · = γm0 ≤ λ

∑n
k=1 dkxkfk(xk)

xTx
≤ γn, (4.5)

which implies that the following nonexistence result is fact.

Theorem 4.1. If there exists λ > 0 such that

γn < λ inf
x /= 0

∑n
k=1 dkxkfk(xk)

‖x‖2
(4.6)

or

sup
x /= 0

∑n
k=1 dkxkfk(xk)

‖x‖2
< 0, (4.7)

then the system (1.1) has no nontrivial solutions.

Now, we assume that f1 = f2 = · · · = fn = f and denote

lim
|u|→ 0

f(u)
u

= l, lim
|u|→∞

f(u)
u

= L. (4.8)

Clearly, the condition l = L = +∞ implies that the infimum

inf
u/= 0

f(u)
u

(4.9)
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exists and

n∑

k=1

dkxkfk(xk) ≥ min
k∈[1,n]

{dk}‖x‖2 inf
u/= 0

f(u)
u

. (4.10)

The condition l = L = −∞ implies that the supremum

sup
u/= 0

f(u)
u

(4.11)

exists and

n∑

k=1

dkxkfk(xk) ≤ max
k∈[1,n]

{dk}‖x‖2sup
u/= 0

f(u)
u

. (4.12)

Thus, Theorem 4.1 implies that the following results hold.

Corollary 4.2. Assume that f1 = f2 = · · · = fn = f . Then the condition l = L = +∞ implies that the
system (1.1) has no nontrivial solutions when there exists λ > 0 such that

γn < λ inf
u/= 0

f(u)
u

min
i∈[1,n]

{di} (4.13)

holds. The condition l = L = −∞ implies that for any λ > 0, the system (1.1) has no nontrivial
solutions when

sup
u/= 0

f(u)
u

< 0 (4.14)

holds.

When l and L satisfy 0 < l, L < ∞, we easily obtain the following results.

Corollary 4.3. Assume that f1 = f2 = · · · = fn = f and 0 < l, L < ∞, then condition (4.13) or
(4.14) implies that the system (1.1) has no nontrivial solutions.

Similarly, when l and L satisfy the conditions: (H1) l = +∞ and 0 < L < ∞, (H2)
L = +∞ and 0 < l < ∞, (H3) l = −∞ and 0 < L < ∞, (H4) L = −∞ and 0 < l < ∞, we have the
following result.

Corollary 4.4. Assume that f1 = f2 = · · · = fn = f . If condition (H1) or (H2) holds, then (4.13)
implies that the system (1.1) has no nontrivial solutions. If the condition (H3) or (H4) holds, then
(4.14) implies that the system (1.1) has no nontrivial solutions.
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Now, we again assume that the system (1.1) has a nonzero solution x, then we have

DAx = λdiag
(
d1f1(x1)

x1
,
d2f2(x2)

x2
, . . . ,

dnfn(xn)
xn

)
x,

vT
i DAx = λvT

i diag
(
d1f1(x1)

x1
,
d2f2(x2)

x2
, . . . ,

dnfn(xn)
xn

)
x,

(DAvi)Tx = λ

[
diag

(
d1f1(x1)

x1
,
d2f2(x2)

x2
, . . . ,

dnfn(xn)
xn

)
vi

]T
x,

(4.15)

γivi
Tx =

[
diag

(
λd1f1(x1)

x1
,
λd2f2(x2)

x2
, . . . ,

λdnfn(xn)
xn

)
vi

]T
x. (4.16)

Thus, we have the following result.

Theorem 4.5. Assume that there exist k0 ∈ [m0, n − 1] and λ > 0 such that γk0 < γk0+1 and

γk0 <
λdkfk(u)

u
< γk0+1 for u ∈ (0,∞), k ∈ [1, n]. (4.17)

Then the system (1.1) has no nonzero solutions.

In view of Theorem 4.5, we can also obtain some corollaries, here, we only give a clear
result.

Corollary 4.6. The conditions ufk(u) > 0 or ufk(u) < 0 for k ∈ [1, n] and u/= 0 imply that the
system (1.1) has no positive-negative solutions.

Corollary 4.6 can be immediately obtained by (4.16).

5. Existence

In view of Section 4, we find that the existence of solutions may become fact when the
function fk crosses the eigenvectors spaces. This motivates us to use Lusternik-Schnirelmann
category theory and leads to new methods compared with previous ones, see [26–29, 36–38].

For a given symmetric matrix B, the index of the corresponding quadratic form on Rn,
q(x) = xTBx, is the largest dimension of a subspace S ⊂ Rn such that q(x) < 0 for all x ∈ S,
x /= 0. The following result is specialized to our cases, see the references [69] or [70].

Lemma 5.1. If H(x) with H(0) = 0 is a C1 even function on Rn of the form H(x) = q(x) + v(x),
where q(x) is a quadratic form of index m, and such that H(x) ≥ 0 for large ‖x‖ (where ‖x‖ =√
x2
1 + x2

2 + · · · + x2
n) and that v(x) = o(‖x‖2) as ‖x‖ → 0, then H(x) has at least m pairs, ±x,

nonzero critical points.

For using Lemma 5.1, we reformulate our problem as a critical point problem. For any
k ∈ [1, n] and u ∈ R, we let

Fk(u) =
∫u

0
fk(s)ds. (5.1)
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At this time, we can define the functions H : Rn → R by

H(x) = −1
2
xTBx + λ

n∑

k=1

dkFk(xk), (5.2)

where B = DA. Since

∂H(x)
∂xk

= −(Bx)k + λdkfk(xk) for k ∈ [1, n], (5.3)

we see that a column vector w = (w1, w2, . . . , wn)
T is a critical point of the functional H

corresponding to λ if and only if w is a solution of (1.1) corresponding to λ.
Let

fi0 = lim
|u|→ 0

fi(u)
u

, ξi ∈ C(R,R) for i ∈ [1, n], (5.4)

such that

fi(u) = fi0u + ξi(u) for i ∈ [1, n], (5.5)

where

lim
|u|→ 0

ξi(u)
u

= 0 for i ∈ [1, n]. (5.6)

In this case, we have

H(x) = −1
2
xTBx + λ

n∑

k=1

dk

∫xk

0
fk(s)ds

=
1
2
xT (λF0 − B)x + λ

n∑

k=1

dk

∫xk

0
ξk(s)ds,

−H(x) =
1
2
xTBx − λ

n∑

k=1

dk

∫xk

0
fk(s)d

=
1
2
xT (B − λF0)x − λ

n∑

k=1

dk

∫xk

0
ξk(s)ds,

(5.7)

where F0 = diag(d1f10, d2f20, . . . , dnfn0).
By using the condition (5.6), we easily get that

±λ
n∑

k=1

dk

∫xk

0
ξk(s)ds = o

(
‖x‖2

)
as ‖x‖ −→ 0. (5.8)
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For the functional −H(x), we ask that −H(x) ≥ 0 for large ‖x‖, which implies that Fk(xk) ≤ 0
for k ∈ [1, n] and large |xk|. In this case, if there exists m ∈ [m0, n − 1] and λ > 0 such that

γm < λdkfk0 < γm+1, (5.9)

then the matrix B − λF0 has exactly m negative eigenvalues. Lemma 5.1 implies that the
following result holds.

Theorem 5.2. If there existm ∈ [m0, n − 1] and λ > 0 such that γm < γm+1 and that

γm < λdkfk0 < γm+1 for k ∈ [1, n], (5.10)

further suppose that there is Rλ > 0 such that Fk(xk) ≤ 0 for |xk| > Rλ and k ∈ [1, n]. Then the
system (1.1) has at least m nonzero solution pairs.

By using Theorem 5.2, we clearly obtain the following results.

Corollary 5.3. For any k ∈ [1, n], if there exists λ > 0 such that λdkfk0 > γn and there is Rλ > 0
such that Fk(xk) ≤ 0 for |xk| > Rλ, then the system (1.1) has at least n nonzero solution pairs.

Corollary 5.4. If there exists λ > 0 such that

0 < λdkfk0 < γm0+1 for k ∈ [1, n], (5.11)

further suppose that there is Rλ > 0 such that Fk(xk) ≤ 0 for |xk| > Rλ and k ∈ [1, n]. Then the
system (1.1) has at least m0 nonzero solution pairs, particularly, the system (1.1) has at least one
positive-negative solution pair.

Corollary 5.5. For any k ∈ [1, n] and λ > 0, the conditions fk0 = +∞ and fk∞ = −∞ imply that the
system (1.1) has at least n nonzero solution pairs.

Now,we consider the functionalH(x). Similarly, we have the following result by using
Lemma 5.1.

Theorem 5.6. If there existm ∈ [m0 + 1, n] and λ > 0 such that γm−1 < γm and that

γm−1 < λdkfk0 < γm for k ∈ [1, n], (5.12)

further suppose that there is Rλ > 0 such that

λdkFk(xk) ≥ 1
2
γkx

2
k for |xk| > Rλ, k ∈ [1, n]. (5.13)

Then the system (1.1) has at least n −m + 1 nonzero solution pairs.

Corollary 5.7. Assume that the condition fk0 < 0 holds for any k ∈ [1, n], and there exist λ > 0 and
Rλ > 0 such that the condition (5.13) is valid, then the system (1.1) has at least n nonzero solution
pairs.



16 Discrete Dynamics in Nature and Society

Corollary 5.8. For any k ∈ [1, n] and λ > 0, the conditions fk0 = −∞ and fk∞ = +∞ imply that the
system (1.1) has at least n nonzero solution pairs.

Consider the algebraic equations

x − y = λx3,

−x + y = λy3,
(5.14)

which is the special case of (1.1). Obviously, for any λ > 0 all conditions of Theorem 5.6 hold.
Thus, (5.14) has at least one nonzero solution pair. In fact, it has the exact nonzero solution
pair ±(

√
2/λ,−

√
2/λ). Thus, the conditions of Theorem 5.6 are sharp for (5.14).

6. Applications

Clearly, the theorems and corollaries established earlier are useful to solve the problems listed
in Section 2. Some simple illustrative examples and remarks will be listed in this section.

6.1. Periodic Solutions

Guo and Yu [28] considered the existence of pm-periodic solution for

Δ2xk−1 + f(k, xk) = 0 for k ∈ Z. (6.1)

The main result they derived is described as follows.
Assume f(t, z) satisfies the following condition:

(i) f ∈ C(Z × R,R), and there exists positive integer m such that for any (t, z) ∈ Z × R,
f(t +m, z) = f(t, z);

(ii) for any z ∈ R,
∫z
0f(t, s)ds ≥ 0, and f(t, z) = o(z), (z → 0);

(iii) there exists R > 0, β > 2, such that for any |z| ≥ R,

zf(t, z) ≥ β

∫z

0
f(t, s)ds > 0, (6.2)

then for any positive integer p, (6.1) has at least three pm-periodic solutions.

Now, we consider the existence of pT -periodic solution of the following nonlinear
second-order difference equation:

Δ2xk−1 + λfk(xk) = 0, k ∈ Z, (6.3)

where p is a given positive integer, where λ > 0 is a parameter, fk ∈ C(R,R) and fk(−u) =
−fk(u) for u ∈ R, and there exists a positive integer T such that for any k ∈ Z, u ∈ R,
fk+T (u) = fk(u). A solution of (6.3) is called to be nonzero if its every term is not zero.
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The above problem is equal to the system (1.1) where the matrix is defined by (2.13)
with ω = pT and has the eigenvalues

δk = 4 sin2 (k − 1)π
pT

, k ∈ [1, pT]. (6.4)

Note that

sin2 kπ

pT
= sin2

(
pT − k

)
π

pT
, (6.5)

then we have

0 = δ1 < δ2 = δpT < δ3 = δpT−1 < · · · < δ(pT+2)/2 (6.6)

when pT is even and

0 = δ1 < δ2 = δpT < δ3 = δpT−1 < · · · < δ(pT+1)/2 = δ(pT+3)/2 (6.7)

when pT is odd.
Again let

γ1 = δ1 < γ2 = γ3 = δ2, . . . . (6.8)

By using Theorems 5.2 and 5.6, we can obtain the following facts.

Theorem 6.1. For any k ∈ [1, pT], if there exist

m ∈

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
1,

pT

2

]
, when pT is even,

[

1,

(
pT − 1

)

2

]

, when pT is odd,

(6.9)

and λ > 0 such that

4 sin2 (m − 1)π
pT

< λfk0 < 4 sin2mπ

pT
for k ∈ [1, pT], (6.10)

further suppose that there is Rλ > 0 such that Fk(xk) ≤ 0 for |xk| > Rλ and k ∈ [1, pT]. Then the
problem (6.3) has at least 4m − 2 nonzero pT -periodic solutions.
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Theorem 6.2. When pT is a even positive integer and there exist m ∈ [2, pT/2 + 1] and λ > 0 such
that (6.10) holds, further suppose that there is Rλ > 0 such that

λFk(xk) ≥ 2 sin2 (k − 1)π
pT

x2
k for |xk| > Rλ, k ∈ [1, pT], (6.11)

then the system (6.3) has at least 2(pT − 2m) nonzero pT -periodic solutions; If pT is an odd positive
integer and there exist m ∈ [2, (pT + 1)/2] and λ > 0 such that (6.10) and (6.11) hold, then the
system (6.3) has at least 2(pT − 2m) + 2 nonzero pT -periodic solutions.

In view of Theorem 6.1, we can immediately obtain the following result.

Corollary 6.3. For any k ∈ [1, pT],

fk0 = 0, fk∞ = ∞, (6.12)

or

fk0 = ∞, fk∞ = 0 (6.13)

hold, then the problem (6.3) has at least 2(pT − 1) nonzero pT -periodic solutions.

Remark 6.4. Corollary 6.3 improves the main result in [28].

When fk(u) = u3 for any k ∈ Z, we have

lim
|u|→ 0

u3

u
= 0, lim

|u|→∞
u3

u
= ∞. (6.14)

Corollary 6.3 implies that for any positive integer p and positive number λ, the equation

Δ2xk−1 + λx3
k = 0 (6.15)

has at least 2(p − 1) nonzero p-periodic solutions. For example, let p = 3 and λ = 1, we can
consider the existence of solutions for nonlinear system:

2x1 − x2 − x3 = x3
1,

−x1 + 2x2 − x3 = x3
2,

−x1 − x2 + 2x3 = x3
3,

(6.16)
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which has at least 4 nonzero solution pairs in view of Corollary 6.3. However, Theorem in
[28] can only obtain two nonzero solutions because they conclude a zero solution. In fact, we
can solve its the nonzero numerical solutions:

x3 = −1.5033, x1 = 1.894, x2 = −1.5033,
x3 = 1.5033, x1 = −1.894, x2 = 1.5033,

x3 = −1.894, x1 = 1.5033, x2 = 1.5033,

x3 = 1.894, x1 = −1.5033, x2 = −1.5033,

x3 = −1.5033, x1 = −1.5033, x2 = 1.894 ,

x3 = 1.5033, x1 = 1.5033, x2 = −1.894.

(6.17)

However, we find that the number of nonzero solutions of (6.16) is more than 4. In fact, (6.16)
has also nontrivial solutions

x3 = −1.7321, x1 = 1.7321, x2 = 0.0,

x3 = −1.7321, x1 = 0.0, x2 = 1.7321,

x3 = 1.7321, x1 = −1.7321, x2 = 0.0,

x3 = 1.7321, x1 = 0.0, x2 = −1.7321,
x3 = 0.0, x1 = −1.7321, x2 = 1.7321,

x3 = 0.0, x1 = 1.7321, x2 = −1.7321.

(6.18)

Thus, we have the following open problem.

Open Problem 1

Obtain better existence results for the system (1.1) when n ≥ 3.
When fk(u) = u(1 − u2) for any k ∈ Z, we have

lim
|u|→ 0

f(u)
u

= 1, lim
|u|→∞

f(u)
u

= −∞. (6.19)

For any

λ >

⎧
⎪⎨

⎪⎩

4, when n is even,

4 cos2
π

2n
, when n is odd,

(6.20)
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Theorem 6.1 implies that the periodic boundary value problem of the form

Δ2xk−1 + λxk

(
1 − x2

k

)
= 0, k ∈ [1, n]

x0 = xn, x1 = xn+1

(6.21)

has at least 2n nonzero solutions.
On the other hand, Zhou et al. [29] consider the discrete time second-order dynamical

systems:

Xk+1 − 2Xk +Xk−1 + g(k,Xk) = 0, k ∈ Z, (6.22)

where g(g1, g2, . . . , gl)
T ∈ C(Z × Rl, Rl) and g(k + ω,U) = g(k,U) for any (k,U) ∈ Z × Rl.

Our results are also valid for the problem (6.22). In this case, the corresponding results also
improve the main theorem in [29]. In fact, we let I be an ω ×ω unit matrix, then the problem
(6.22) is equal to the system (1.1) where

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2I −I 0 · · · −I
−I 2I −I · · · 0

· · · · · · · · ·
0 · · · −I 2I −I
−I · · · 0 −I 2I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (6.23)

which has the eigenvalues

δki = 4 sin2 (ki − 1)π
ω

, ki = i ∈ [1, ω]. (6.24)

6.2. Steady-State Solutions on Discrete Neural Networks

In [36], Wang and Cheng considered the existence of steady-state solutions for the discrete
neural network

xt+1
i − xt

i = xt
i−1 + xt

i+1 − f
(
i, xt

i

)
(6.25)

with the periodic boundary value conditions

xt
0 = xt

ω, xt
1 = xt

ω+1. (6.26)

In fact, the steady-state equation can be written by

xi−1 + xi+1 = f(i, xi), i ∈ [1, ω]

x0 = xω, x1 = xω+1

(6.27)
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which can be rewritten by the system (1.1), where λ = 1, the coefficient matrix is defined
by(2.13)

Fk(u) = u2 −
∫u

0
f(k, s)ds,

fk0 = lim
u→ 0

f(k, u)
u

,

F(x) =
(
2x1 − f(1, x1), . . . , 2xω − f(ω, xω)

)T
.

(6.28)

In this case, in Theorems 6.1 and 6.2 pT and fk0 are, respectively, replaced by ω and
2 − fk0, then, they are valid for the problem (6.27). At this time, Theorem 6.1 improves the
corresponding result in [36], but Theorem 6.2 is new.

On the other hand, for the more general system of the form

Xk+1 +Xk−1 − g(k,Xk) = 0, (6.29)

our results are also valid, where Xk and g are similar with (2.14) and the method is similar
with Section 6.2. Thus, the main results in [36, 38] are also extended and improved.

We also find that Wang and Cheng [37] considered the existence of the steady-state
solutions for the discrete neural network:

xt+1
i = xt

i−1 + xt
i+1 + fi

(
xt
i

)
(6.30)

with the periodic boundary value condition (6.26). Similarly, the problem (6.30)–(6.26) be
rewritten by the system (1.1), where λ = 1, A is defined by (2.13), and

Fk(u) =
1
2
u2 +

∫u

0
fk(s)ds. (6.31)

By using similar method, we can obtain the improved and extended results. Clearly, we can
also consider the existence of steady-state solutions for the general system of the form

Xt+1
i = Xt

i−1 +Xt
i+1 + fi

(
Xt

i

)
, (6.32)

where Xt
i is a k-vector for each i ∈ Z.

6.3. Periodic Solutions for Fourth-Order Difference Equation

Whenω = 2, the problem (2.15) exists 2-periodic solutions if and only if the nonlinear system

8

(
1 −1
−1 1

)(
x1

x2

)

= λ

(
f(1, x1)

f(2, x2)

)

(6.33)
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has nontrivial solutions. The matrix

(
1 −1
−1 1

)

(6.34)

has the eigenvalues γ1 = 0 and γ2 = 2. When ω = 3, the problem (2.15) exists 3-periodic
solutions if and only if the nonlinear system

3

⎛

⎜
⎜
⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1

x2

x3

⎞

⎟
⎟
⎠ = λ

⎛

⎜
⎜
⎝

f(1, x1)

f(2, x2)

f(3, x3)

⎞

⎟
⎟
⎠ (6.35)

has nontrivial solutions. The matrix

⎛

⎜⎜
⎝

2 −1 −1
−1 2 −1
−1 −1 2

⎞

⎟⎟
⎠ (6.36)

has the eigenvalues γ1 = 0, γ2,3 = 3.
When ω = 4, the problem (2.15) exists 4-periodic solutions if and only if the nonlinear

system

2

⎛

⎜⎜⎜⎜⎜
⎝

3 −2 1 −2
−2 3 −2 1

1 −2 3 −2
−2 1 −2 3

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

x1

x2

x3

x4

⎞

⎟⎟⎟⎟⎟
⎠

= λ

⎛

⎜⎜⎜⎜⎜
⎝

f(1, x1)

f(2, x2)

f(3, x3)

f(4, x4)

⎞

⎟⎟⎟⎟⎟
⎠

(6.37)

has nontrivial solutions. The matrix

⎛

⎜⎜⎜⎜⎜
⎝

3 −2 1 −2
−2 3 −2 1

1 −2 3 −2
−2 1 −2 3

⎞

⎟⎟⎟⎟⎟
⎠

(6.38)

has the eigenvalues γ1 = 0, γ2,3 = 2, and γ4 = 8.
When ω ≥ 5, (2.15) exists ω-periodic solutions if and only if the nonlinear system (1.1)

has nontrivial solutions, where the matrix is defined in Subsection 2.1.
We can obtain eigenvalues of A from the fourth-order linear difference equation

xk−2 − 4xk−1 + 6xk − 4xk+1 + xk+2 = λxk for k ∈ [1, ω] (6.39)
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with the periodic boundary value conditions:

x−1 = xω−1, x0 = xω, xω+1 = x1, xω+2 = x2. (6.40)

Let

xk = tk. (6.41)

In view of (6.39), we have

tk−2 − 4tk−1 + 6tk − 4tk+1 + tk+2 = λtk, (6.42)

which implies that

λ =
(1 − t)4

t2
. (6.43)

From (6.40), we see that

tω = 1, (6.44)

thus, we have

tp = exp

(
2
(
p − 1

)
π

ω
i

)

, p ∈ [1, ω],

1 − tp = 2 sin

((
p − 1

)
π

ω

)

exp

((
π

2
+

(
p − 1

)
π

ω
+ jπ

)

i

) (6.45)

for p ∈ [1, ω] and j ∈ Z. In view of (6.43), we have obtained

λp =

(
1 − tp

)4

(
tp
)2 = 24sin4

((
p − 1

)
π

ω

)

> 0, p ∈ [1, ω]. (6.46)

Note that

sin4 pπ

ω
= sin4

(
ω − p

)
π

ω
, (6.47)

then

0 = δ1 < δ2 = δω < δ3 = δω−1 < · · · < δω/2+1 (ω is even)

0 = δ1 < δ2 = δω < δ3 = δω−1 < · · · < δ[ω/2]+1 = δ[ω/2]+2 (ω is odd).
(6.48)



24 Discrete Dynamics in Nature and Society

By using Theorems 5.2 and 5.6, we can clearly obtain similar results as Theorems 6.1
and 6.2 and improve and extend the results in [27]. They will be omitted.

6.4. On Partial Difference Equation

In Turing pattern analysis, the positive steady-state solutions are usually needed. The authors
in [41] think that persistent puzzle in the field of biological electron transfer is the conserved
iron-sulfur cluster motif in both high potential iron-sulfur protein (HiPIP) and ferredoxin
(Fd) active sites. However, the voltage in cell can be negative and there exists the negative
threshold, see [45]. Thus, the negative steady-state should be also considered for Turing
pattern analysis. Our results will likely find important implications in other real evolutionary
processes.

By the discussion in Section 2, we have known that the models of many applied
problems can be expressed by the partial difference equation of the form

Δ2
1xi−1,j + Δ2

2xi,j−1 + λfij
(
xij

)
= 0 (6.49)

with periodic boundary value conditions

x0,j = xn,j , x1,j = xn+1,j , j ∈ [1, m],

xi,0 = xi,m, xi,1 = xi,m+1, i ∈ [1, n].
(6.50)

In fact, we can also give the other explanation.
Indeed, let us consider n × m neuron units placed on a torus. Let xt

ij denote the state
value of the ijth neuron unit during the time periodic t ∈ {0, 1, 2, . . .}. Assume that each
neuron unit is random activated by its four neighbors so that the change of state values
between two consecutive time periods is given by

xt+1
ij − xt

ij = α
(
Δ2

1x
t
i−1,j + Δ2

2x
t
i,j−1
)
+ fij

(
xt
ij

)
(6.51)

with the periodic boundary value conditions

xt
0,j = xt

n,j , xt
1,j = xt

n+1,j , j ∈ [1, m],

xt
i,0 = xt

i,m, xt
i,1 = xt

i,m+1, i ∈ [1, n],
(6.52)

where α is the connection weight, fij stands for the bias mechanism inherent in the ijth
neuron unit.

In order to utilize the neural network modeled by the aforementioned evo-
lutionary system, it is of interest to predict the existence of steady-state solution
{xt

ij , (i, j) ∈ [1, n] × [1, m]}∞
t=0

such that xt
ij = xij for (i, j) ∈ [1, n] × [1, m] and t ≥ 0. This then

leads us to finding solutions of the steady system of (6.49)-(6.50) or more generally (1.1).
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We can similarly obtain the eigenvalues of corresponding (6.49)–(6.50):

μij = 8

(

sin2 (i − 1)π
n

+ sin2

(
j − 1

)
π

m

)

(6.53)

for (i, j) ∈ [1, n] × [1, m], thus, the existence and nonexistence of solutions for (6.49)–(6.50)
can also be established. They will omitted.

In the present paper, we ask that the coefficient matrix and the nonlinear term of the
system (1.1), respectively, satisfy the symmetry and the odd symmetry. Clearly, a number of
application problems are not valid. They will be considered in the further paper.
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