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Artificial Bee Colony (ABC) is one of the most recently introduced algorithms based on the
intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC
algorithm, namely, the Cooperative Article Bee Colony (CABC), which significantly improves the
original ABC in solving complex optimization problems. Clustering is a popular data analysis and
data mining technique; therefore, the CABC could be used for solving clustering problems. In this
work, first the CABC algorithm is used for optimizing six widely used benchmark functions and
the comparative results produced by ABC, Particle Swarm Optimization (PSO), and its cooperative
version (CPSO) are studied. Second, the CABC algorithm is used for data clustering on several
benchmark data sets. The performance of CABC algorithm is compared with PSO, CPSO, and
ABC algorithms on clustering problems. The simulation results show that the proposed CABC
outperforms the other three algorithms in terms of accuracy, robustness, and convergence speed.

1. Introduction

Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex
optimization problems. In recently years, many SI algorithms have been proposed, such as
Ant Colony Optimization (ACO) [1], Particle Swarm Algorithm (PSO) [2], and Bacterial
Foraging Optimization (BFO) [3]. Artificial Bee Colony (ABC) algorithm is a new swarm
intelligent algorithm that was first introduced by Karaboga in Erciyes University of Turkey
in 2005 [4], and the performance of ABC is analyzed in 2007 [5]. The ABC algorithm imitates
the behaviors of real bees in finding food sources and sharing the information with other
bees. Since ABC algorithm is simple in concept, easy to implement, and has fewer control
parameters, it has been widely used in many fields. Until now, ABC has been applied
successfully to some engineering problems, such as constrained optimization problems [6],
neural networks [7], and clustering [8].
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However, like other stochastic optimization algorithms, such as PSO and Genetic
Algorithm (GA), as the dimensionality of the search space increases, ABC algorithm
possesses a poor convergence behavior. Cooperative search is one of the solutions to
this problem, which has been extensively studied in the past decade. Potter proposed
cooperative coevolutionary genetic algorithm (CCGA) [9], Van den Bergh and Engelbrecht
proposed cooperative particle swarm optimizer, called CPSO [10], and Chen et al. proposed
cooperative bacterial foraging optimization [11]. This paper applies Potter’s cooperative
search technique to the ABC, resulting in a new cooperative ABC algorithm, namely CABC. In
order to evaluate the performance of the CABC, we compared the performance of the CABC
algorithm with that of ABC, PSO, and CPSO on a set of well-known benchmark functions
such as Rosenbrock, Griewank, Rastrigin, Ackley, and Schwefel. From the simulation results,
the CABC algorithm shows remarked performance improvement over the other algorithms
in all benchmark functions.

Data clustering is the process of grouping data into a number of clusters. The goal of
data clustering is to make the data in the same cluster share a high degree of similarity while
being very dissimilar to data from other clusters. Clustering algorithms have been applied to
a wide range of problems, such as data mining [12], data analysis, pattern recognition [13],
and image segmentation [14]. Clustering algorithms can be simply classified as hierarchical
clustering and partitional clustering [15]. This paper mainly focuses on partitional clustering.
Partitional clustering algorithm divides data vectors into a predefined number of clusters by
optimizing some certain criterion. The most popular partitional clustering algorithm is K-
means. In the past three decades, K-means clustering algorithm has been used in various
domains. However, K-means algorithm is sensitive to the initial states and always converges
to the local optimum solution. In order to overcome this problem, many methods have been
proposed, such as Zhang and hsu have introduced K-harmonic means (KHM) [16], and
Bezdeck has proposed fuzzy c-means (FCM) clustering [17]. Over the last decade, more and
more stochastic, population-based optimization algorithms have been applied to clustering
problems. For instance, Shelokar et al. have introduced an evolutionary algorithm based on
ACO algorithm for clustering problem [18, 19], Merwe et al. have presented PSO to solve the
clustering problem [20, 21], and Karaboga and Ozturk have used the ABC algorithm [22].
In this paper, a CABC algorithm is applied to solve the clustering problem, which has been
tested on a variety of data sets. The performance of the CABC on clustering is compared with
results of the ABC, PSO, and CPSO algorithms on the same data sets. The above data sets are
provided from the UCI database [23].

The rest of the paper is organized as follows. In Section 2 we will introduce the original
ABC algorithm. Section 3 will discuss cooperative search methods, and our cooperative
implementations of the ABC algorithm will be presented. The details of CABC algorithm
will be given in this section. Section 4 tests the algorithms on the benchmarks, and the results
obtained are presented and discussed. In Section 5, the cluster analysis problem is discussed.
The application of CABC algorithm on clustering is shown in Section 6, and the performance
of CABC algorithm is compared with PSO, CPSO, and ABC algorithms on clustering problem
in this section. Finally, conclusions are given in Section 7.

2. The Original ABC Algorithm

The artificial bee colony algorithm is a new population-based metaheuristic approach,
initially proposed by Karaboga [4, 5] and further developed by Karaboga and Basturk
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[6, 7]. It has been used in various complex problems. The algorithm simulates the intelligent
foraging behavior of honey bee swarms. The algorithm is very simple and robust. In the
ABC algorithm, the colony of artificial bees is classified into three categories: employed bees,
onlookers, and scouts. Employed bees are associated with a particular food source that they
are currently exploiting or are “employed” at. They carry with them information about this
particular source and share the information to onlookers. Onlooker bees are those bees that
are waiting on the dance area in the hive for the information to be shared by the employed
bees about their food sources, and then make decision to choose a food source. A bee carrying
out random search is called a scout. In the ABC algorithm, the first half of the colony consists
of the employed artificial bees and the second half includes the onlookers. For every food
source, there is only one employed bee. In other words, the number of employed bees is
equal to the number of food sources around the hive. The employed bee whose food source
has been exhausted by the bees becomes a scout. The position of a food source represents
a possible solution to the optimization problem and the nectar amount of a food source
corresponds to the quality (fitness) of the associated solution represented by that food source.
Onlookers are placed on the food sources by using a probability-based selection process. As
the nectar amount of a food source increases, the probability value with which the food source
is preferred by onlookers increases, too [4, 5]. The main steps of the algorithm are given
below.

In the initialization phase, the ABC algorithm generates a randomly distributed initial
food source positions of SN solutions, where SN denotes the size of employed bees or
onlooker bees. Each solution xi (i = 1, 2, . . . , SN) is a D-dimensional vector. Here, D is the
number of optimization parameters. And then evaluate each nectar amount fiti. In the ABC
algorithm, nectar amount is the value of benchmark function.

In the employed bees’ phase, each employed bee finds a new food source vi in the
neighborhood of its current source xi. The new food source is calculated using the following
expression:

vij = xij + φij
(
xij − xkj

)
, (2.1)

where k ∈ (1, 2, . . . , SN) and j ∈ (1, 2, . . . , D) are randomly chosen indexes, and k /= i. φij is a
random number between [−1, 1]. And then employed bee compares the new one against the
current solution and memorizes the better one by means of a greedy selection mechanism.

In the onlooker bees’ phase, each onlooker chooses a food source with a probability
which is related to the nectar amount (fitness) of a food source shared by employed bees.
Probability is calculated using the following expression:

pi =
fiti

∑SN
n=1 fiti

. (2.2)

In the scout bee phase, if a food source can not be improved through a predetermined
cycles, called “limit”, it is removed from the population, and the employed bee of that food
source becomes scout. The scout bee finds a new random food source position using the
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Main steps of the ABC algorithm.
(2.1) cycle=1
(2.2) Initialize the food source positions xi, i = 1, . . . SN
(2.3) Evaluate the nectar amount (fitness function fiti) of food sources
(4) repeat
(5) Employed Bees’ Phase

For each employed bee
Produce new food source positions vi
Calculate the value fiti
Apply greedy selection mechanism

EndFor.
(6) Calulate the probability values pi for the solution.
(7) Onlooker Bees’ Phase

For each onlooker bee
Chooses a food source depending on pi
Produce new food source positions vi
Calculate the value fiti
Apply greedy selection mechanism

EndFor
(8) Scout Bee Phase

If there is an employed bee becomes scout
Then replace it with a new random source positions

(9) Memorize the best solution achieved so far
(10) cycle=cycle+1.
(11)until cycle=Maximum Cycle Number

Algorithm 1: Pseudocode for ABC algorithm.

equation below:

x
j

i = x
j

min + rand[0, 1]
(
x
j
max − x

j

min

)
, (2.3)

where xjmin and x
j
max are lower and upper bounds of parameter j, respectively.

These steps are repeated through a predetermined number of cycles, called Maximum
Cycle Number (MCN), or until a termination criterion is satisfied [4, 5, 24].

3. Cooperative ABC

In the ABC algorithm, the goal of each individual bee is to produce the best solution. From
expression (2.1), we can see that the new food source is produced by a random neighborhood
of current food position and a random single dimension of D-dimensional vector. This will
bring about a problem that an individual may have discovered a good dimension, but the
fitness of the individual is computed by usingD-dimensional vector, hence we know it is very
probable that the individual is not the best solution in the end, and the good dimension which
the individual has found will be abandoned. For example, there are two vectors x1(10, 8) and
x2(8, 10), and the fitness function f(x) = ‖x‖2, where the global minimizer of the fitness
function is (0, 0). Set x1 and x2 as the current positions. And x′1(8, 6) and x′2(4, 12) represent
the final positions which x1 and x2 can find. We can see that f(x′1) = 100 is smaller than



Discrete Dynamics in Nature and Society 5

f(x′2) = 160, so we select x′1 as the solution of the function. However, we notice that the first
dimension of x′2 is 4 which is closer to the global minimizer than the first dimension of x′1.
Because x′2 is not the best solution, the first dimension of x′2 is not selected. If we can save
the good dimension, the final solution will become x′′1(4, 6) and the quality of solution will be
significantly improved. Therefore, we hope to find every best dimension in all individuals.
We need each individual’s contribution to the best solution.

The same problem is met in the GA and PSO algorithms. Cooperative search technique
has been applied to GA and PSO [9, 10]. To produce a good solution vector, all the
populations must cooperate. And the information from all the populations need to be used.
Therefore, we apply cooperative search to solve the problem in the ABC algorithm and
propose the Cooperative ABC algorithm. In the CABC algorithm, we set a super best solution
vector, namely, gbest and its each component of D-dimensional is the best in all populations.
For gbest: (g1, g2, . . . , gi, . . . , gD)gi corresponds to the ith component of the gbest. The fitness
function is represented by f . in algorithm 1 The main steps of CABC algorithm are given.

In the initialization phase, we evalute the fitness of the initial food source positions
and set the position which has the best fitness as the initial gbest.

In the employed bees’ and onlooker bees’ phase, we use the j component of each
individual to replace the corresponding component of the gbest to find the best position of
the j component. Gbest do not influence the employed and onlooker bees finding new food
sources. It is a virtual bee. It just saves the best one of each component. After all phases, the
best solution achieved by all individuals and the gbest will be compared.

4. Experiments

4.1. Benchmark Functions

In order to compare the performance of the proposed CABC algorithm with ABC, PSO, and
CPSO, we used six well-known benchmark functions. One of the benchmark functions is
unimodal and the others have a number of local minima [25].

The first function is Sphere function and its global minimum value is 0 at (0, 0, . . . , 0).
Initialization range for the function is [−5.12, 5.12]. It is a unimodal function and easy to solve.
The Sphere function is defined as

f1(x) =
D∑

i=1

x2
i . (4.1)

The second function is Rosenbrock function and its global minimum value is 0 at
(1, 1, . . . , 1). Initialization range for the function is [−15, 15]. It is a multimodal function. It has
a narrow valley near the global optimum and it is difficult to converge the global optimum.
The Rosenbrock function is defined as

f2(x) =
D∑

i=1

100
(
x2
i − xi+1

)2
+ (1 − xi)2. (4.2)

The third function is Griewank function and its global minimum value is 0 at
(0, 0, . . . , 0). Initialization range for the function is [−600, 600]. This function has a product
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Main steps of the CABC algorithm
(2.1)cycle=1
(2.2)Initialize the food source positions xi, i = 1 · SN
(2.3)Evaluate the nectar amount(fitnessfiti) of food sources and find the best food source which is

the initial value of gbest
(4) repeat
(5) For each component j ∈ (1, 2, . . . , D)
(6) Employed Bees’ Phase

For each employed bee i = 1 · · ·SN
Replace thejcomponent of the gbest by using thejcomponent of bee i
Calculate the f[newgbest (g1, g2, . . . , xij , . . . , gD)]
If f(newgbest) better than f(gbest)
Then gbest is replaced by newgbest
For employed bee i produce new food source positions vi by using (2.1)
Calculate the value fiti
Apply greedy selection mechanism

EndFor.
(7) Calulate the probability values pi for the solution.
(8) Onlooker Bees’ Phase

For each onlooker bee i = 1 · · ·SN
Chooses a food source depending on pi
Replace the j component of the gbest by using the j component of bee i
Calculate the f[newgbest (g1, g2, . . . , xij , . . . , gD)]
If f (newgbest) better than f(gbest)
Then gbest is replaced by newgbest
For onlooker bee i produce new food source positions vi by using (2.1)
Calculate the value fiti
Apply greedy selection mechanism

EndFor
EndFor

(9) Scout Bees’ Phase
If there is an employed bee becomes scout
Then replace it with a new random source positions

(10) Memorize the best solution achieved so far
(11) Compare the best solution with gbest and Memorize the better one.
(12) cycle=cycle+1.
(13) until cycle=Maximum Cycle Number

Algorithm 2: Pseudocode for CABC algorithm.

term, introducing an interdependency between the variables, thereby making it difficult to
reach the global optimum. The Griewank function is defined as

f3(x) =
1

4000

(
D∑

i=1

x2
i

)

−
(

D∏

i=1

cos
(
xi√
i

))

+ 1. (4.3)

The fourth function is Rastrigin function and its global minimum value is 0 at
(0, 0, . . . , 0). Initialization range for the function is [−15, 15]. It is a complex multimodal
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function, and it has a large number of local optima. Thereby it is easy for optimization
algorithm to trap in local optimum. The Rastrigin function is defined as

f4(x) =
D∑

i=1

(
x2
i − 10 cos(2πxi) + 10

)
. (4.4)

The fifth function is Ackley function and its global minimum value is 0 at (0, 0, . . . , 0).
Initialization range for the function is [−32.768, 32.768]. This function has one narrow global
optimum. The second exponential term that covers its surface with many local minima. The
Ackley function is defined as

f5(x) = 20 + e − 20 exp

⎛

⎝−0.2

√√
√
√ 1
D

D∑

i=1

x2
i

⎞

⎠ − exp

(
1
D

D∑

i=1

cos(2πxi)

)

. (4.5)

The sixth function is Schwefel function and its global minimum value is 0 at
(420.9867, 420.9867, . . . , 420.9867). Initialization range for the function is [−500, 500]. The
Schwefel function is very complex. There are a lot of peaks and valleys on its surface. There
is a second best minimum far from the global minimum and many algorithms fall into it:

f6(x) = D ∗ 418.9829 +
D∑

i=1

− xi sin
(√
|xi|
)
. (4.6)

4.2. Parameter Settings for the Involved Algorithms

In the experiment all functions are tested on thirty dimensions, and the population size
of all algorithms was 100. The PSO algorithm we used is the standard PSO. In PSO and
CPSO algorithm, inertia weight ω varies from 0.9 to 0.7 linearly with the iterations and the
acceleration factors c1 and c2 being both 2.0 [26]. In order to compare the different algorithms,
a fair time measure must be selected. It was, therefore, decided to use the number of function
evaluations (FEs) as a time measure [10]. Thereby FEs in a time measure is our termination
criterion.

4.3. Simulation Results for Benchmark Functions

The experimental results, including the best, worst, average, and standard deviation of the
function values found in 30 runs are proposed in Table 1 and all algorithms were terminated
after 100,000 function evaluations.

From Table 1, the CABC algorithm is better than the other algorithms on four
benchmark functions (Sphere, Rastrigin, Ackley, Schwefel) while the ABC algorithm shows
better performance than the other algorithms on two benchmark functions (Rosenbrock,
Griewank). The PSO converges very slowly and its performance is very bad on four
benchmark functions (Griewank, Rastrigin, Ackley, Schwefel), as can be seen in Figure 1.

On Sphere function, all algorithms perform very well. However, Table 1 shows that the
performance of CABC is much better than the others’. The speed of convergence of CABC is
much faster, as can be seen in Figure 1(a).
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Figure 1: The median convergence characteristics of fitness functions. (a) Sphere function. (b) Rosenbrock
function. (c) Griewank function. (d) Rastrigin function. (e) Ackley function. (f) Schwefel function.

On Rosenbrock function, the ABC algorithm shows better performance in terms of
values of average, best, and standard deviation than the other methods. The CABC algorithm
is a little worse than the ABC. We can see that the CABC, PSO, and CPSO algorithm converge
fast at first, but they become trapped in a local minimum very soon, as can be seen in
Figure 1(b).

On Griewank function, the CABC algorithm performs much worse than ABC, but it is
better than CPSO and PSO algorithms. Table 1 shows that the best value of the fitness function
for CABC algorithm is 0 much smaller than this of the other four methods. Nevertheless,
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Table 1: Results comparison of different optimal algorithms for 30 runs.

30D ABC CABC PSO CPSO

Sphere

Average 1.1396e −014 1.5046e−018 2.8575e −008 2.1792e −006
Best 2.1069e −015 5.9342e −019 1.6427e −009 4.8957e −007

Worst 3.4078e −014 2.7426e −018 2.1292e −007 5.7575e −006
Std 8.0826e −015 5.4311e−019 3.8261e −008 1.4044e −006

Rosenbrock

Average 3.3325e − 001 7.1667e + 000 2.6555e + 001 1.4528e + 001
Best 1.3804e − 002 2.3045e − 002 7.8515e + 000 1.3222e − 003

Worst 1.1599e + 000 7.5039e + 001 9.6353e + 001 7.7598e + 001
Std 2.3784e − 001 1.3472e + 001 1.7080e + 001 2.7135e + 001

Griewank

Average 6.0208e − 007 3.9523e − 003 4.1956e + 002 3.2394e − 002
Best 1.3549e − 011 0 3.6532e + 002 3.3059e − 007

Worst 1.7767e − 005 1.2665e − 001 4.7479e + 002 1.5611e − 001
Std 3.2419e − 006 2.7866e − 002 2.9238e + 001 4.1144e − 002

Rastrigin

Average 1.8603e − 001 1.3642e − 013 4.6671e + 001 3.0123e − 003
Best 3.8257e − 009 0 2.1889e + 001 7.4135e − 004

Worst 9.9496e − 001 3.4106e − 013 8.2581e + 001 6.0268e − 003
Std 3.6710e − 001 8.1216e − 014 1.2656e + 001 1.5145e − 003

Ackley

Average 6.0643e − 006 8.4976e − 012 4.2520e + 000 9.0169e − 003
Best 1.5905e − 006 2.5553e − 012 2.8872e + 000 4.5035e − 003

Worst 1.7602e − 005 2.9208e − 011 5.7625e + 000 1.4871e − 002
Std 3.5254e − 006 7.2161e − 012 8.3370e − 001 2.6789e − 003

Schwefel

Average 1.9897e + 002 3.8183e − 004 9.5252e + 003 7.8976e + 000
Best 4.1238e − 004 3.8183e − 004 8.7622e + 003 7.2405e − 004

Worst 4.7389e + 002 3.8186e − 004 1.0151e + 004 1.1844e + 002
Std 1.1697e + 002 6.3175e − 009 3.7111e + 002 3.0049e + 001

CABC algorithm is easyly trapped at local optimum, so the average value is worse than
ABC. In the initialization phase, the CABC and CPSO algorithms perform well, but their
performance rapidly deteriorates when they run about 30,000 function evaluations, as can be
seen in Figure 1(c).

From the results of Rastrigin and Ackley, we can observe that the ability of exploiting
the optimum of the CABC algorithm is very strong. The CABC is definitely better than the
other four methods for these two test functions. On Rastrigin function, the CPSO is more
successful in terms of all values than ABC. However, on Ackley function, ABC algorithm
outperforms CPSO. We can see that PSO algorithm is easy trapped in local optimum on
Rastrigin and Ackley function. From Figures 1(d) and 1(e), we can observe that the CABC
algorithm is able to continue improving its solution on these two functions.

On Schwefel function, it is a very complex function and there is a second best
minimum that many algorithms fall into. The performance of ABC and PSO algorithms
deteriorate in optimizing this function and the CPSO algorithm performs a little better than
them. However, the CABC algorithm shows better performance on this, as can be seen in
Figure 1(f). From Table 1, we notice that the average, best, worst, and standard deviation
values of the CABC algorithm are almost the same. That means that CABC falls into this
position every time.



10 Discrete Dynamics in Nature and Society

From the results above, it is concluded that the proposed algorithm can be efficiently
used for multivariable, multimodal function optimization. For that reason, in this paper, we
apply our CABC algorithm to solve clustering problem.

5. Data Clustering

5.1. K-Means Algorithm

As mentioned above, the goal of data clustering is grouping data into a number of clusters
and K-means algorithm is the most popular clustering algorithm. In this section, we briefly
describe the K-means algorithm. Let X = (x1, x2, . . . , xn) be a set of n data and let each data
vector be a p-dimensional vector. Let C = {c1, c2, . . . , ck} be a set of K clusters and K denotes
the number of cluster centroids which is provided by the user. In K-means algorithm, firstly,
randomly initialize the K cluster centroid vectors and then assign each data vector to the
class with the closest centroid vector. In this study, we will use Euclidian metric as a distance
metric. The expression is given as follows:

d
(
xi, cj

)
=

√√√
√

P∑

k=1

(
xik − cjk

)2
. (5.1)

After all data being grouped, recalculate the cluster centroid vectors using

cj =
1
nj

∑

∀xi∈cj
xi, (5.2)

where nj is the number of data vectors which belong to cluster j. After the above process,
reassign the data to the new cluster centroids and repeat the process until a criterion is
satisfied. In this study, the criterion is when the maximum number of iterations has been
exceeded. To know whether the partition is good or not, a measure for partition must be
defined. A popular performance function for measuring goodness of the partition is the total
within-cluster variance or the total mean-square quantization error (MSE) [27, 28], which is
defined as follows:

Perf(X,C) =
N∑

i=1

Min
{
‖Xi − Cl‖2 | l = 1, . . . , K

}
. (5.3)

Because K-means algorithm is sensitive to the initial states and always converges
to the local optimum solution, more population-based stochastic search algorithms are
presented. In this paper, we will use CABC algorithm to solve clustering problem.

5.2. CABC Algorithm on Clustering

In the CABC algorithm, each individual represents a solution in K dimensional space. The
number of dimension is equal to the number of clusters. Each component of an individual
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For data vector xi
Calculate the Euclidean distance by using (5.1)
Assign xi to the closest centroid cluster cj .
Calculate the measure function using equation (5.3)

EndFor.
Return value of the fitness function.

Algorithm 3: Main steps of the fitness function.

represents a cluster centroid and each cluster centroid is a p-dimensional vector. In the
initialization phase, we use maximum and minimum value of each component of the data
set (which is to be grouped) as CABC algorithm individuals’ initialization range. And initial
solution is randomly generated in this range. We use expression (5.3) to calculate the fitness
function of individuals. Here the main steps of the fitness function are given in algorithm 3

6. Data Clustering Experimental Results

To evaluate performance of the proposed CABC approach for clustering, we compare the
results of theK-means, PSO, CPSO, ABC, and CABC clustering algorithms using six different
data sets which are selected from the UCI machine learning repository [23].

Motorcycle data (N = 133, d = 2, K = 4): the Motorcycle benchmark consists of a
sequence of accelerometer readings through time following a simulated motorcycle crash
during an experiment to determine the efficacy of crash helmets.

Iris data (N = 150, d = 4, K = 3): this data set with 150 random samples of flowers
from the iris species setosa, versicolor, and virginica collected by Anderson (1935). From each
species there are 50 observations for sepal length, sepal width, petal length, and petal width
in cm. This data set was used by Fisher (1936) in his initiation of the linear-discriminant-
function technique [29].

Wine data (N = 178, d = 13, K = 3): this is the wine data set, which is also taken
from MCI laboratory. These data are the results of a chemical analysis of wines grown in the
same region in Italy but derived from three different cultivars. The analysis determined the
quantities of 13 constituents found in each of the three types of wines. There are 178 instances
with 13 numeric attributes in wine data set. All attributes are continuous. There is no missing
attribute value [29].

Contraceptive Method Choice (N = 1473, d = 10, K = 3): this data set is a
subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The samples are
married women who were either not pregnant or do not know if they were at the time of
interview. The problem is to predict the current contraceptive method choice (no use, long-
term methods, or short-term methods) of a woman based on her demographic and socio-
economic characteristics [29].

Wisconsin breast cancer (N = 683, d = 9, K = 2), which consists of 683 objects
characterized by nine features: clump thickness, cell size uniformity, cell shape uniformity,
marginal adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli,
and mitoses. There are two categories in the data: malignant (444 objects) and benign (239
objects) [29].
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Table 2: Comparison of intracluster distances for the five clustering algorithms.

Data set Criteria CABC ABC PSO CPSO K-means
Average 2.0607e + 003 2.0689e + 003 2.0758e + 003 2.0690e + 003 3.0123e + 003

Motor Best 2.0606e + 003 2.0606e + 003 2.0606e + 003 2.0606e + 003 2.4463e + 003
cycle Worst 2.0624e + 003 2.1267e + 003 2.2125e + 003 2.1103e + 003 4.6832e + 003

Std 3.2158e − 001 1.9118e + 001 4.6354e + 001 1.3340e + 001 4.3906e + 002

Iris

Average 9.4603e + 001 9.4607e + 001 9.7526e + 001 9.5614e + 001 1.0605e + 002
Best 9.4603e + 001 9.4603e + 001 9.4898e + 001 9.4603e + 001 9.7333e + 001

Worst 9.4603e + 001 9.4644e + 001 1.1914e + 002 1.0493e + 002 1.2045e + 002
Std 1.9767e − 009 7.7734e − 003 4.4576e + 000 1.9581e + 000 1.4631e + 001

Wine

Average 1.6294e + 004 1.6298e + 004 1.6372e + 004 1.6302e + 004 1.8061e + 004
Best 1.6292e + 004 1.6294e + 004 1.6294e + 004 1.6292e + 004 1.6555e + 004

Worst 1.6296e + 004 1.6302e + 004 1.6723e + 004 1.6384e + 004 1.8563e + 004
Std 1.5466e + 001 6.2411e + 000 1.0718e + 002 1.8266e + 001 7.9321e + 002

CMC

Average 5.6938e + 003 5.6954e + 003 5.7293e + 003 5.6974e + 003 5.8936e + 003
Best 5.6937e + 003 5.6939e + 003 5.6942e + 003 5.6938e + 003 5.8422e + 003

Worst 5.6939e + 003 5.6986e + 003 5.8777e + 003 5.7107e + 003 5.9344e + 003
Std 4.5501e − 002 1.3824e + 000 4.0245e + 001 4.0160e + 000 4.7165e + 001

Cancer

Average 2.9644e + 003 2.9644e + 003 2.9656e + 003 2.9650e + 003 3.2512e + 003
Best 2.9644e + 003 2.9644e + 003 2.9644e + 003 2.9644e + 003 2.9991e + 003

Worst 2.9644e + 003 2.9644e + 003 2.9726e + 003 2.9694e + 003 3.5215e + 003
Std 1.8380e − 005 1.0731e − 002 2.2730e + 000 1.2854e + 000 2.5114e + 002

Glass

Average 2.2368e + 002 2.2539e + 002 2.5881e + 002 2.5239e + 002 2.3557e + 002
Best 2.1232e + 002 2.1087e + 002 2.2911e + 002 2.2044e + 002 2.1574e + 002

Worst 2.4627e + 002 2.5320e + 002 2.9908e + 002 3.0959e + 002 2.5538e + 002
Std 7.8323e + 000 1.2685e + 001 1.4607e + 001 2.0131e + 001 1.2471e + 001

Ripley’s glass (N = 214, d = 9, K = 6), for which data were sampled from six
different types of glass: building windows float processed (70 objects), building windows
nonfloat processed (76 objects), vehicle windows float processed (17 objects), containers (13
objects), tableware (9 objects), and headlamps (29 objects), each with nine features, which
are refractive index, sodium, magnesium, aluminum, silicon, potassium, calcium, barium,
and iron [29].

For every data set, each algorithm is applied 30 times individually with random initial
solution. The parameters of all algorithms are set like Section 4. Table 2 summarizes the intra-
cluster distances, as defined in (5.3), obtained from all algorithms for the data sets above. The
average, best, and worst solution of fitness from the 30 simulations, and standard deviation
are presented in Table 2. Figure 2 shows the search progresses of the average values found by
four SI algorithms over 30 runs for six data sets. Figure 3 shows the original data distribution
of MotorCycle and Iris data sets and the clustering result by CABC algorithm.

From the values in Table 2, we can conclude that the results obtained by CABC are
clearly better than the other algorithms for all data sets; CPSO is a little better than PSO; the
K-means is the worst for all data sets.

For MotorCycle data set, the optimum of the fitness function for all algorithms, except
K-means, is 2.0606e +003. That means they all can found the global solution. However, the
standard deviations for them are 3.2158e −001, 1.9118e +001, 4.6354e +001, and 1.3340e +001,
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Figure 2: Comparing the convergence of the proposed CABC-based clustering with other approaches in
terms of total mean-square quantization error (a) MotorCycle (b) Iris. (c) Wine. (d) CMC. (e) Cancer. (f)
Glass.

respectively. From the standard deviation, we can see that the CABC algorithm is better than
the other methods.

For Iris data set, CABC and ABC provide the optimum value and small standard
deviation in compare to those of obtained by the other methods. The average values of
the fitness function for CABC and ABC are 9.4603e +001 and 9.4607e +001, respectively; the
standard deviations for CABC and ABC algorithms are less than 1. That means CABC and
ABC converge to the global optimum most of the times. For the CABC, note that I adopted
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Figure 3: The original data distribution of MotorCycle and Iris data sets and the clustering result by
CABC algorithm. (a) MotorCycle distribution (b) MotorCycle clustering result. (c) Iris distribution. (d)
Iris clustering result.

scientific notation and I kept four digits after the decimal point. Actually, the best, worst and,
average values are not exactly the same. They are just very close, so the standard deviation is
very small, but it is different from zero.

For Wine data set, the optimum value, the average value, and the standard deviation
of the fitness function for CABC and ABC are almost the same. The results of CABC and ABC
algorithms are far superior to those of the other methods.

For CMC data set, the best global solution, the worst global solution, the average value
and the standard deviation of the CABC are 5.6937e +003, 5.6939e +003, 5.6938e +003, and
4.5501e −002, respectively. The ABC algorithm is as good as CABC. Both of them significantly
are smaller than the other methods.

For Wisconsin breast cancer data set, the averages of the fitness for CABC and ABC are
almost identical to the best distance, and the standard deviation of the fitness for the CABC
and ABC algorithms are 1.8380e −005 and 1.0731e −002, respectively. It means that the CABC
and ABC algorithms are able to converge to the global optimum 2.9644e +003 in all of runs,
while K-means and PSO may be trapped at local optimum solutions.

Finally, for the Ripley’s glass data set, Table 2 shows that the average, best, worst,
and standard deviation values of the fitness function for CABC algorithm are much smaller
than those of the other four methods. The CABC clustering algorithm is able to provide the
same partition of the data points in all runs. From the result above, for all data sets, CABC
outperforms the other four methods.

Clusterting result of MotorCyle and Iris data sets by CABC algorithm are presented in
Figure 3. The black ring is clustering center.
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7. Conclusion

In this paper, based on the cooperative approaches, a novel Article Bee Colony (ABC)
algorithm is presented, namely, Cooperative Article Bee Colony (CABC). Because of
cooperation, the final solution is produced using information from all the populations. This
results in a significant improvement in the performance in terms of solution quality and
convergence speed. In order to demonstrate the performance of the CABC algorithm, we
compared the performance of the CABC with those of ABC, PSO, and CPSO optimization
algorithms on several benchmark functions. From the simulation results, it is concluded that
the proposed algorithm has the ability to attain the global optimum; moreover, the CABC
definitely outperforms the original ABC.

Because the CABC algorithm can be efficiently used for multivariable, multimodal
function optimization, we apply it to solve clustering problems. The algorithm has been
tested on several well-known real data sets. To evaluate the performance of the CABC
algorithm on clustering problems, we compare it with the original ABC, PSO, CPSO, and k-
means. From the experimental results, we can see that the proposed optimization algorithm is
better than the other algorithms in terms of average value and standard deviations of fitness
function. Additionally, the simulation result illustrates that the proposed CABC optimization
algorithm can be considered as a viable and efficient method to solve optimization problems.
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