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A novel method based on the local nonlinear mapping is presented in this research. The method
is called Locally Linear Discriminate Embedding (LLDE). LLDE preserves a local linear structure
of a high-dimensional space and obtains a compact data representation as accurately as possible
in embedding space (low dimensional) before recognition. For computational simplicity and fast
processing, Radial Basis Function (RBF) classifier is integrated with the LLDE. RBF classifier
is carried out onto low-dimensional embedding with reference to the variance of the data. To
validate the proposed method, CMU-PIE database has been used and experiments conducted in
this research revealed the efficiency of the proposed methods in face recognition, as compared to
the linear and non-linear approaches.
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1. Introduction

Linear subspace analysis has been extensively applied to face recognition. A successful face
recognition methodology is largely dependent on the particular choice of features used by
the classifier. Linear methods are easy to understand and are very simple to implement, but
the linearity assumption does not hold in many real-world scenarios. Face appearance lies in
a high-dimensional nonlinear manifold. A disadvantage of the linear techniques is that they
fail to capture the characteristics of the nonlinear appearance manifold. This is due to the
fact that the linear methods extract features only from the input space without considering
the nonlinear information between the components of the input data. However, a globally
nonlinear mapping can often be approximated using a linear mapping in a local region. This
has motivated the design of the nonlinear mapping methods in this study.

The history of the nonlinear mapping is long; it can be traced back to Sammon’s
mapping in 1969 [1]. Over time, different techniques have been proposed such as the
projection pursuit [2], the projection pursuit regression [3], self-organizing maps or SOM
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Figure 1: Block diagram of the Locally Linear Discriminate Embedding (LLDE).

[4], principal curve and its extensions [5–8], autoencoder neural networks [9, 10], and
generative topographic maps or GTM [11]. A comparison of some of these methods can
be found in Mao and Jain [12]. Recently, a new line of nonlinear mapping algorithms was
proposed based on the notion of manifold learning. Given a data set that is assumed to
be lying approximately on manifold in a high-dimensional space, dimensionality reduction
can be achieved by constructing a mapping that respects certain properties of the manifold.
Manifold learning has been demonstrated in different applications; these include face pose
detection [13, 14], high-dimensional data discriminant analysis [15], face recognition [16–18],
analysis of facial expressions [19, 20], human motion data interpretation [21], gait analysis
[20, 22], visualization of fibre traces [23], and wood texture analysis [24].

The remainder of this paper is organized as follows. In Section 2, Block diagram
of Locally Linear Discriminate Embedding (LLDE) and a Brief review of Locally Linear
Discriminate Embedding algorithm are shown. In Section 3, the proposed method is tested
on CMU-PIE database and compared to the other methods such as Principal Component
Analysis (PCA) and Linear Discriminate Analysis (LDA). Finally, a brief conclusion is given.

2. Materials and Methods

2.1. Preprocessing and Normalization

Face preprocessing and normalization is significant parts of face recognition systems.
Changes in lighting conditions have been found to dramatically decrease the performance
of face recognition. Therefore, all images have been preprocessed to obtain a representation
of the face which is invariant to illumination, while keeping the information necessary to
allow a discriminative recognition of the subjects. Gaussian kernel has been used to estimate
the local mean and standard deviation of images to correct nonuniform illumination. The
local normalization is computed as follows:
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) , (2.1)

where f(x, y) is the original image, m is an estimation of a local mean of f, and s is an
estimation of the local standard deviation.

Figure 1 illustrates a block diagram of the developed method. All face images have
to preprocess to obtain a representation of the face which is invariant to illumination by
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Figure 2: Reconstruction weights of face data and its neighbors.

(2.1). Then we obtain the reconstruction weights by capturing the intrinsic geometry of the
neighborhood. The detail of the diagram is illustrated below.

2.2. The LLDE Algorithm

Find reconstruction weights by capturing the intrinsic geometry of the neighborhood. The
LLDE creates a locally linear mapping, from the high-dimensional coordinates to the low
dimensional embedding, as shown in Figure 2.

Compute the average weight that represent every face data by its neighbors:

ϕ(w) =

∥∥∥∥∥∥
xi −

K∑

j=1

wijxij
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, xij ∈ X ∈ RN, (2.2)

where xi means the ith unknown sample, and xij the corresponding training samples,
according to the K values (nearest neighbors).

Computing the low-dimensional embedding D, the following cost function is
minimized:

Φ(D) =
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i=1
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2

, (2.3)

where N is the number of training and K is the number of the nearest neighbors.
The RBF classifier is a one hidden layer neural network, with several forms of radial

basis activation functions, as follows:

fj(D∗) = exp

∥∥D∗ − μj
∥∥2

2σ2
j

, (2.4)

where σj is the width parameter, μj is the vector determining the centre of the basis functionf ,
and D∗ is the n-dimensional input vector. In an RBF network, a neuron of the hidden layer
is activated whenever the input vector is close enough to its central vector. The second layer
of the RBF network, that is, the output layer, comprises one neuron to each class. The final
classification is given by the output neuron with the greatest output.
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Figure 3: The recognition rates of the PCA, LDA, and LLDE.

3. Results and Discussion

3.1. CMU-PIE Database

One of the largest datasets developed to investigate the affect of Pose, Illumination, and
Expression. It contains images of 68 people, each under 13 different poses, 43 different
illumination conditions, and 4 different expressions [25]. In the experiments conducted in this
study, 6 out of 13 poses for each person were selected. Out of 43-illumination configurations,
21 were selected to typically span the set of variations; these covered the left to the right
profile.

The Locally Linear Discriminate Embedding (LLDE) is a manifold learning technique,
in which the local geometric properties within each class are preserved, based on the local
neighbour structure, and the local structure is generally important for discriminate analysis.
Each face image can linearly be approximated by its neighbours, with the same set of
coefficients, computed from the high-dimensional data in the input space while minimizing
reconstruction cost. For classification, the resulting embedding spaces are fed to Gaussian
Radial Basis Function to produce feature vectors. A Gaussian Radial Basis Function could
be a good choice for the hidden layers; it is widely used and researched tool for (nonlinear)
function approximation, which is a central theme in pattern analysis and recognition. The
transformation from the input space to the hidden-unit space is nonlinear. On the other hand,
the transformation from the hidden space to the output space is linear.

Suppose that each hidden layer node is a Gaussian Radial Basis Function equation
(2.4) and μj is the centre of the j the class. The closer Di to the μi is, the higher the value of
the Gaussian function will be produced. The outputs of the hidden layer can be viewed as a
set of discriminate features, extracted from the input space. Figure 3 shows the plots of the
recognition rate versus the dimensionality of the PCA, LDA, and LLDE. The dimensions used
are ranging between 10 and 150; based on the figure, the LLDE was shown to significantly
outperform the PCA, and LDA. The novelty of the proposed method is to extract discriminate
nonlinear features and to solve the problem of using the linear methods to extract features
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Figure 4: The average recognition rates of the PCA, LDA, and LLDE, across 10 tests (dimension 65).

PCA LDA LLDE

Dimension = 75
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Figure 5: The average recognition rates of the PCA, LDA, and LLDE, across 10 tests (dimension 75).

Table 1: The average error rates (%) of the PCA, LDA, and LLDE, across ten tests and four dimensions.

PCA LDA LLDE
60.75 48.15 16.98

from nonlinear manifold; the global nonlinear structure of nonlinear data will be destroyed
by applying linear methods so that the recognition rate is dropped down. The proposed LLDE
is invariant to translations and rescaling and takes full advantages of the property manifold
learning methods that are superior to linear feature extraction methods.

As shown in the figure, the recognition rates of 49.66%, 55.9%, and 83.1% were
achieved by the PCA, LDA, and LLDE, with the reduced feature dimensions of 110, 67, and
95, respectively. For performance assessment and consistent, experiments are conducted on
reduced selected dimension (65, 75, 90, 110). The average recognition rates are presented in
Figures 4, 5, 6, and 7. The upper bound of the dimensionality of LDA is c − 1, where c is the
number of individuals.

Table 1 shows the average recognition error rates, the comparison of the proposed
method, and KPCA Plus LDA, and GDA, across ten tests and four dimensions (65, 75, 90,
and 110). From the table, it is obvious that the performance of the proposed method is better
and it achieves the lowest error rate as compared to the standard linear methods of PCA and
LDA.
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Figure 6: The average recognition rates of the PCA, LDA, and LLDE across 10 tests (dimension 90).
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Figure 7: The average recognition rates of the PCA, LDA, and LLDE, across 10 tests (dimension 110).

The comparison of the proposed methods and KPCA Plus LDA [26] and GDA [27] is
shown in Figure 8. From the figure, it is clear that the performance of the proposed methods
is consistently better as compared to other nonlinear discriminant methods. The method was
shown to achieve a maximum accuracy of 83.1%, as compared to only 77.22% and 79.92% by
the KPCA and GDA, respectively. This is attributed to the number of the features obtained
by the LLDE, which are not limited to c − 1, and where c is the number of subjects.

4. Conclusion

Literature surveys and previous studies stated that if linear classifier does not work well,
then there are at least two potential reasons for this: (1) regularization was not done well or no
robust estimators were used; (2) intrinsically nonlinear: since our dataset is high-dimensional
data and the nature of face images is nonlinear, then it is recommended to use an appropriate
nonlinear feature space. The proposed method performs an implicit reduction over the whole
set of features and effectively extracts the most discriminate features, as shown by the results
from the experiments. We think that this is significant when the runtime speed is as important
as the actual classification rate: if only a subset of the features is used. In addition to that the
proposed method does not suffer from the Small Size (SSS) problem. Our experiments did
show clearly that our method is superior to state-of-the art methods.



Discrete Dynamics in Nature and Society 7

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Dimension

0

10

20

30

40

50

60

70

80

90

R
ec

og
ni

ti
on

ac
cu

ra
cy

KPCA plus LDA
LLDE
GDA

Figure 8: The recognition rates of the KPCA plus LDA, GDA, and LLDE.
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