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Bacterial Foraging Optimization (BFO) is a novel optimization algorithm based on the social
foraging behavior of E. coli bacteria. This paper presents a variation on the original BFO algorithm,
namely, the Cooperative Bacterial Foraging Optimization (CBFO), which significantly improve the
original BFO in solving complex optimization problems. This significant improvement is achieved
by applying two cooperative approaches to the original BFO, namely, the serial heterogeneous
cooperation on the implicit space decomposition level and the serial heterogeneous cooperation
on the hybrid space decomposition level. The experiments compare the performance of two CBFO
variants with the original BFO, the standard PSO and a real-coded GA on four widely used
benchmark functions. The new method shows a marked improvement in performance over the
original BFO and appears to be comparable with the PSO and GA.
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1. Introduction

In recent years, bacterial foraging behaviors (i.e., bacterial chemotaxis) as a rich source
of potential engineering applications and computational model have attracted more and
more attentions. A few models have been developed to mimic bacterial foraging behaviors
and been applied for solving practical problems [1–3]. Among them, Bacterial Foraging
Optimization (BFO) is a population-based numerical optimization algorithm. Until date, BFO
has been applied successfully to some engineering problems, such as optimal control [4],
harmonic estimation [5], transmission loss reduction [6] and machine learning [7]. However,
experimentation with complex optimization problems reveal that the original BFO algorithm
possesses a poor convergence behavior compared to other nature-inspired algorithms and its
performance also heavily decreases with the growth of the search space dimensionality.

It should be noted that even the most successful nature-inspired optimization
techniques, such as Genetic Algorithm (GA) [8, 9] and Particle Swarm Optimization (PSO)
[10, 11], are also sensitive to the increase of the problem complexity and dimensionality,
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due to their stochastic nature [12, 13]. Cooperative search is one of the solutions to this
problem that have been extensively studied in the past decade. The basic approach involves
having more than one search module running and exchanging information among each
other in order to explore the search space more efficiently and reach better solutions [14].
In order to improve the BFO’s performance on complex optimization problems, this paper
applies cooperative search technique to the BFO model and then proposed the Cooperative
Bacterial Foraging Optimization (CBFO) algorithm. In order to evaluate the performance of
the CBFO, extensive studies based on a set of 4 widely used benchmark functions have been
carried out. For comparison purposes, we also implemented the original BFO, the standard
PSO, and a simple real-coded GA on these functions, respectively. The simulation results
are encouraging. The CBFO algorithm shows remarked performance improvement over the
original BFO.

The rest of the paper is organized as follows. In Section 2, we will give the briefly
reviews of the bacterial chemotaxis and the original BFO algorithm. A discussion of the
artificial bacterial behaviors in BFO model is also presented in this section. Section 3
summarizes the state of the art on the cooperative search methods. Then our Cooperative
Bacterial Optimization algorithm will be introduced and its implementation details will be
given in Section 4. Section 5 tests the algorithms on the benchmarks, and gives out the results.
Finally, Section 6 outlines the conclusions.

2. The Classical BFO Algorithm

The motile bacteria such as E. coli and salmonella propel themselves by rotating their flagella.
To move forward, the flagella counterclockwise rotate and the organism “swims” (or “runs”).
While a clockwise rotation of the flagellum causes the bacterium randomly “tumble” itself in
a new direction and then swims again [15]. An alternation between “swim” and “tumble”
enables the bacterium search for nutrients in random directions. Swimming is more frequent
as the bacterium approaches a nutrient gradient. Tumbling, hence direction changes, is more
frequent as the bacterium moves away from some food to search for more. Basically, bacterial
chemotaxis is a complex combination of swimming and tumbling that keeps bacteria in
places of higher concentration of nutrients. Bacterial chemotaxis can also be considered as
the optimization process of the exploitation of known resources, and costly exploration for
new, potentially more valuable resources.

2.1. Bacterial Foraging Optimization

The original Bacterial Foraging Optimization system consists of three principal mechanisms,
namely, chemotaxis, reproduction, and elimination-dispersal. We briefly describe each of
these processes as follows.

2.1.1. Chemotaxis

In the original BFO, a unit walk with random direction represents a “tumble” and a unit
walk with the same direction in the last step indicates a “run.” Suppose θi(j, k, l) represents
the bacterium at jth chemotactic, kth reproductive, and lth elimination-dispersal step.
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C(i) is the chemotactic step size during each run or tumble (i.e., run-length unit). Then in each
computational chemotactic step, the movement of the ith bacterium can be represented as

θi
(
j + 1, k, l

)
= θi

(
j, k, l

)
+ C(i)

Δ(i)
√
ΔT (i)Δ(i)

, (2.1)

where Δ(i) is the direction vector of the jth chemotactic step. When the bacterial movement
is run, Δ(i) is the same with the last chemotactic step; otherwise, Δ(i) is a random vector
whose elements lie in [−1, 1].

With the activity of run or tumble taken at each step of the chemotaxis process, a step
fitness, denoted as J(i, j, k, l), will be evaluated.

2.1.2. Reproduction

The health status of each bacterium is calculated as the sum of the step fitness during its life,
that is,

∑Nc

j=1 J(i, j, k, l), where Nc is the maximum step in a chemotaxis process. All bacteria
are sorted in reverse order according to health status. In the reproduction step, only the first
half of population survives and a surviving bacterium splits into two identical ones, which
are then placed in the same locations. Thus, the population of bacteria keeps constant.

2.1.3. Elimination and Dispersal

The chemotaxis provides a basis for local search, and the reproduction process speeds up the
convergence which has been simulated by the classical BFO. While to a large extent, only
chemotaxis and reproduction are not enough for global optima searching. Since bacteria may
get stuck around the initial positions or local optima, it is possible for the diversity of BFO
to change either gradually or suddenly to eliminate the accidents of being trapped into the
local optima. In BFO, the dispersion event happens after a certain number of reproduction
processes. Then some bacteria are chosen, according to a preset probability Ped, to be killed
and moved to another position within the environment.

2.2. Step-By-Step Algorithm

In what follows we briefly outline the original BFO algorithm step by step.

Step 1. Initialize parameters n, S,Nc,Ns,Nre,Ned, Ped, C(i) (i = 1, 2, . . . , S), θi, where

n: dimension of the search space,

S: the number of bacteria in the colony,

Nc: chemotactic steps,

Ns: swim steps,

Nre: reproductive steps,

Ned: elimination and dispersal steps,

Ped: probability of elimination,

C(i): the run-length unit (i.e., the size of the step taken in each run or tumble).
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Step 2. Elimination-dispersal loop: l = l + 1.

Step 3. Reproduction loop: k = k + 1.

Step 4. Chemotaxis loop: j = j + 1.

Substep 4.1. For i = 1 = 1, 2, . . ., S, take a chemotactic step for bacterium i as follows.

Substep 4.2. Compute fitness function, J(i, j, k, l).

Substep 4.3. Let Jlast = J(i, j, k, l) to save this value since we may find better value via a run.

Substep 4.4. Tumble. Generate a random vector Δ(i) ∈ Rn with each element Δm(i), m =
1, 2, . . . , n, a random number on [−1, 1].

Substep 4.5. Move. Let

θi
(
j + 1, k, l

)
= θi

(
j, k, l

)
+ C(i)

Δ(i)
√
ΔT (i)Δ(i)

. (2.2)

This results in a step of size C(i) in the direction of the tumble for bacterium i.

Substep 4.6. Compute J(i, j + 1, k, l) with θi(j + 1, k, l).

Substep 4.7. Swimming.

(i) Let m = 0 (counter for swim length).

(ii) While m < Ns (if has not climbed down too long), the following hold.

• Let m = m + 1.

• If J(i, j + 1, k, l) < Jlast, let Jlast = J(i, j + 1, k, l), then another step of size
C(i) in this same direction will be taken as (2.2) and use the new generated
• θi(j + 1, k, l) to compute the new J(i, j + 1, k, l).
• Else let m = Ns.

Substep 4.8. Go to next bacterium (i + 1). if i /=S, go to Substep 4.2 to process the next
bacterium.

Step 5. If j < Nc, go to Step 3. In this case, continue chemotaxis since the life of the bacteria is
not over.

Step 6. Reproduction.

Substep 6.1. For the given k and l, and for each i = 1, 2, . . . , S, let

Jihealth =
Nc+1∑

j=1

J
(
i, j, k, l

)
(2.3)

be the health of the bacteria. Sort bacteria in order of ascending values (Jhealth).
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Figure 1: Bacterial Foraging trajectories on the 2D Sphere function.

Substep 6.2. The Sr bacteria with the highest Jhealth values die and the other Sr bacteria with
the best values split and the copies that are made are placed at the same location as their
parent.

Step 7. If k < Nre, go to Step 2. In this case the number of specified reproduction steps is not
reached and start the next generation in the chemotactic loop.

Step 8. Elimination-dispersal: for i = 1, 2, . . . , S, with probability ped, eliminate and disperse
each bacterium, which results in keeping the number of bacteria in the population constant.
To do this, if a bacterium is eliminated, simply disperse one to a random location on the
optimization domain. If l < Ned, then go to Step 2; otherwise end.

2.3. Bacterial Behavior in BFO

In order to get an insight into the behavior of the virtual bacteria in BFO model, we illustrate
the bacterial trajectories in two distinct environments (the 2D unimodal Sphere function and
the 2D multimodal Rastrigrin function) by tuning the run-length unit parameter C, which
can essentially influence the bacterial behaviors.

The first case is the minimization of the 2D Sphere function (formulated in Section 5),
which is a widely used unimodal benchmark with a single optimum (0, 0) and the minimum
is 0. Figure 1 illustrates the trajectories of six bacteria foraging for the minimum in the
landscape defined by the Sphere function (which is contour plotted). The six bacteria
simultaneously start at (−4,−4), (0,−4), (4,−4), (4, 4), (0, 4), and (−4, 4). In Figure 1(a), the
simulation takes 50 chemotactic steps with C = 0.1. While in Figure 1(b), the simulation takes
200 chemotactic steps with C = 0.01. The Reproduction and Elimination-dispersal events
are not considered here. From Figure 1, it is clear to see that all the bacteria can travel up
the gradient to pursue the minimum. We can also observe from Figure 1 that the larger the
parameter C, the smaller the number of steps to enter the domain including the optimum,
although the path seems to be miss direct sometimes. On the other hand, the bacteria with
the smaller C enhance a fine-grained local search to find more precise solutions.
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Figure 2: Bacterial Foraging trajectories on the 2D Rastrigrin function.

The other simulation case is on the 2D Rastrigrin function, which is a complex
multimodal problem with a large number of local optima. It is a widely used benchmark
function with the global optimum (0, 0) and the minimum is 0. Figure 2 shows the contour
lines of this function together with the foraging path of six bacteria that simultaneously
start at (−2.5,−2.5), (0,−2.5), (2.5,−2.5), (2.5, 2.5), (0, 2.5), and (−2.5, 2.5). In Figure 2(a), the
simulation takes 200 chemotactic steps with C = 0.1. While in Figure 2(b), the simulation
takes 200 chemotactic steps with the different parameter C = 0.01. From the chemotactic
motions in Figure 2, we can observe that the bacteria with larger C = 0.1 can explore the
search space and stay for a while in several regions with local optima. they can also escape
from these local optima to enter the domain with the global optimum, but were not able to
stop there. On the other hand, the bacteria with the smaller C were attracted into the domain
with local optima, which closed to these organisms, and exploited these local minimum for
their whole life cycles. That is, if a bacterium with small C traps in a local minimum, it is not
able to escape from it.

Obviously, the bacteria with large run length unit have the exploring ability while the
bacteria with relatively small run length unit have the exploiting skill. Hence, the parameter
C can be used to control the exploration of the whole search space and the exploitation of the
promising areas.

3. Taxonomy of the Cooperative Search Algorithms

In this section, we review the classification of cooperative search algorithms, which can also
be used to guide the readers in classifying the kind of algorithms we are dealing with in
this work. El-Abd and Kamel proposed two different taxonomies for classifying cooperative
search algorithms [14]: one is based on the types of algorithms used in it, and the other is
based on the level of space decomposition achieved by the cooperative system (shown as in
Figure 3).
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Figure 3: Taxonomy of the Cooperative Search Algorithms. (a) Taxonomy based on the types of used
algorithms; (b) Taxonomy based on the level of space decomposition.

The first taxonomy gives rise to four different categories.

(i) Serial homogenous cooperation: this is concerned with having different instances
of the same algorithms searching in a sequential manner. Each algorithm provides
a partial solution to the problem. These partial solutions are used to provide a
complete solution that is evaluated and used in subsequent runs.

(ii) Parallel homogenous cooperation: this category involves having different instances
of the same algorithm running in parallel and searching for a solution with the
information passed between these algorithms.

(iii) Serial heterogeneous cooperation: this class involves having different algorithms
running in a pipeline fashion. The output of each algorithm supplied as an input to
the next algorithm.

(iv) Parallel heterogeneous cooperation: the same as the second class but with different
running algorithms.

The second taxonomy gives rise to three different categories.

(i) Implicit space decomposition: this category involves the decomposition of the
search space between different algorithms, which refers to having different
algorithms (or different instances of the same algorithm) looking for a solution and
sharing useful information between them.

(ii) Explicit space decomposition: in this class, each algorithm searches for a subso-
lution in a different subspace of the problem. That is, each algorithm provides a
partial solution and these partial solutions are combined into the complete solution.
This approach was originally introduced using genetic algorithms [16] and also
applied to the original PSO algorithm [17].

(iii) Hybrid approach: this class refers to the idea of having a cooperative system that
employs both methods of space decomposition.
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Furthermore, these types of cooperation are related to each other. For example, the
explicit space decomposition class is similar to the homogeneous serial class in the first
taxonomy.

4. Cooperative Bacterial Foraging Optimization

This work proposes two variants of Cooperative Bacterial Foraging Algorithm, namely,
CBFO-S and CBFO-H. According to the taxonomies on cooperation search algorithms in
Section 3, they can be classified into the serial heterogeneous cooperation on the implicit
space decomposition level and the serial heterogeneous cooperation on the hybrid space
decomposition level, respectively.

4.1. The CBFO-S Algorithm

As indicate in Section 2, the bacterium with a large run-length unit parameter has the
exploring ability, while the bacterium with a relatively small run-length unit parameter has
the exploiting skill. This inspired us to divide the foraging procedure of artificial bacteria
colony into multiple phases each occupies a portion of generations and characterized by the
different value of run-length unit parameter C.

In CBFO-S, different BFO algorithms (with different run-length unit parameters)
execute in sequential phases. The output of each BFO (the best positions found by each
bacterium in each phase) supplies as an input to the algorithm in the next phase. In the
initial phase, the bacteria colony searches the whole solution space with a large C, which
permits the bacteria to locate promising regions and avoid trapped in local optima. Each
bacterium records all its visited positions in this phase and the position with the highest
fitness value is considered as the promising solution candidate. When entrance into the
next phase, the bacteria colony is reinitialized with relatively small C from these promising
solution candidates and starts exploiting the promising regions (the neighborhoods of these
candidates) until the needed criteria for switch to the next phase is reached. Then a bacteria
colony is reinitialized again with even smaller C to fine-tune the best-so-far solutions
found in the foregoing phase. Hence, the CBFO-S algorithm can be classified into the serial
heterogeneous cooperation on the implicit space decomposition level.

The pseudocode of CBFO-S is described in Algorithm 1, where Np indicates the
number of evolutionary phases, Nc represents the number of chemotactic steps in a
bacterium’s life time, S is the bacteria colony size and Ns is the maximum number of steps
in the process of Run, and α > 1 is a user-defined constant that is used to decrease the run-
length unitC.We also embed the reproduction, elimination, and dispersal processes into each
chemotactic step. This can speed up the algorithm convergence rate significantly.

4.2. The CBFO-H Algorithm

The CBFO-H Algorithm consists of two search stages working in a serial fashion. The first
stage, which applied the original BFO model with a large run-length unit parameter CL, runs
for a number of iterations to locate promising regions including the global optimum. Then
the algorithm passes the best found solutions to the next stage. The second stage reinitializes
the bacteria colony in these best-so-far positions with a smaller run-length unit parameter CS,
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INITIALIZE: the position and the associated run-length unit Cinitial of the bacteria colony;
For(each phase k = 1 : Np)

For(each chemotactic step t = 1 : Nc)
For(each bacterium i = 1 : S)

Calculate the fitness Ji(t, k) of ith bacterium;
TUMBLE: Generate a random vector Δ, where each element belongs to [−1, 1].

Move the bacterium i in the direction of Δ
√
ΔTΔ by a unit

walk of size C(k). Then calculate the new fitness
Ji(t + 1, k) of bacterium i;

Set flag = 0;
RUN:While(flag < Ns)

If(Ji(t + 1, k) < Ji(t, k))
Take another unit walk in the same direction;
Calculate the new fitness as Ji(t + 1, k);
flag = flag + 1;

End if
End while

End for
REPRODUCTION: The S/2 bacteria with the worst fitness die and the

other S/2 bacteria with the best fitness split;
ELIMINATION and DISPERSAL: With probability ped, eliminate and

disperse each bacterium;
End for

REINITIALIZE: bacteria positions from the potential candidate positions
found by each bacterium in the phase k.

EVOLUTION: Evolution is added to run-length unit by:
C(k + 1) = C(k)/α; //α is user-defined constant.

End for

Algorithm 1: Pseudocode for CBFO-S.

and applies the explicit space decomposition cooperative approach to the BFO. This approach
relies on splitting the search space (n-dimensional vector) into n/2 subspaces (which is a 2-
dimensional vector), where each subspace is optimized by a separate bacteria colony. The
overall solution is the vector combining the best bacterium of each colony. This algorithm
works by sequentially passing over the colonies. To evolve all the bacteria in colony j, the
other n/2 − 1 components in the overall solution are kept constant (with their values set to
the global best bacteria from the other n/2 − 1 colonies). Then the jth colony evolves and
replaces the jth component of the overall solution by its best bacterium.

The pseudocode of CBFO-H is described in Algorithm 2, whereNs1
c andNs2

c represent
the number of chemotactic steps in stages 1 and 2, respectively, and α > 1 is a user-defined
constant that is used to decrease the run-length unit C.

5. Experiments

5.1. Benchmark Functions

The set of benchmark functions contains four functions that are commonly used in
evolutionary computation literature [18] to show solution quality and convergence rate. The
formulas and the properties of these functions are listed as follows.
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Stage 1: the original BFO algorithm
INITIALIZE: the position and the associated run-length unit CL of the bacteria colony;
For(each chemotactic step t = 1 : Ns1

c )
For(each bacterium i = 1 : S)

TUMBLE;
RUN;
REPRODUCTION;
ELIMINATION and DISPERSAL;

End for
End for
PASS the best found solutions of each bacterium to stage 2;

Stage 2: the multi-colony cooperative BFO algorithm using explicit space decomposition
REINITIALIZE: bacteria positions from the best found solutions and the associate

run-length unit CS.
SPLIT the whole population into n/2 separate colonies of 2D vectors;
For(each chemotactic step t = 1 : Ns2

c )
For(each colony j = 1 : n/2)

For(each bacterium i = 1 : S)
TUMBLE;
RUN;
REPRODUCTION;
ELIMINATION and DISPERSAL;

End for
UPDATE the best bacterium replace the jth component of the overall solution;

End for
EVOLUTION: Evolution is added to run-length unit by:

If (t mod β = 0) // β is user-defined constant.
C(t + 1) = C(t)/α; // α is user-defined constant.

End if
End for

Algorithm 2: Pseudocode for CBFO-H.

(1) Sphere function

f1(x) =
n∑

i=1

x2
i . (5.1)

(2) Rosenbrock function

f2(x) =
n∑

i=1

100 ×
(
xi+1 − x2

i

)2
+ (1 − xi)2. (5.2)

(3) Rastrigrin function

f3(x) =
n∑

i=1

x2
i − 10 cos(2πxi) + 10. (5.3)
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Table 1: Parameters of the test functions.

Function R X∗ f (X∗)
Sphere [−5.12, 5.12]D [0, 0· · · 0] 0
Rosenbrock [−2.048, 2.048]D [1, 1· · · 1] 0
Rastrigrin [−5.12, 5.12]D [0, 0· · · 0] 0
Griewank [−600, 600]D [0, 0· · · 0] 0

(4) Griewank function

f4(x) =
1

4000

n∑

i=1

x2
i −

n∏

i=1

cos
(
xi√
i

)
+ 1. (5.4)

The first problem is the sphere function, which is a widely used unimodal
benchmark and is easy to solve. The second problem is the Rosenbrock function. It
can be treated as a multimodal problem. It has a narrow valley from the perceived
local optima to the global optimum. The third problem, namely, the Rastrigrin
function, is a complex multimodal problem with a large number of local optima.
Algorithms may easily fall into a local optimum when attempting to solve it.
The last problem is the multimodal Griewank function. Griewank has linkage
among variables that makes it difficult to reach the global optimum. The interesting
phenomenon of the Griewank is that it is more difficult for lower dimensions than
higher dimensions. All functions are tested on 10 dimensions. The search ranges R,
the global optimum X∗ and the corresponding fitness f(X∗) value of each function
are listed in Table 1 .

5.2. Parameter Settings for the Involved Algorithms

Experiment was conducted to compare five algorithms, namely, the original BFO, the simple
real-coded GA, the PSO with inertia weight, and the proposed CBFO-S and CBFO-H on the
four benchmark functions with 10 dimensions. The parameters setting for BFO, CBFO-S, and
CBFO-H are summarized in Table 2.

The PSO algorithm we used is the standard one and the parameters were given by the
default setting of the work in [18]: the acceleration factors c1 and c2 were both 2.0; a decaying
inertia weight ω starting at 0.9 and ending at 0.4 was used. The population size was set at 50
for the PSO algorithm.

The GA algorithm we executed is a real-coded Genetic Algorithm with intermediate
crossover and Gaussian mutation. The population of the GA is 50 and all the control
parameters, for example, mutation rate, crossover rate, and so forth, were set to be the same
of [19].

5.3. Simulation Results for Benchmark Functions

This experiment runs 30 times respectively for two proposed CBFO variants, the original
BFO, the real-coded GA, and the Particle Swarm Optimization on each benchmark function.
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Table 2: Parameters of the BFO algorithms.

Type BFO CBFO-S CBFO-H
S 50 50 50
Ns 4 4 4
Nc 100 100 —
Nre 5 — —
Ned 2 — —
Np — 10 —
C 10−3 × R — —
Ped 0.1 0.1 0.1
Cinitial — 10−2×R —
α — 10 10
CL — — 10−2 × R
CS — — 10−4 × R
Ns1

c — — 200
Ns2

c — — 800
β — — 100

Table 3: Comparison among CBFO-H, BFO, PSO, and GA on 10-D problems.

10D BFO CBFO-S CBFO-H PSO GA

f 1

Best 6.0597 0 0 0 3.1142e − 004
Worst 30.4956 0 0 0 0.0345
Mean 19.6331 0 0 0 0.0118

Std 5.4090 0 0 0 0.0094

f 2

Best 8.9081 0.1645 0 0.0196 7.8064
Worst 62.2445 0.5903 2.5879e − 007 4.0735 9.8140
Mean 12.0991 0.3492 1.4813e − 007 0.7294 8.6634

Std 9.5047 0.0966 4.6694e − 008 1.4964 0.5557

f 3

Best 9.9505 1.1011 0 2.9849 3.3034
Worst 53.7285 9.0694 0.0975 25.8689 7.0136
Mean 36.3513 4.8844 0.0111 10.8450 4.9512

Std 10.5818 1.6419 0.0257 4.5956 1.1516

f 4

Best 35.5694 0 0.1385 27.1332 0.1679
Worst 132.1065 0.1328 0.4401 79.7406 0.6318
Mean 99.7775 0.0647 0.2702 62.9737 0.3439

Std 24.8497 0.0308 0.0846 12.2581 0.1538

The total numbers of chemotactic steps (or iterations) were set to be 1000. Table 3 lists the
experimental results (including the best, worst, mean, and standard deviation of the function
values found in 30 runs) for each algorithm on functions f1 ∼ f4. If the average optimum
value or error is less than 10−10, it is shown as 0 in the table. Figure 4 shows the search
progresses of the average values found by all algorithms over 30 runs for functions f1 ∼ f4.

From the results, we observe that the proposed two CBFO algorithms achieved
significantly better performance on all benchmark functions than the original BFO algorithm.
CBFO-S surpasses all other algorithms on function 1, which is the unimodal function that
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Figure 4: Convergence results of all algorithms.

adopted to assess the convergence rates of optimization algorithms. The CBFO-H performs
better on all multimodal functions when the other algorithms miss the global optimum basin.
That is, CBFO-H successfully avoids falling into local optima and continues to find better
results even after the PSO, GA, and BFO seem to have stagnated. The CBFO-S achieved
almost the same performance as the CBFO-H on multimodal functions f2 ∼ f4. The Griewank
function is a good example.

As we can see in Figure 4, in CBFO model, under the influence of the serial
heterogeneous cooperative approach, the bacteria colony starts exploring the search space
at the initial phase. That is, the bacterial colony do not waste much time before finding
the promising regions that contains the local optima because of the large run-length unit
C, which encourages long-range exploration. In the succeeding phases, by decreasing C, the
bacteria slow down near the optima to pursue the more and more precise solutions. The
search performance of the algorithms tested here is ordered as CBFO-S = CBFO-H > PSO =
GA > BFO.
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Figure 5: Population evolution of CBFO on 2D Sphere function in 400 chemotactic steps.

5.4. Bacterial Behaviors in CBFO Model

In order to further analyze the cooperative foraging behaviors of the proposed CBFO model,
we run two simulations based on CBFO-S algorithm. In both simulations, we excluded
the reproduction, elimination, and dispersion events to illustrate the bacterial behaviors
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Figure 6: Population evolution of CBFO on 2D Rastrigrin function in 400 chemotactic steps.

clearly. In both cases, it shows the positions of the bacterial colony on certain chemotactic
steps, where each white circle represents a bacterium. The evolution process proceeds 400
chemotactic steps, and we choose S = 50,Ns = 4,Nc = 100,Np = 4, Cinitial = 0.1, and α = 10.
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In the first simulation, the population evolution of the CBFO-S was simulated on 2D
Sphere function, which is illustrated in Figure 5. Initially, in Figure 5(a), we see that the
bacteria colony is distributed randomly over the nutrient map defined by the 2D Sphere
function. In Figure 5(b), we can observe that, at the end of the first phase, all the bacterial
colony members have found the basin that contains the global optimum of Sphere function
and move around it. In the second and third phases (Figures 5(c) and 5(d)), the bacterial
colony reinitialized in this basin and then exploit the global optimum. In the final phase
(Figure 5(e)), we can observe that all the bacteria have converged to the global optimum
of Sphere function. In Figure 5(f), we have also drawn the associated evolution of the run-
length unit C of this bacterial colony along its search in the fitness landscape. This provides
an intuitive explanation of what is happening during the search of the proposed cooperative
bacterial foraging algorithm.

We found a similar pattern in the second simulation shown as in Figure 6, where the
bacteria colony pursue the valleys and avoid the peaks of the multimodal 2D Rastrigrin
function. In the first phase (Figures 6(a) and 6(b)), starting from their random initial
positions, the bacterial colony explore many regions of the nutrient map defined by Rastrigrin
function. In the second and third phases (Figures 6(c) and 6(d)), the bacterial colony find
many local optima of Rastrigrin function, including the global optimum. Then, in the final
phase (Figure 6(e)), we can observe that all the bacteria have converged to several local
optima and the global optimum of Rastrigrin function. The associated evolution of the run-
length unit C is shown as in Figure 6(f).

6. Conclusions

This paper applied the cooperative approaches to the Bacterial Foraging Optimization (BFO)
and proposed the Cooperative Bacterial Foraging Optimization (CBFO) model with two
variants, namely CBFO-S and CBFO-H, which can be classified into the serial heterogeneous
cooperation on the implicit space decomposition level and the serial heterogeneous
cooperation on the hybrid space decomposition level, respectively. These cooperative
approaches used here resulted in a significant improvement in the performance of the original
Bacterial Foraging Optimization algorithm in terms of convergence speed, accuracy, and
robustness.

Four widely used benchmark functions have been used to test the CBFO algorithms
in comparison with the original BFO, the stand PSO, and the real-coded GA. The simulation
results are encouraging. The CBFO-S and CBFO-H are definitely better than the original BFO
for all the test functions and appear to be comparable with the PSO and GA.

There are ways to improve our proposed algorithms. The further research efforts
should focus on the tuning of the user-defined parameters for CBFO algorithms based on
extensive evaluation on many benchmark functions and real-world problems. Moreover, the
self-adaptive mechanisms for the parameters of CBFO may be worthy to undertake to obtain
some additional improvements (e.g., which can remove the need of specifying a particular
parameter setting of CBFO for a particular problem).
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