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This paper develops a one-sector productive overlapping generations model with environment
where a CES technology is assumed. Relying on numerical and geometrical approaches, various
dynamic properties of the proposed model are explored: the existence of the phenomenon of
multistability or the coexistence of different attractors was demonstrated. Finally, we describe a
nontypical global bifurcation which determines the appearance of an attracting cycle.

1. Introduction

After the seminal contribution of John and Pecchenino [1] the OLG specification has
become a standard framework for the analysis of interplays between economic growth and
environmental quality. In this field, during the last decade, two different lines of research
have been developed: the former has focalized on the role of environmental policies (taxation
schemes, patents, etc.), considering the static structure of the models, that is, when the
variables are evaluated at the steady states (see, e.g., [2–5]); the latter has investigated the
possibility of nonlinear dynamics out of the steady states (see, e.g., [6–8]).

From a general point of view, in contrast with the Solow or the Ramsey models, the
OLG framework seems to provide a more appealing description of environmental dynamics:
(a) the discrete time allows to introduce temporal lags between anthropic activities and
their environmental impact; (b) the demographic structure (i.e., the finite living agents
assumption) creates a decisional mechanism for which the evolution of environment is not
internalized by agents and a cohort may generate environmental changes that outlive them
and rebound over successive cohorts.
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We stress the fact that while the papers on the policy implication of environment
are stated in a really general framework, to avoid analytical complexity, most of the
studies on the dynamic aspects of such OLG models are based on the Cobb-Douglas
specification of technology and on simplifying assumptions (e.g., the gross substitution
between environment and private consumption) on preferences.

The aim of this paper is to study the dynamics of a model in which a simple
specification of utility is assumed but a less restrictive specification of production function
is introduced. (In a related paper, by Antoci et al. [9], the roles of assumptions on preferences
and of heterogenity of agents are investigated.)

A part from the more general assumptions on technology, the present paper stays very
close to the analytical specification proposed in John and Pecchenino’s work. We consider an
overlapping generations model with the following characteristics: there exists a population
of individuals whose welfare depends on the stock Et of a free access environmental good
and on the consumption ct of a private good. We assume that Et is negatively affected
by private consumption, but it is improved by specific environmental expenses. Different
from Zhang’s model, where a social planner is introduced, according to Antoci et al. [9] we
consider a decentralized solution: each economic agent can invest in environment but he
considers as given the allocations of the other agents of the same generation. (This implies
that the choices of each agent generate negative externalities on the others, and because the
environment is a public good, its conservation is characterized by the standard free rider
problem, intragenerational and intertemporal.)

In this context, we describe conditions for which interesting dynamic phenomena
arise and we show that coexistence of attractive steady states or coexistence of nontrivial
attractors may emerge for very different parameters configurations. According to works in
continuous time (see e.g., [10, 11]), these results suggest that environmental externalities
could be an engine for Poverty trap and/or complicated behaviour. (Poverty trap is a
self-perpetuating condition where an economy, caught in a vicious condition, suffers from
persistent underdevelopment.)

The paper is organized as follows. In the next section, we develop the basic OLG model
where each generation is comprised of N identical individuals and they act strategically. In
Sections 3 and 4 we study the static and dynamic behaviour.

2. Model Setup

We assume that environmental quality at time t could be described by a positive synthetic
index Et. Without human activity the dynamics are given by

Et+1 = (1 − b)Et + bE (2.1)

with b ∈ (0, 1), E > 0. It follows that such index tends asymptotically to the long-run
value E. To introduce the influence of anthropic activity, we assume that the economy
is populated by two-period lived agents. At each date t, N identical persons are born.
In the first period of their life (when young), the agents supply inelastically their time-
endowment, normalized to one, to productive sector. Individuals born in t have preferences
defined over consumption and an environmental index in old age, respectively, ct+1 and
Et+1. (This assumption is adopted in several overlapping generations models (see, among
the others, [6, 9]). It simplifies our analysis by abstracting from the consumption-saving
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choices of agents.) They allocate the income between current consumption and in investment
to preserve or improve the environmental quality, mt and saving st. (Et could be interpreted
as an index of the environmental amenity or as the stock of the free access environmental
good at time t. It is common to all agents and could be regarded as a public good.)

We assume that the impact of consumption and environmental expenses is linear:

Et+1 = (1 − b)Et − βNct + γNmt + bE. (2.2)

β > 0 measures the degree of the impact of private consumption on environmental quality,
and γ > 0 measures the efficiency of environmental expenses.

The preferences of an individual are representable by a utility function U(ct+1, Et+1).
U is assumed twice continuously differentiable and such that Uc(·) > 0, UE(·) > 0, Uc,c(·) <
0, UE,E(·) < 0, and Uc,E() > 0. We assume also that the Inada condition limc→ 0 Uc(c, E) = +∞
holds in order to avoid corner solutions with c = 0.

2.1. The Productive Sector

The economy is perfectly competitive so we can introduce the representative firm producing
the private good. We consider a CES-technology

Y = Af(kt) = A
(
αk
−ρ
t + (1 − α)

)1/−ρ
, (2.3)

where kt is physical capital at time t, A > 0 is a productive parameter, α ∈ (0, 1) measures
the degree of capital intensity of production, while θ = 1/(1 + ρ) (with ρ > −1, ρ /= 0) is the
elasticity of substitution between labour and capital. We assume that capital depreciates at
rate δ. From the usual optimality conditions, equilibrium expressions of the wage and of the
interest rate follow that

wt = A(1 − α)
(
αk
−ρ
t + (1 − α)

)−(1+ρ)/ρ
,

rt = Aαk−1−ρ
(
αk
−ρ
t + (1 − α)

)−(1+ρ)/ρ
.

(2.4)

2.2. Agent’s Problem

To describe the allocation problem of the resource, we consider a decentralized system
of decisions where agents act strategically. Each individual takes as given the wage,
wt, the return on saving, rt+1, environmental quality at the beginning of period t, Et,
and consumption of the old generation, ct. Furthermore he formulates expectations on the
investment in environmental maintenance and improvement of the other agents.

Assuming that agents are identical, the problem faced by a generic agent born in t is
to maximize with respect to ct+1 and mt+1 the objective function

max
ct+1,mt+1

U
(
ct+1, E

e
t+1

)
(2.5)
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with the constraints

wt = st +mt,

ct+1 = (1 + rt+1 − δ)st,
(2.6)

where Eet+1 is the expectation on environmental quality at the period t + 1:

Eet+1 = (1 − b)Et − βNct + γ
(
mi
t + (N − 1)me

t

)
+ bE (2.7)

depending on me
t , that is, the expectations of agent i about the strategies of the other identical

N − 1 agents.

3. Equilibrium Dynamics

We assume that the young agent, at time t, is able to perfectly foresee the values of others’
protections (and consequently, the environmental index Et+1). The equilibrium conditions for
all t become

−Uct+1(·)(1 + rt+1 − δ) + γ ·UEet+1
(·) = 0,

me
t = m

∗
t ,

Et+1 = (1 − b)Et − βNc∗t + γNm∗t + bE,

kt+1 = si∗t ,

equation (2.4).

(3.1)

The first equation in (3.1) is the F.O.C. for the generic agent and implicitly defines the solution
for his maximization problem: m∗t , s

∗
t , c
∗
t ; the second group imposes the ex-post perfect foresight

condition on mt; the third and the fourth equations are the equilibrium dynamics equations
for environment and physical capital; (2.4) imposes the market equilibrium conditions.
Notice that each path followed by the economy represents a Nash equilibrium; that is, no
agent has an incentive to modify his choices if the choices of the others are fixed.

Analogously to the model of Zhang, to make the problem more handable and to reduce
the dimensionality of the system, we introduce the following assumption.

Assumption 1. Let

ηc,E ≡
∣∣∣∣
Δc/c
ΔE/E

∣∣∣∣ =
(∂U/∂c)/c
(∂U/∂E)/E

=
E

c

UE

Uc
> 0 (3.2)

be the elasticity of private consumption of agent i with respect to environment. We assume
that this value is constant. (see Zhang for further comments. Nevertheless, notice that a
large numbers of usual functional specifications of utility functions satisfy this property:
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logarithmic, Cobb-Douglas, and Ces.) Notice that this parameter measures the reactivity of
private consumption to environmental quality.

The following equilibrium relation holds:

kt =
Et
ηc,Eγ

, (3.3)

and the expressions of c∗t and m∗t in terms of Et and Et+1 are

c∗t = (1 + rt − δ)kt = Aα
[
Et
γηc,E

]−ρ(
α

[
Et
γηc,E

]−ρ
+ (1 − α)

)−(1+ρ)/ρ
+ (1 − δ)

[
Et
γηc,E

]
,

m∗t = wt − st = A(1 − α)
(
α

[
Et
γηc,E

]−ρ
+ (1 − α)

)−(1+ρ)/ρ
−
[
Et+1

γηc,E

]
.

(3.4)

Now, we can characterize the intertemporal equilibrium conditions through a single
nonlinear difference equation in Et:

Et+1 =
ηc,E

N + ηc,E

[(
(1 − b) −

Nβ(1 − δ)
γηc,E

)
Et +NA

[
γ(1 − α) − βα

[
Et
γηc,E

]−ρ]

×
{
α

(
Et
γηc,E

)−ρ
+ 1 − α

}−(1+ρ)/ρ
+ bE

]
≡ G(Et).

(3.5)

The dynamics are described by a very complicated nonlinear equation and we are not able
to characterize analytically the steady states of the model. Nevertheless, some partial results
can be derived.

Lemma 3.1. (a) If ρ < 0, then limEt→ 0G(E) = ηc,E/(N + ηc,E)(NAγ(1 − α)−1/ρ + bE) > 0.
(b) If ρ > 0, then limE→ 0G(E) = bEηc,E/(N + ηc,E) > 0.

From the definition of G, it follows that the positivity of G is a necessary condition to
have a well defined evolution of E. Since limE→ 0G(E) > 0 for every values of parameters,
then G is positive on an interval [0, E∗), with E∗ being possible infinite. Nevertheless, to have
the dynamics defined for every initial condition on [0, E∗) and for every t, more restrictive
assumptions are required.

Proposition 3.2. Let Esup be the superior extremum for G on R+ and let E∗ be the first positive value
of E such that G(E∗) = 0. The dynamics described by G are defined for every initial condition on
[0, E∗) and for every t if and only if G(Esup) < E∗. If E∗ does not exist, then the map is well defined
for each t and for every initial condition.

We distinguish two cases with respect to the sign of ρ.



6 Discrete Dynamics in Nature and Society

3.1. The Case ρ < 0

To investigate the dynamics of the model under this assumption the following lemma that
gives some insights on the conditions in Proposition 3.2 is useful.

Lemma 3.3. One has the following.
Let ρ < 0, then

(a) If 1 − b − Nβ(1 − δ)/γηc,E > NAβα2/γηc,E, then limE→∞G(E) = ηc,E/(N +
ηc,E)(NAγ(1 − α)(1 − α)−(1+ρ)/ρ + bE) and the dynamics are defined for every t.

(b) If 1 − b −Nβ(1 − δ)/γηc,E < NAβα2/γηc,E, then there exist Ê : G(Ê) = 0.

The current case is easy enough to study because a unique steady state exists for all
the configurations of parameters, as proved by the following proposition.

Proposition 3.4. If ρ < 0, then there exists a unique positive steady state.

Proof. To study the existence and the numerosity of the interior steady states of (3.5), we
introduce the functions h and r, where

h(E) ≡
ηc,E

N + ηc,E
NA

[
γ(1 − α) − βα

(
E

γηc,E

)−ρ]{
α

(
E

γηc,E

)−ρ
+ 1 − α

}−(1+ρ)/ρ
+ bE,

r(E) ≡ E
[

1 −
ηc,E

N + ηc,E

(
1 − b −

Nβ(1 − δ)
γηc,E

)]
.

(3.6)

Steady states are given by the values of E such that r(E) = h(E). The graph of r is a line with
positive slope and

sign
(
h′(E)

)
= sign

⎛
⎜⎝βρ +

(
1 + ρ

)γ(1 − α) − βα(Et/γηc,E
)−ρ

(
α
(
E/γηc,E

)−ρ + 1 − α
)

⎞
⎟⎠. (3.7)

It follows that h′ becomes negative for high enough value ofE.With easy but long calculations
it is possible to verify that h is concave in the interval where h is increasing. It implies that h
is bell shaped and a unique equilibrium (stable or unstable) exists.

Essentially, for ρ < 0, we have the same qualitative results of the Zhang model: the
unique steady state could be attractive or repelling and, in the second case, limit cycles or a
chaotic attractor arises. However, differently from the Zhang model and Antoci et al. [9], the
productivity parameter A affects the stability of the equilibrium.

Figure 1(a) shows the case in which the interior steady state is globally stable, with
γ = 1.56, α = 0.831, β = 0.55, ηc,E = 5, b = 0.52, A = 3, ρ = −0.4,N = 2000, δ = 0.001, E =
1. Considering long-run dynamics, it is plausible to assume that A may increase due to
technological development. Starting from this configuration of parameters, if A increases, the
equilibrium loses its stability and the map undergoes a period doubling route to chaos. (The
result is quite robust and holds for many different constellations of parameters.) Figure 1(b)
shows the case in which for A = 6, the map generates chaotic dynamics.



Discrete Dynamics in Nature and Society 7

1.41.050840.698320.349160

Et

0

0.34914

0.69827

1.05086

1.4
E
t+

1

(a)

10.80.60.40.20

Et

0

0.24938

0.49877

0.75062

1

E
t+

1

(b)

Figure 1: (a) Globally stable equilibrium. (b) Chaotic dynamics.

3.2. The Case ρ > 0

In the current case, more interesting phenomena are possible. Following the same steps as in
case ρ < 0, we state first the following lemma.

Lemma 3.5. Let ρ > 0, then

(a) if 1 − b < Nβ(1 − δ)/γηc,E, then there exist Ê : G(Ê) = 0;

(b) if 1 − b > Nβ(1 − δ)/γηc,E, then limE→+∞G(E) = +∞ and the dynamics are defined for
every t.

By using Lemma 3.5, it is easy to prove the next statement.

Proposition 3.6. Let ρ > 0, then, generically, an odd number of steady states exists and the steady
state with an even index is unstable.

The main difference from the case ρ < 0 is that multiple equilibria may exist. If this
case occurs, then we can rank the equilibria according to the associated well-being.

Proposition 3.7. The values of the utility function Ut and the index Et+1 are positively correlated.
This implies that if there exist two steady statesE∗1 andE

∗
2 such thatE

∗
2 > E

∗
1, thenE

∗
2 Pareto-dominates

E∗1; that is, E
∗
1 is a poverty trap.

Even if analytically we are not able to prove it, numerically, we have verified that
a maximum number of three steady states exist. It is interesting to note that a necessary
condition to have multiple steady states is that ρ is enough far from 0. In fact if we consider
ρ → 0+, then f(k) tends to the Cobb-Douglas function and this case the map admits a unique
steady state (see e.g., [12]). In the next section we develop the analysis when multiple steady
states occur.



8 Discrete Dynamics in Nature and Society

21.510.50

Et

0

0.5

1

1.5

2

E
t+

1

(a)

2.82.11.40.70

Et

0

0.7

1.4

2.1

2.8

E
t+

1

(b)

Figure 2: (a) Unique stable equilibrium. (b) Fold bifurcation and the birth of a poverty trap.

4. The Role of the Increasement of Productivity

In this section, we will concentrate on the case ρ > 0 and we investigate the role of productive
parameter A.

Notice that a riseup of A affects in a nonunivocal way the points of the map. The
points of the map on the left of Ê ≡ (γ(1 − α)/βα)−1/ρ are translated upwards, the reverse
occurs for the points on the right of Ê, and this stretch makes the two ”humps” of the map
more pronounced.

It follows that an increasement of A could be the engine of a poverty trap. To
understand the phenomenon, we provide a numerical example. Let, γ = 1.12, α = .621, β = .1,
E = 33, ηc,E = 1.03, b = .7, A = 0.8, ρ = 10.5, N = 100, and δ = 0.8. As shown in Figure 2(a),
a unique attractive steady state E∗1 exists. If the value of productivity A grows until A = 0.88,
two new steady states, E∗2, E

∗
3, are born via a fold bifurcation , where E∗2 < E∗3 is repelling and

separates the basin of attractions of E∗1 and E∗3. In Figure 2(b), we have considered A = 0.92,
for which we have E∗1= 0.22, E∗2 = 1.25, and E∗3 = 2.23. Notice that the growth of productivity
does not imply for an economy the convergence to the more developed state E∗3: because of
the presence of a threshold, economies with a low E at the moment of the bifurcation continue
to converge to E∗1.

This result contributes to the growing literature, initiated by Azariadis and Drazen
[13], on poverty traps. It provides a different explanation of their emergence that resides
in the existence of a threshold in the relationship among productivity and environmental
quality.

Differently from what we have seen previously, we present an experiment that shows
how changes in technology may be an engine of complex dynamics and bistable regime. To
give some insights on the stability of equilibria, we rely on numerical analysis. In particular,
apart from the graphical analysis, we will use the so-called bifurcation diagrams, showing
the possible long-term values (steady states, periodic or chaotic orbits) of the system as a
function of a parameter. In what follows, we fix γ = 0.04, α = 0.07, β = 0.1, E = 22, ηc,E = 11,
b = 0.58, ρ = 12, N = 100, and δ = 0.4 and we use A as the bifurcation parameter. Starting
from A = 0.179 a unique unstable steady state E1 exists, and this is enclosed by an attractive
2-period limit cycle. By increasing the value of A the trajectories near to equilibrium follow
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Figure 3: Overlapping bifurcation diagrams varying A.
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Figure 4: (a) Two chaotic trajectories starting from 0.83 to 0.28 (A = 0.86). (b) Enlargement of the attractor
(A = 1.29).

to the classical period doubling route to chaos. For A = 0.86, via a fold bifurcation two other
steady states E3, E2 arise with E3 < E2 < E1 (the bifurcation value is A = 0.82); E3 is attracting
while E2 is repelling and separates the basins of attraction of E3 and the basin of the chaotic
attractor. If we let A increase, then the point E3 loses its stability through cascades of flip
bifurcations (see Figure 3) and there exists a space of parameters for which the coexistence
of two attractors occurs (see Figure 4(a)). If we get A higher, the attractor dies (A = 0.89)
and its points are attracted by the remaining attractor that lives at the right of the repelling
steady state E∗2. A further increase of A (A > 1.18) causes an enlargement of the attractor that
invades the space before occupied by the other attractor (see Figure 4(b)).

4.1. The Emergence of a Nonlocal Bifurcation

In the present paragraph we describe an uncommon bifurcation arising for a particular set of
parameters. To illustrate such scenario we fix γ = 0.04, α = 0.07, β = 0.1, E = 22, ηc,E = 11,



10 Discrete Dynamics in Nature and Society

10.90.80.70.60.50.40.30.2

Et

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
t+

1

G(E)

G2(E)

Figure 5: Evolution of the second iterate (G is drawn at the bifurcation value A = 0.132).
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Figure 6: Time evolution of E with three different initial conditions: E(0) = 0.532 (the unstable steady
state), E(0) = 0.63 (trajectory converging to the 2-period stable limit cycle), and E(0) = 0.862 (trajectory
diverging from the unstable 2 period limit cycle).

b = 0.58, ρ = 12, N = 100, and δ = 0.4 and we let A vary. In Figure 5 we show the evolution of
the second iterate of the map at the increase of A.

We can note that second iterate is characterized by 2 humps or more exactly by a
maximum and a minimum point. If we letA increase, such humps become more pronounced:
starting from A = 0.10, G2 has no intersection point with the 45◦-line (the dashed line). For
A = 0.132 the second iterate creates 2 tangent points (the solid line), and for A = .16 two fixed
points of the second iterate are born (the dotted line). In this process, driven by the increase of
A we assist to a fold bifurcation of G2 inducing a 2-period stable cycle and a 2-period unstable
cycle. We underline that this is a global bifurcation and not a local one: it arises ”far” from
the fixed point that holds its instability for the whole process (in Figure 5 we have drawn
G when the bifurcation occurs). In particular, as shown by the simulations in Figure 6, the
interior 2-period cycle is stable, while the external is unstable.
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5. Conclusions

We have investigated the local and global dynamics of an overlapping generations model
with environment when a CES production function is assumed. Despite its simplicity, this
model displays very rich dynamics. First of all, differently from other works inspired by
the paper of John and Pecchenino [1], multistability could occur even if a strictly positive
environmental maintenance is assumed. Moreover, if we let productivity increase, we find
the emergence of complex dynamics: apart from the classical period-doubling cascades to
chaos, nonlocal bifurcations may occur and drastically change the global behaviour of the
model.
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