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The sensitivity minimization of feedback system is solved based on the theory of Nevanlinna-
Pick interpolation with degree constraint without using weighting functions. More details of
the dynamic characteristic of second-order system investigated, which is determined by the
location of spectral zeroes, the upper bound γ of S, the length of the spectral radius and the
additional interpolation constraints. And the guidelines on how to tune the design parameters are
provided. Gyro stabilized pod as a typical tracking system is studied, which is based on the typical
structure of two-axis and four-frame. The robust controller is designed based on Nevanlinna-
Pick interpolation with degree constraint. When both friction of LuGre model and disturbance
exist, the closed-loop system has stronger disturbance rejection ability and high tracking precision.
Numerical examples illustrate the potential of the method in designing robust controllers with
relatively low degrees.

1. Introduction

Gyro stabilized pod can be used to isolate line of sight (LOS) from the movement and
vibration of carrier and guarantee pointing and tracking for target in electro-optical tracking
system, so in modern weapon systems it has been widely applied [1, 2]. The carrier vibration
in the azimuth, pitch and roll direction induces the LOS of image sensor to rotate and causes
the image blur and affects miss distance of the target, leading to the tracking performance
degradation. In order to overcome these problems, we must establish a stable servosystem to
isolate LOS from the movement and vibration of carrier, so as to guarantee system reliability
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and image quality [3]. The servosystem must not only have high precision and good dynamic
quality, but also have disturbance rejection ability and large scale of adaptation range [4].
Along with improving control precision of gyro stabilized system, conventional methods
have been limited, therefore, new design methods need to be found to improve system
performance.

Up to now, PID control is still the most popular method applied in gyro stabilized pod.
With the development of control technology in inertial system, a variety of control methods
are produced, such as neural network control [5], Fuzzy control [6], H∞ control [7], and
optimal control [8], and they have gradually been applied to control the gyro stabilized
platform. Switching control method has received much more attention recently, but still
remaining at the theory analysis [9–11].

Weighting functions are adopted in conventional robust controller design, which are
chosen to reflect the design objectives and the knowledge of the disturbances and sensor
noise. In the optimal control design including H2 and H∞ control, a key step is the selection
of weighting functions [12]. In many occasions, as in the scale case, the weights are chosen
purely as a design parameter without any physical bases. What is worse is that the high
order of weighting function will lead to high order of controller. Gahinet and Apkarian [13],
and Skelton et al. [14] have introduced a technique for feedback design that allows such a
constraint on the degree of the controller, in which performance and robustness are expressed
by linear matrix inequalities. The relation between Nevanlinna-Pick (shortly denoted by NP)
interpolation with degree constraint and sensitivity reduction is studied by Georgiou and
Lindquist, which provides an alternative handle on McMillan degrees in feedback design
[15]. The main difference between NP interpolation method and the existing H∞ design
methods is that the frequency weighting functions are not used to shape the frequency
response of S. Another advantage of the method based on the NP interpolation theory is
that controllers with relatively low degree can be obtained directly, without any model and
controller reduction [16, 17].

Sensitivity minimization is one of the most fundamental and important issues in
designing feedback system controllers. Although the idea of the application of NP theory
with degree constraint to sensitivity, minimization was presented in [18]. Nagamune firstly
gave the computation method for NP interpolation with degree constraint [19].

More details of the dynamic characteristic of second-order system is investigated in
this paper, which is determined by the location of spectral zeroes, the upper bound γ of S, the
length of the spectral radius, and the additional interpolation constraints. And the guidelines
on how to tune the design parameters are provided.

This paper is organized as follows. In Section 2, the sensitivity reduction problem is
revisited and it is reviewed how the problem is reduced to the NP interpolation problem. In
Section 3, the NP interpolation theory with degree constraint is reviewed, and the dynamic
characteristic of second-order system is investigated which is determined by the interpolation
conditions. In Section 4, gyro stabilized pod as a typical tracking system is studied, which is
based on the typical structure of two-axis and four-frame. The robust controller is designed
based on NP interpolation with degree constraint.

2. Sensitivity Reduction of Tracking System and NP Interpolation

Considering a typical one degree of freedom stabilization system simplified to be suited
to other applications such as stabilizing a sensor for electro-optical data gathering systems,
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Figure 1: Configuration of feedback system.

the control configuration is shown in Figure 1. It consists of the interconnected P(z) and the
controller C(z) forced by command r, sensor noise n, plant input disturbance di, and plant
output disturbance d.

Without loss of generality, P(z) is assumed to be real rational and proper, and all the
unstable poles and zeroes of P(z) are assumed to be simple and strictly outside the unit circle.
Otherwise, [20–22] are referred for the reduction of cases with multiple and boundary zeroes
and poles to this case.

Suppose that P has np poles and nz zeroes in the closed right half plane (including
point at infinity) let us denote them p1, p2, . . . , pnp and z1, z2, . . . , znz . If np /= 0, P is unstable,
which is needed to be stabilized by feedback. Therefore, a controller C is designed so that
the closed-loop system fulfills certain design specifications, as depicted in Figure 1. It is well
known that the transfer function from r to e that is called sensitivity function,

S =
1

1 + PC
, (2.1)

which is also the transfer function from disturbance to the output, plays an important role
in designing feedback controllers, that is because the frequency response of the sensitivity
function determines the ability of the closed-loop system for disturbance rejection, tracking,
robustness against noise and uncertainties, and so on.

The first object is to stabilize the tracking system in such a way that the transfer
functions between any two arbitrary points in the closed-loop system is stable that is called
internal stability. It is well known that internal stability can be guaranteed by the following
Theorem 2.1.

Theorem 2.1 (see [23]). Internal stability of tracking system is achieved if and only if the sensitivity
function is stable and satisfies the interpolation conditions:

(1) S(zk) = 1, k = 1, 2, . . . , nz,

(2) S
(
pk
)
= 0, k = 1, 2, . . . , np.

(2.2)

Secondly, a reduction of the H∞-norm of S implies an attenuation of the effect of
disturbances on the output since ‖y‖2 ≤ ‖S‖∞‖d‖2. For robustness and tracking performance
it is also desirable to put a specified uniform bound on the absolute value of the sensitivity
function. For example, we need to bound ‖S‖∞ � supω∈(−∞,+∞)|S(jω)|, since ‖e‖2 ≤ ‖S‖∞‖r‖2.
Therefore we require that ‖S‖∞ < γ for some prescribed γ > 0.
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With this bound, the suboptimal solution set to a scalar H∞ control problem is
equivalent to the solution set to the classical NP interpolation problem

SNP �
{
S ∈ RH∞ : ‖S‖∞ < γ, S

(
qi
)
= wi, i = 0, 1, . . . , n

}
. (2.3)

By Pick’s Theorem, this problem has a solution if and only if the Pick matrix

P �
[

1 −wkwl

1 − q−1
k q

−1
l

]n

k,l=0

> 0, (2.4)

is positive definite [24].

3. NP Interpolation with Degree Constraint

3.1. Problem Formulation

For simplicity, we assume that the interpolation points, qi, i = 0, 1, . . . , n, are distinct and the
interpolation values,wi, i = 1, . . . , n, are self-conjugate. Without loss of generality, we can also
assume that q0 = ∞ and that w0 is real. The NP interpolation with degree constraint relating
to the sensitivity function can be described as follows.

Given the sets of interpolation points and interpolation values {(qi,wi), i = 0, 1, . . . , n},
|qi| > 1, satisfying

P �
[

1 −wkwl

1 − q−1
k q

−1
l

]n

k,l=0

> 0, (3.1)

a function from a subset of SNP

SNPDC = SNP ∩ SDC(n), (3.2)

is desired, where SDC(n) � {S : degS ≤ n}.
The merit of bounding the degree of a closed-loop transfer function S is attributed

to the following Theorem 3.1. And one of the main design parameters of S is stated in
Theorem 3.2, which are called the spectral zeros.

Theorem 3.1 (see [25]). Suppose P is strictly proper and that S satisfies the interpolation conditions
(2.2). Then the controller

C =
1 − S
PS

(3.3)

satisfies the degree bound

degC ≤ degP − nz − np + degS, (3.4)

where nz and np are the number of unstable zeros and poles of P , respectively.
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Theorem 3.2 (see [16]). For each monic real stable polynomial:

ρ(z) = zn + ρ1z
n−1 + · · · + ρn, (3.5)

there exists a unique pair of real polynomials:

a(z) = a0z
n + a1z

n−1 + · · · + an, a0 > 0,

b(z) = b0z
n + b1z

n−1 + · · · + bn, b0 > 0
(3.6)

which satisfy

(1) S(z) = b(z)/a(z) is strictly bounded real,

(2) S(qi) = wi, i = 0, 1, . . . , n,

(3) γ − S(z)S(z−1) = ρ(z)ρ(z−1)/a(z)a(z−1).

In other words, for each ρ(z), there exists a unique solution S(z) to the NP problem
with degree constraint. In addition, the relation between the set of self-conjugate n zeros of
ρ(z) inside the unit circle in the complex plane and the set of the solution pairs (a(z), b(z))
of the NP problem with degree constraint is bijective. In particular, zeros of ρ(z) is called the
spectral zeros of the function S(z), and the distance between the spectral zero and the origin is
called the spectral radius. In [16], it is shown how to determine the unique S(z) numerically
from the set of spectral zeros of the function S(z) by transforming the infinite dimensional
entropy maximization problem into a dual finite dimensional strictly convex minimization
problem.

If it is impossible to find an S(z) meeting ‖S‖∞ < γ by using the spectral zeros, we
must introduce extra interpolation constraints:

S(λi) = αi, i = 1, . . . , ne, (3.7)

where |λi| > 1. That is the degree bound of S(z) will be raised. Then the NP interpolation
with degree constraint is redefined as

SNPDC = SNP ∩ {S : S(λi) = αi, i = 1, 2, . . . , ne} ∩ SDC(n + ne). (3.8)

The additional interpolation sets can be chosen freely except with conditions that they do
not violating the positivity of the corresponding Pick matrix and that the total interpolation
data set forms self-conjugate pairs, if they are not real. It is also important to note that
additional interpolation constraints can influence both gain and phase of S(z). Next, the
relation between the location of the spectral zeros/additional constrains and the shape of
the corresponding |S(z)|.
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Figure 2: Influences of a spectral zero λ on |S(z)|.
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Figure 3: Influences of an extra interpolation constraint S(λ) = α on |S(z)|.

3.2. The Relation between Spectral Zeros and |S(z)|

If the spectral zero λ locates near the unit circle z = ejθ1 , it will lifts |S(z)| up to the level near
the upper bound γ at the frequency θ1, as depicted in Figure 2. This is because if λ is a spectral
zero close to the unit circle z = ejθ1 ,

Γ(λ) = γ2 − S(λ)S
(
λ−1

)
= 0, (3.9)

and hence |S(ejθ1)| ≈ γ . Then, by the water-bed effect, the sensitivity will often be lowered in
other parts of the spectrum [9].

3.3. The Relation between Extra Interpolation Constraints and |S(z)|

Introducing an extra interpolation condition S(λ) = α, where λ is close to z = ejθ2 , fixes the
modulus of the sensitivity at a level close to |α| and the phase of |S(z)| close to that of α at the
frequency θ1, as depicted in Figure 3. Thus, (λ, α) can control the magnitude |S(z)| and the
phase of the sensitivity. However, the more extra interpolation constraints, the larger bound
of deg(S). From Theorem 3.1, the controller degree bound will increase by the number of
extra interpolation constraints. Thus, we should try to use additional constraints as little as
possible.
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3.4. The Relation between NP Interpolation Conditions and
the Dynamic Characteristic

In this section, we will propose general strategies to tune the design parameters by inves-
tigating the relation between NP interpolation conditions and the dynamic characteristic of
second-order system.

Suppose the continuous-time plant described by

P(s) =
1 − s

s2 + s + 1
, (3.10)

and the H∞ norm bound constraint

‖S‖∞ < 2. (3.11)

First, by Möbius transform: s = (z − 1)/(z + 1), which conformally maps the right half
plane into the complement of the unit disk:

P(z) =
2(z + 1)
3z2 + 1

, (3.12)

the set of corresponding to SNPDC is obtained in the discrete-time setting

SNPDC � {S ∈ RH∞, ‖S‖∞ < 2, S(−1) = 1, S(∞) = 1} ∩ SDC(1). (3.13)

Note that the condition S(−1) = 1 in (3.13) is a boundary interpolation constraint,
which makes the NP interpolation problem complicated. This difficulty can be circumvented
by introducing another variable ε > 0. Define a new function as follows:

S̃(z) � S

(
z

1 + ε

)
, (3.14)

the NP interpolation with degree constraint becomes

S̃NPDC �
{
S̃ ∈ RH∞,

∥∥∥S̃
∥∥∥
∞
< 2, S̃(−1 × (1 + ε)) = 1, S̃(∞) = 1

}
∩ SDC(1). (3.15)

If ε = 0.005, the set (3.15) will be

S̃NPDC �
{
S̃ ∈ RH∞,

∥∥∥S̃
∥∥∥
∞
< 2, S̃(−1.005) = 1, S̃(∞) = 1

}
∩ SDC(1). (3.16)

Especially, we will introduce an extra interpolation condition to investigate the
influence to dynamic characteristic of second-order system. We choose S̃(1.002) = 0 as the
adding constraint. The NP interpolation problem with degree constraint is redefined as

S̃NPDC �
{
S̃ ∈ RH∞,

∥∥∥S̃
∥∥∥
∞
< 2, S̃(−1.005) = 1, S̃(∞) = 1, S̃(1.002) = 0

}
∩ SDC(2). (3.17)
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Next, we will study how the following four factors influence the dynamic characteris-
tic of second-order system: the location of the spectral zeros, the upper bound γ of ‖S‖∞, the
length of spectral radius, and the additional constrains.

(a) The Influence of the Location of the Spectral Zeros.
When we locate 5 groups spectral zeros: 0.97e±0.1i, 0.97e±0.785i, 0.97e±1.57i, 0.97e±2.355i,

0.97e±3i, which are self-conjugate, and of the same length of spectral radius, the corresponding
step response of closed-loop system is depicted in Figure 4, denoted by y1, y2, y3, y4, y5. The
closer to positive real semiaxis the spectral zeros, the larger the overshoot and the longer the
settling time ts. When the spectral zeros are located in left half plane, there is no overshoot,
and the settling time becomes shorter. For the described plant (3.10), when the located
spectral zeros are near the positive real semiaxis, the settling time is about 180 seconds.
When they are near the negative real semiaxis, the settling time is about 5 seconds, but the
undershoot becomes larger. In the following (b), (c), (d), the spectral zeros are chosen as
±0.97i.

(b) The Influence of the upper bound γ of ‖S‖∞.
The upper bound γ of ‖S‖∞ is specified as 1.1, 2, 5, 8, 9. The corresponding step

responses are depicted in Figure 5, denoted by y1, y2, y3, y4, y5. When γ is close to 1, the
closed-loop system becomes unstable. Increasing the value of γ , the overshoot becomes larger.
The rise times tr are almost the same. For the given plant (3.10), γ = 2 is appropriate.

(c) The Influence of the length of spectral radius.
When we choose the spectral zeros: ±0.2i, ±0.5i, ±0.97i, they have the same phase lying

in imaginary axis. However, they have different distance from to origin. Three step response
curve are depicted in Figure 6, denoted by y1, y2, y3. As we can see, the rise time tr becomes
longer with the spectral radius smaller. When the spectral radius is less than 0.5, there is no
overshoot.

(d) The Influence of the additional constrains.
The extra interpolation conditions are chosen as 1.5, 1.2, 1.1, 1.05, 1.01, 1.005, 1.002,

1.0005. Their step responses are depicted in Figure 7, denoted by yi, i = 1, . . . , 8. The settling
time ts is almost unchanged. But, the steady error becomes larger with the value of the
additional interpolation points increasing.

The location of spectral zeros and the upper bound γ of ‖S‖∞ have more influence
to the overshoot and the settling time of feedback system. The spectral zeros should be
located in the left half plane, and the less γ , the better, if the closed-loop system is stable.
The spectral radius affects the dynamic characteristic little except only some influence to
the rise time. The additional interpolation conditions have more impact on the steady error,
and the extra interpolation points of less value should be chosen from the simulation. We
will mainly utilize these four strategies for controller design, instead of using weighting
functions.

4. Example Illustrating the New Design Method

4.1. Mathematical Model of Gyro Stabilized Pod

The gyro stabilized pod investigated in this paper is based on the typical structure of
two-axis and four-frame. The stabilization loop of each axis is almost the same, including
stabilization controller, motor drive circuits, DC torque motor, and rate gyro. Take the pitch
framework for example, the block diagram of stabilization loop is as in Figure 8, where
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Gc(s) is the transfer function of correction link. v represents friction torque disturbance. w
represents measurement noise. The approximate open-loop transfer function of the plant:

P(s) =
3s + 1.6

10s2 + 17s + 6
. (4.1)
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Design requirements:

(R1) overshoot: σ% ≤ 10%;

(R2) settling time: ts ≤ 0.1 sec;

(R3) oscillatory times: N < 2;

(R4) steady-state error of system approaches zero.

In this subsection, the robust control problem is solved by the proposed method. The
plant treated is transformed from (4.1)

P(z) =
23(z + 1)(z − 0.3043)

165(z − 0.3043)(z + 0.0909)
, (4.2)

which has a bound unstable zero S(−1) = 1. The upper bound of the ‖S‖∞ can be chosen 1.7.
The set of functions meeting the interpolation constraints is represented as

SNPDC � {S ∈ RH∞, ‖S‖∞ < 1.7, S(−1) = 1} ∩ SDC(0). (4.3)

As described in Section 3.4, we introduce the variable ε = 0.005 > 0, and defined
another set of functions:

S̃NPDC �
{
S̃ ∈ RH∞,

∥∥∥S̃
∥∥∥
∞
< 1.7, S̃(−1.005) = 1

}
∩ SDC(0). (4.4)

It can be shown that the set S̃NPDC has only one element, namely, S̃NPDC � {S̃ :
S̃ ≡ 1}, which does not satisfy design requirements. Hence, it is necessary to add some
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Discrete Dynamics in Nature and Society 13

−1

−0.5

0

0.5

1

Fr
ic

ti
on

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

(a)

−0.1

−0.05

0

0.05

0.1

O
ut

pu
t

0 0.05 0.1 0.15 0.2 0.25 0.3

Time (s)

Set value
Output

(b)

Figure 12: Reference signal is sinusoidal signal of 10 Hz.

interpolation constraints for the achievement of the specification. Taking into account the low
gain requirement at low frequencies, we introduce one additional interpolation constraint
S̃(1.005) = 0, and redefine the set S̃NPDC by

S̃NPDC �
{
S̃ ∈ RH∞,

∥∥∥S̃
∥∥∥
∞
< 1.7, S̃(−1.005) = 1, S̃(1.005) = 0

}
∩ SDC(1). (4.5)

Now we have one spectral zero of the function 1.72 − S̃(z)S̃(z−1) as the design
parameter. When the spectral zero is located at z = −0.98, the corresponding sensitivity
function is calculated as

S̃(z) =
0.00602z − 0.00605

z + 0.9929
. (4.6)

Due to the reverse variable transform, the sensitivity function corresponding to (4.6)
becomes

S(s) = S̃
(
(1 + ε)

1 + s
1 − s

)
=

s

s + 165.1143
. (4.7)

And, the controller calculated by (3.3) is

C(s) =
1651.143

(
s2 + 1.7s + 0.6

)

3s2 + 1.6s
. (4.8)
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4.2. Tracking Performance and Disturbances Rejection

As can be seen in Figure 9, design requirements (R1)–(R4) are all met. Next, we will check
the tracking performance and the disturbance rejection ability using sinusoidal signal of
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three different frequencies: 0.1 Hz, 1 Hz, 10 Hz. Both the friction and the pulse jamming are
considered simultaneously. The friction torque is described by LuGre model

Tf =
(
Tc + (Ts − Tc)e−(θ̇/θ̇s)

2
)

sgn
(
θ̇
)
+ σ2θ̇, (4.9)

where Ts is static friction force, Tc is Coulomb friction force, θ̇s is Stribeck velocity, σ2 is
viscous friction coefficient, and θ̇ is angular velocity. Obviously, the friction force will be
different when tracking different frequency sinusoidal signal, as depicted in Figures 10–12.
The pulse jamming is inserted into the output of the plant at t = 5 sec, 0.5 sec, 0.05 sec, and the
lasting time is 5 sec, 0.5 sec, and 0.05 sec.

As can be seen in Figures 10–12, the proposed method has advantages of short
regulating time, high precision, and high disturbance rejection ability.

4.3. Influence of Model Uncertainty to Tracking Performance

Suppose that the perturbed plant is described by

P̃(s) =
5s2 + 3s + 1.6

3s3 + 10s2 + 17s + 6
. (4.10)

Sinusoidal signals of different frequency, 1 Hz, 10 Hz, are adopted as the reference
signal. The disturbances are the same as in Section 4.2. The main difference between Figures
11(b), 12(b) and 13 is that the later has longer settling time when the pulse jamming is added
to the output of the plant. The Oscillatory times become more and more when the plant has
uncertainty.

5. Conclusions

In this paper, we have proposed a new approach to the robust controller design based on the
NP interpolation theory with degree constraint. There are two kinds of design parameters: the
spectral zeros and the extra interpolation constrains. We have investigated how the following
four factors influence the dynamic characteristic of second-order system: the location of the
spectral zeros, the upper bound γ of ‖S‖∞, the length of spectral radius, and the additional
constrains. And we also provide the guidelines on how to tune the design parameters. Gyro
stabilized pod as a typical tracking system is studied. Simulations show that the proposed
method has advantages of short regulating time, high precision, strong disturbance rejection
ability, and good robustness.
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