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The control of substrate concentration in the bioreactor medium should be due to the substrate
inhibition phenomenon. Moreover, the oxygen demand in a bioreactor should be lower than the
dissolved oxygen content. The biomass concentration is one of the most important factors which
affect the oxygen demand. In order to maintain the dissolved oxygen content in an appropriate
range, the biomass concentration should not exceed a critical level. Based on the design ideas,
a mathematical model of a chemostat with Monod-type kinetics and impulsive state feedback
control for microorganisms of any biomass yield is proposed in this paper. By the existence criteria
of periodic solution of a general planar impulsive autonomous system, the conditions for the
existence of period-1 solution of the system are obtained. The results simplify the choice of suitable
operating conditions for continuous culture systems. It also points out that the system is not
chaotic according to the analysis on the existence of period-2 solution. The results and numerical
simulations show that the chemostat system with state impulsive control tends to a stable state or
a period solution.

1. Introduction

Bioreactor control is an active area of research on the continuous microorganism cultivation
[1]. Modern control strategies require a mathematical model to check behavior of bioprocess
and test its stability. Furthermore, they are necessary to optimize bioprocess and obtain
maximal profit. According to different reactions and differential control technologies, many
dynamic models concerning the culture of microorganism in the chemostat have been
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established [2–5]. However, there are a lot of factors affecting the growth and reproduction
of the microorganisms in the process of bioreacts. For example, for some aerobic microbes,
the dissolved oxygen content in the medium is a key factor to microbial growth. In order
to maintain the dissolved oxygen content in an appropriate range, it is easy to prevent
the process from the decrease of dissolved oxygen concentration (DOC) in the bioreactor
medium below a low level by the monitoring of DOC oscillations. It is necessary because the
low level of DOC decreases biomass yield and specific growth rate [6]. On the other hand,
with the growth of the microorganisms, the effect of inhibition between the production and
other negative effect will occur when the biomass concentration reaches a critical level. For
the purpose of continuously culturing microorganisms and decreasing the inhibition effect,
it is necessary to keep the biomass concentration lower than a critical level.

Many biological phenomena involve thresholds, bursting rhythm models in, for
example, medicine, biology, pharmacokinetics, and frequency modulated systems, that
exhibit impulsive effects. Thus, impulsive differential equations appear as a natural
description of the observed evolution phenomena resulting from several real-world problems
[7]. Many papers have investigated the systems with sudden perturbations which are
involving in impulsive differential equations. Authors in [8–11] introduced some impulsive
differential equations in population dynamics and obtained some interesting results. The
research on the chemostat model with impulsive perturbations was studied by Sun and Chen
[4]. Tang and Chen [12] introduced a Lotka-Volterra model with state-dependent impulsion
and analyzed the existence and stability of positive period-1 solution. Jiang et al. [13] and
Smith [14] have studied the state-dependent models with impulsive state control, where the
model has a first integral, and obtained the complete expression of the period of the periodic
solution. Jiang et al. [15] and Zeng et al. [16] have also discussed the models concerning
integrated pest management (IPM). In the bioprocess, Guo and Chen [17, 18], Sun et al.
[19–21], and Tian et al. [22, 23] have studied state-dependent models with impulsive state
control by applying the Poincaré principle and Poincaré-Bendixson theorem of the impulsive
differential equation, respectively.

This paper aims at proposing a mathematical model of a chemostat with variable
yield and feedback control, described by the impulsive differential equation, and studying
the dynamics of the bioreact. The rest of this paper is organized as follows. In Section 2
we introduce a chemostat model with Monod’s growth rate and impulsive state feedback
control for microorganisms of any biomass yield. In Section 3, we obtain the conditions for
the existence of positive period-1 solution by the Poincaré-Bendixson theorem. We also point
out that the proposed system is not chaotic according to the analysis of period-2 solution.
In Section 4, we give the numerical simulations to verify the theoretical results, such as the
existence of period-1 solutions, obtained in this paper and discuss the biological essence.
Finally in Section 5 we present the conclusions.

2. Model Formulation

If the microorganisms’ growth proceeds in accordance with Monod-type kinetics, that is,
according to dependence

μ(S) =
μmaxS

KS + S
, (2.1)
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which is commonly used to model a large variety of biochemical reaction [24, 25], then the
deterministic model of microbial growth in the chemostat is of the form [26]:

dS
dt

= D(SF − S) − 1
Yx/S

μmaxS

KS + S
x,

dx
dt

=
μmaxS

KS + S
x −Dx,

S(0+) = S0, x(0+) = x0,

(2.2)

where x(t) denotes the biomass concentration, S(t) the substrate concentration, Yx/S the
biomass yield, μmax the maximum specific growth rate, KS the saturation constant, SF the
concentration of the feed substrate,D the dilution rate of the chemostat, t denotes time, and x0

and S0 denote the initial biomass concentration and substrate concentration in the bioreactor
medium; all parameters are positive.

Crooke et al. [27] showed that the biomass yield expression plays an important role
for the generation of oscillatory behavior in continuous bioprocess models. Further, Crooke
and Tanner [28] have proved that model (2.2) could not exhibit any periodic solution if the
biomass yield in the model is constant. On the other hand, in reality, growth yields have not
shown a constant pattern [19, 29, 30], so it is necessary to examine the bioprocess for the real
biomass yield.

Not all energy produced in catabolic processes is used for cellular material synthesis,
part of it (i.e., so-called maintenance energy) is used for maintaining life functions, for that
reason dependence of biomass yield on μ is conditioned physiologically. An effect of existence
of maintenance energy is biomass yield dependant on growth rate. One of the most important
models of quantification of maintenance energy in microorganism growth balance is Pirt’s
model [31, 32]. According to those models, for very low substrate concentration the amount
of energy obtained from the substrate is not sufficient for maintenance energy. In this case,
the energy obtained from the substrate is fully assigned for maintenance energy. For substrate
concentration greater than a certain minimum substrate concentration, there occurs a positive
rate of biomass growth. If the amount of energy assigned for maintenance energy makes a
considerable part of energy produced in catabolic processes, then can be assumed an almost
linear dependence Yx/S on specific growth rate. For high concentration of substrate, a high
specific growth rate is obtained. In such conditions biomass yield achieves the maximum
value (Yx/Smax , where Yx/Smax < 1) and is practically constant, that is, it does not depend on
the substrate concentration. When the amount of substrate essential to ensure maintenance
energy is small, the described characteristics of cells can be approximated with sigmoid
function, which has high flexibility in adapting to reality.

In this work, the sigmoid function, that is,

Yx/S =
(
a + exp(−bS))−1, (

see Figure 1
)

(2.3)

which has high flexibility to fit any real biomass yield is used, where a = 1/Yx/Smax , b is the
cell sensitivity to the substrate under optimal growth conditions (optimal temperature, pH,
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Figure 1: The biomass yield for Yx/Smax = 0.5 and the cell sensitivity to the substrate equals 1.5 (i.e., a = 2,
b = 1.5).

DOC, and other); a > 1 and b > 0 are the biological constraints. For the selected known point
(S, Yx/S), the coefficient b can be calculated as:

b = −
ln
(
Y−1
x/S − Y−1

x/Smax

)

S
. (2.4)

Then model (2.2) has the following form:

dS
dt

= D(SF − S) − (
a + exp(−bS)) μmaxS

KS + S
x,

dx
dt

=
μmaxS

KS + S
x −Dx,

S(0+) = S0, x(0+) = x0.

(2.5)

In particular, when substrate concentration (S) is high, Yx/S = 1/a = Yx/Smax , and the biomass
yield is constant. When the cell sensitivity to the substrate is very high (i.e., b > 100), Yx/S is
also practically constant for any substrate concentration different from zero. For example
for Saccharomyces cerevisiae and glucose as the substrate, b ≈ 200, what means that these
microorganisms are very sensitive to glucose [30].

According to the design ideas of the bioreactor, the biomass concentration should not
exceed a critical level. When the biomass concentration x(t) in the bioreactor reaches the set
level xset (where 0 < xset ≤ xcritical and xcritical is the critical level of biomass concentration
in the bioreactor medium), then part of the medium containing biomass and substrate
is discharged from the bioreactor, and the next portion of medium of a given substrate



Discrete Dynamics in Nature and Society 5

concentration is inputted impulsively. Therefore, system (2.2) can be modified as follows by
introducing the impulsive state feedback control:

dS
dt

= D(SF − S) − (
a + exp(−bS)) μmaxS

KS + S
x,

dx
dt

=
μmaxS

KS + S
x −Dx,

x < xset,

ΔS = Wf1(SF − S) −Wf2S,
Δx = −(Wf1 +Wf2

)
x,

x = xset,

S(0+) = S0, x(0+) = x0,

(2.6)

where 0 ≤ Wf1 < 1 is the part of substrate of a given concentration which is inputted into
the bioreactor in each biomass oscillation cycle, and 0 ≤ Wf2 < 1 is the part of “clear”
medium which is inputted into the bioreactor in each biomass oscillation cycle. In addition,
we make the following assumptions onD andWf1 : (1)D < μmax because all microorganisms
are removed from the bioreactor when flow through the bioreactor is too fast, that is, when
D ≥ μmax; (2) Wf1 is equal to D in value, that is, |Wf1 | = |D|.

We mainly discuss the dynamics, that is, existence of periodic solution of the model
(2.6) in the region Ω = {(S, x) | S > 0, x > 0} according to the existence criteria of periodic
solution of the general impulsive autonomous system in [16]. For convenience, we introduce
a new notation W = Wf1 +Wf2 , which will be used in the following discussion.

3. The Existence of Positive Periodic Solution of System (2.6)

Before discussing the dynamics of system (2.6), we first consider the qualitative characteristic
of system (2.5). Clearly, system (2.5) has a boundary equilibrium (SF, 0) and a positive
equilibrium (S�, x�) if KS < (μmax −D)SF/D where

S� =
DKS

μmax −D
< SF, x� = (SF − S�)

(
a + exp(−bS�)

)−1
> 0. (3.1)

The Jacobian of system (2.5) at (SF, 0) is

J(SF,0) =

⎡

⎢⎢
⎣

−D −(a + exp(−bSF)
) μmaxSF

KS + SF

0
μmaxSF

KS + SF
−D

⎤

⎥⎥
⎦, (3.2)

then the equilibrium (SF, 0) is stable if KS ≥ (μmax − D)SF/D. In this case, we can conclude
that every solution of (2.5) tends to a stable equilibrium (SF, 0) ifKS ≥ (μmax−D)SF/D. Then
microorganisms are not cultured successfully.
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For the caseKS < (μmax−D)SF/D, the equilibrium (SF, 0) is a saddle point and S� > 0,
x� > 0. Since

J(S�,x�) =

⎡

⎢⎢
⎢
⎣

−D − μmaxΓ(S�)x� −D(SF − S�)
x�

x�
μmaxKS

(KS + S�)2
0

⎤

⎥⎥
⎥
⎦
, (3.3)

where

Γ(S�) =
D(SF − S�)
μmaxS�x�

KS

KS + S�
− b exp(−bS�)

S�

KS + S�
. (3.4)

The characteristic equation is

λ2 + pλ + q = 0, (3.5)

where

p = D

[
(S�)2 +KSSF

S�(KS + S�)
− b exp(−bS�)(SF − S�)

(
a + exp(−bS�)

)−1
]

,

q =
μmaxKSD(SF − S�)

(KS + S�)2
> 0.

(3.6)

Denote that

κ(b) =

[

b
(SF − S�)S�(KS + S�)

(S�)2 +KSSF

− 1

]

exp(−bS�). (3.7)

If a > κ(b), then p > 0 and the equilibrium (S�, x�) is asymptotically stable; else if a < κ(b),
then p < 0 and (S�, x�) is unstable; else a = κ(b), then p = 0 and (S�, x�) is a center. Since
Ṡ < 0 for S > SF , then any solution starting from the region {(S, x) | S ≥ SF} will enter
into the region {(S, x) | S < SF} eventually, so in the following discussion we assume that
S0 = S(0) < SF .

For the case where (S�, x�) is stable, all solutions of system (2.6) starting from the
region {(S, x) | 0 < S < SF, 0 < x < x�} will tend to the equilibrium (S�, x�) and no impulse
will occur if xset > x�. So in this case, we mainly focus our attentions on the discussion of the
following case.

Assumption 3.1. Consider that S� > 0, 0 < xset < x�, and (S0, x0) ∈ Ω1 = {(S, x) | 0 < x <
xset, 0 < S < SF − (a + exp(−bSF))x}.
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Figure 2: The case for (S�, x�) is unstable and system (2.5) has a limit cycle.

For the case where (S�, x�) is unstable, it can be shown that there exists one limit cycle
in Ω with an outer boundary OEFG of the Bendixson annular region (see Figure 2), where
FG is a segment on the line l1 passing the point (SF, 0) with the slope −(a + e−bSF ),

l1 : x +
S

a + exp(−bSF)
− SF

a + exp(−bSF)
= 0 (3.8)

for that the derivative of l1 along with system (2.5) is

dl1
dt

=
dx
dt

∣∣∣∣
(2.5)

+
1

a + exp(−bSF)
dS
dt

∣∣∣∣
(2.5)

= x

(
μmaxS

KS + S
−D

)
+

[
D(SF − S) − (

a + exp(−bS))(μmaxS/(KS + S)
)
x
]

a + exp(−bSF)

=
SF − S

a + exp(−bSF)
μmaxS

KS + S

[
1 − a + exp(−bS)

a + exp(−bSF)

]
< 0.

(3.9)

All trajectories starting from the regionΩ tend to the limit cycle. In this case, wemainly
focus our attentions on the discussion of the following case.

Assumption 3.2. Consider that S� > 0, x� > 0 and (S0, x0) ∈ Ω2 = {(S, x) | 0 < x < x�, 0 < S <
SF − (a + exp(−bSF))x}.

3.1. Existence of Period-1 Solution for xset < x�

In order to apply the existence criteria of period-1 solution, that is, Theorem A.5, we need to
construct a closed region ΩP such that all the solutions of system (2.6) enter into and retain
it. The ideas will be illustrated as follows by using Figure 3.

As shown in Figure 3, the line x = xset intersects the isoclinal line ẋ = 0 at the point
A(S�, xset) and intersects the line l1 at the point B(SB, xset). The line x = (1 −W)xset intersects
the line ẋ = 0 at the point E(S�, (1 − W)xset) and intersects the line l1 at point H(SH, (1 −
W)xset). Denote C = C(SC, (1 −W)xset) and D = D(SD, (1 −W)xset), where SC = (1 −W)S� +
DSF and SD = (1−W)SB +DSF . The impulsive setM ⊆ AB = {(S, x) | S� ≤ S ≤ SB, x = xset},
and N = I(M) ⊆ CD = {(S, x) | SC ≤ S ≤ SD, x = (1 −W)xset}.
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Figure 3: Illustration of system (2.6) (a) SC ≥ S�; (b) SC < S�.

Whether the equilibrium (S�, x�) is stable or not, the following theorem holds.

Theorem 3.3. System (2.6) has a period-1 solution under Assumption 3.1.

Proof. Firstly, it can be easily shown that all trajectories of system (2.6) starting from the region
Ω1 must intersect with the segmentAB and then jump to the segmentCD. Next, we construct
the closed region ΩP ⊂ Ω1 such that all the solutions of system (2.6) starting from Ω1 enter
into and retain inΩP . According to the values of SC and S�, we will discuss the following two
cases.

Case 1. Consider that SC ≥ S�, that is, W ≤ (μmax −D)SF/KS;

Case 2. Consider that SC < S�, that is, W > (μmax −D)SF/KS.

We first discuss Case 1, where SC ≥ S� and the illustration is shown in Figure 3(a).
By (3.8), we have SB = SF − (a + exp(−bSF))xset and SH = SF − (a + exp(−bSF)) (1 −

W)xset. So we have

SD = (1 −W)SB +DSF = (1 −W)
(
SF − (

a + exp(−bSF)
)
xset

)
+DSF < SH. (3.10)

From the qualitative characteristic of system (2.6), we know that (dl1/dt)|(2.6) < 0 and ẋ|EH >
0. Besides, Ṡ > 0 for S = S�. Therefore, we have found a closed region ΩP , the boundary of
which consists of AE,EH,HB, and BA.

For Case 2, it follows from system (2.6) that x(t) = 0 and S(t) = SF − (SF − S0)e−Dt for
t ∈ (0,+∞). Especially, when S0 = SC,

−−→
FG is the semitrivial solution of system (2.6). Similar to

the discussions of Case 1, we can obtain the closed regionΩP , the boundary of which consists
of AE,EC,CF, FG,GB, and BA, which can be seen in Figure 3(b).
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Figure 4: Illustration of system (2.6) for the case where xmax < xset < xupper.

Summarizing Cases 1 and 2 and following from Theorem A.5 that system (2.6) has a
period-1 solution.

3.2. Existence of Period-1 Solution for xset ≥ x�

For the case where (S�, x�) is unstable, let Γ be the limit cycle, x = xupper be the line tangent
with the trajectory starting from the initial point K(SK, x

�) and x = xmax(xmax > x�), and
x = xmin (xmin < x�) be the lines tangent with Γ, where SK = SF − (a+ exp(−bSF))x�. Then we
have the following theorem.

Theorem 3.4. System (2.6) has no period-1 solution under Assumption 3.2 and the trajectory tends
to the limit cycle if a < κ(b) and xset ≥ xupper, where κ(b) is determined by (3.7).

Proof. It can be easily shown that all trajectories starting from the region Ω2 will not intersect
the line x = xset and tend to the limit cycle eventually.

For the case where xmax < xset < xupper, we have the following theorem.

Theorem 3.5. There exists 0 < x < xmin and xmax < x < xupper such that, for xmax ≤ xset ≤ x,
system (2.6) has a period-1 solution for W > 1 − x/xset under Assumption 3.2 if a < κ(b), where
κ(b) is determined by (3.7).

Proof. As stated earlier, if a < κ(b), then (S�, x�) is unstable and there exists one limit cycle Γ.
Since Γ does not intersect the line x = 0, then there exists 0 < x < xmin such that the trajectory
l starting from the initial point E′(S�, x) intersects the line S = S� at the point E′′(S�, x), where
xmax < x < xupper. For xmax ≤ xset ≤ x, letA′ be the point of the trajectory l intersectingwith the
line x = xset and C′ be the point of A′ after impulsive function I. IfW > 1 − x/xset, the similar
to the discussion of Theorem 3.3, we can obtain the closed region ΩP , the boundary of which
consists of Â′E′, E′E, EC′, C′F, FG,GB, and BA′ for SC′ < S�, which can be seen in Figure 4,
where Â′E′ is the part of the trajectory between A′ and E′. Then by Theorem A.5 system (2.6)
has a period-1 solution. Therefore, the trajectory starting from the region Ω2 either tends to
the limit cycle or the period-1 solution.

For the case where x� ≤ xset ≤ xmax, we have the following theorem.
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Figure 5: Illustration of system (2.6) for the case where x� ≤ xset ≤ xmax.

Theorem 3.6. System (2.6) has a period-1 solution under Assumption 3.2 if a < κ(b), x� ≤ xset ≤
xmax and W > 1 − x/xset, where κ(b) is determined by (3.7).

Proof. Let E′ and E′′ be the points of the limit cycle intersecting with the line S = S�. Let A′′

and A′ be the points of the limit cycle intersecting with the line x = xset and C′′ be the point
of A′′ after impulsive function I. It can be easily shown that all trajectories starting from the
segment C′′D will intersect the segment A′B. Since the equilibrium (S�, x�) is unstable, then
all trajectories starting from the region Ω2 will intersect the segment A′′B and jump to the
segment C′′D after at most one impulse. Similar to the discussion of Theorem 3.5, we can
obtain the closed region ΩP , the boundary of which consists of Â′E′, E′E, EC′′, C′′F, FG,GB,
and BA′ for SC′′ < S�, which can be seen in Figure 5, where Â′E′ is the part of the limit cycle
between A′ and E′. Then by Theorem A.5 system (2.6) has a period-1 solution. Therefore, all
trajectories starting from the region Ω2 tend to the period-1 solution.

3.3. Existence of Period-2 Solution

In the last subsection, we have analyzed the existence of period-1 solution of system (2.6).
Next, we will discuss existence of the period-2 solution.

Suppose that (Ŝ, x̂) is a period-1 solution of system (2.6). Then we have (Ŝ0, x̂0) ∈ N ⊆
CD and (Ŝ1, x̂1) ∈ M ⊆ AB, where Ŝ0 = (1 −W)Ŝ1 +DSF . Let (S, x) be an arbitrary solution
of system (2.6). Denote the first intersection point of the trajectory to the impulsive set M by
(S1, xset), and the corresponding consecutive points are (S2, xset), (S3, xset), . . . , respectively.
Consequently, under the effect of impulsive function I, the corresponding points after pulse
are (S+

1 , (1 − W)xset), (S+
2 , (1 − W)xset), (S+

3 , (1 − W)xset), . . . . By the qualitative analysis of
system (2.6), we know that ẋ > 0 for S > S� and ẋ < 0 for S < S�. We will consider the
following two cases according to the values Ŝ0 and S�.

Case 1 (Ŝ0 > S�). In this case, the period-1 solution lies in the region {(S, x) | S� < S < SF, (1−
W)xset ≤ x ≤ xset}. The trajectory of the solution (S, x) jumps to the point (S+

1 , (1 − W)xset)
from the point (S1, xset). Without loss of generality, we suppose that S1 > Ŝ1. By the dynamics
of system (2.6), we have the following two sequences according to (S2, xset) lying on the right
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Figure 7: The trajectory of the solution (S, x) under sequence (c).

or left of (S1, xset), as shown in Figure 6:

(a) Ŝ1 ≤ S1 ≤ S2 ≤ S3 ≤ · · ·

or

(b) S1 ≥ S2 ≥ S3 ≥ · · · ≥ Ŝ1.

It is known from the sequence (b) that the trajectory tends to the period-1 solution.
Since the sequences are monotone, it follows by Definition A.4 that period-2 solution does
not exist in this case.

Case 2 (Ŝ0 ≤ S�). Similarly, we assume that S1 > Ŝ1. By the dynamics of system (2.6), we have
the following property: (S2k, xset) (k = 1, 2, . . .) lie on the left of (Ŝ1, xset) and (S2k−1, xset) (k =
1, 2, . . .) lie on the right of (Ŝ1, xset). For example, if S1 < (S� −DSF)/(1−W) and (S3, xset) lies
on the left or right of (S1, xset), the we have the following sequence as shown in Figure 7:

(c) S2 ≤ S4 ≤ S6 ≤ · · · ≤ Ŝ1 ≤ · · · ≤ S5 ≤ S3 ≤ S1.

From the above sequence, we know that it is possible that there exists period-2
solution. For example, when S1 = S3, the period-2 solution will occur.
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From the proof of Proposition 3.3 in [5], it can also be obtained that there is no order k
solution (k ≥ 3) in system (2.6) and then the system is not chaotic.

4. Simulations and Discussion

We have analyzed theoretically the feedback control for microorganisms of any biomass yield
and Monod-type kinetics. The results are new and significant, which not only provide the
possibility of a check of system dynamic property, that is, the existence of period-1 solution
for different microorganisms and several parameters, but also provide a possibility of making
simulation of real process according to the mathematical models determined in the article. To
verify the received results, the numerical simulations of system (2.6) are shown. Because of
the large practical importance, the case where (S�, x�) is stable is presented and discussed.
Moreover, galactose as the substrate and the microorganisms with a = 2 (i.e., Yx/Smax = 1/2 =
0.5[g/g]), b = 1.5, μmax = 0.3[1/h], and KS = 2[g/l] are used for the demonstration of
system behavior. In order to ensure the existence of positive equilibrium, we set SF = 6[g/l],
andD = 0.1[1/h]. Then we have (μmax−D)SF/KS = 0.6, S� = 1[g/l] and κ(b) � 0.16. Because
κ(b) < a, (S�, x�) = (1, 2.25) is a stable focus. Next, we check and show the influence of xset

and Wf2 changes on the existence of period-1 solution.
Firstly, we set xset = 2[g/l]. The time series and phase diagram for system (2.6) with

Wf2 = 0.1 is presented in Figure 8, from which we can see that the trajectory tends to be
periodic.

Secondly, we change the value ofWf2 . The phase diagram for system (2.6)withWf2 =
0.2, 0.4, 0.6 is displayed in Figure 9. From Figure 9, we can see that the existence of period-1
solution does not depend on the value of Wf in this case, but the value of Wf2 affects the
position and tendency of the period-1 solution.

Thirdly, we set xset = 2.5[g/l]. The time series and phase diagram is presented in
Figure 10. It can be easily seen from Figure 10 that no impulse occurs when xset > x� and the
trajectory tends to the stable node (1.5, 1.2).

Therefore, the numerical simulations are consistent with the theorems obtained and
presented in Section 3. A potential application area of the chemostat with feedback control is
the commercial and industrial biomass production. In such a chemostat, the microorganisms
always keep the suitable growth rate and the biomass concentration should be controlled
to a given set level for which the dissolved oxygen concentration is considered as optimal.
Therefore, in order to eliminate the negative effects such as the insufficiency of dissolved
oxygen and decrease of the inhibition effect, one can use the chemostat models with
impulsive state feedback control.

5. Conclusions

The article established the mathematical model of a chemostat with variable biomass yield
and feedback control in maintaining the biomass concentration in a desired range. The
flexible sigmoid function was proposed in describing the dependence of the biomass yield on
the substrate concentration. It was shown that the stability of the bioprocess (i.e., the existence
of the positive period-1 solution) depends on the biomass yield and the microorganisms
growth rate. It was also shown that for the system there may exist a period-2 solution, but not
having period-k (k ≥ 3), then it is not chaos. The existence of period-1 solution indicates that,
in the biomass production, a stable output of the biomass can be achieved. The key to the
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Figure 8: The time series and phase diagram for system (2.6) starting from initial point (S0, x0) = (1.2, 1.2)
with a = 2, b = 1.5, xset = 2[g/l], and Wf2 = 0.1.

production is to given a suitable feedback state (i.e., xset) and the control parameter (i.e., D
andWf2) according to the practice. In addition, the appropriate initial biomass and substrate
concentration should also be considered such that the culture achieves the periodic state as
soon as possible. The results also provide a possibility of making simulation of real process
according to the mathematical models and the parameters determined in this paper.

Appendix

Before introducing the existence criteria, we give the following definitions to understand the
results.

Definition A.1 (Lakshmikantham et al. [7]). A triple (X,π,R+) is said to be a semidynamical
system if X is a metric space, R

+ is the set of all nonnegative reals, and π : X × R
+ → X is a

continuous function such that

(i) π(x, 0) = x for all x ∈ X;

(ii) π(π(x, t), s) = π(x, t + s) for all x ∈ X and t, s ∈ R
+.
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Figure 9: The phase diagram for system (2.6) starting from initial point (S0, x0) = (1.2, 1.2) with a = 2,
b = 1.5, xset = 2[g/l], and Wf2 = 0.2, 0.4, 0.6.

We denote sometimes a semidynamical system (X,π,R+) by (X,π). For any x ∈ X, the
function πx: R+ → X defined by πx(t) = π(x, t) is continuous and we call πx the trajectory of
x. The set

C+(x) = {π(x, t) | t ∈ R
+} (A.1)

is called the positive orbit of x. For any subset M of X, we let

M+(x) = C+(x) ∩M − {x}, M− = G(x) ∩M − {x}, (A.2)

where

G(x) = ∪{G(x, t) | t ∈ R
+}, G(x, t) =

{
y | π(y, t) = x

}
(A.3)

is the attainable set of x at t ∈ R
+. Finally, we set M(x) = M+(x) ∪M−(x).
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Figure 10: The time series and phase diagram for system (2.6) starting from initial point (S0, x0) = (1.2, 1.2)
with a = 2, b = 1.5, and xset = 2.5[g/l].

Definition A.2 (Lakshmikantham et al. [7]). An impulsive semidynamical system (X,π ;M, I)
consists of a semidynamical system (X,π) together with a nonempty closed subset M of X
and a continuous function I : M → X such that the following properties hold:

(i) no point x ∈ X is a limit point of M(x);

(ii) [t | G(x, t) ∩M/=∅] is a closed subset of R
+.

Throughout this paper we will write N = I(M) = {y ∈ X | y = I(x), x ∈ M} and for
any x ∈ X, I(x) = x+. We call M the set of impulses, I the impulsive function.

We define a function Φ : X → R
+ ∪ {∞} as following:

Φ(x) =

⎧
⎨

⎩

∞, if M+(x) = ∅,

s, if π(x, t)/∈M for 0 < t < s, π(x, s) ∈ M,
(A.4)

here we call s the time without impulse of x, that is to say s is the first time when π(x, 0) hits
M.



16 Discrete Dynamics in Nature and Society

Definition A.3 (Lakshmikantham et al. [7]). Let (X,π ;M, I) be an impulsive semidynamical
system and let x ∈ X and x /∈M. The trajectory of x is a function π̃x defined on subset [0, s)
of R

+ (smay be∞) to X inductively as following:

π̃x(t) = π
(
x+
n−1, t

)
, τn−1 ≤ t < τn, (A.5)

where {xn} satisfy π(x+
n−1,Φ(x+

n−1)) = xn. τn is the sequence of time of impulses relative to
{xn}, τn =

∑n−1
k=0 Φ(x+

k).

Definition A.4 (Lakshmikantham et al. [7]). A trajectory π̃x is said to be periodic of period τ
and order k if there exist positive integers m ≥ 1 and k ≥ 1 such that k is the smallest integer
for which x+

m = x+
m+k and τ =

∑M+k−1
i=m Φ(x+

i ).

For the following general autonomous impulsive differential equations:

Ṡ = P(S, x),
ẋ = R(S, x),

(S, x)/∈M,

ΔS = I1(S, x),
Δx = I2(S, x),

(S, x) ∈ M.

(A.6)

Here (S, x) ∈ R
2, and P,R, I1, and I2 are all functions mapping R

2 into R, M ⊂ R
2 is the set

of impulse, and we assume that

(H1) P(S, x) and R(S, x) are all continuous with respect to (S, x) ∈ R
2;

(H2) M ⊂ R
2 is a line, I1(S, x) and I2(S, x) are linear functions of S and x.

For each point A(S, x) ∈ M, we define I : R
2 → R

2:

I(A) = A+ = (S+, x+) ∈ R2, S+ = S + I1(S, x), x+ = x + I2(S, x). (A.7)

Obviously, N = I(M) is also a line of R
2 or a subset of a line, and we assume throughout

this section that N ∩ M = ∅. From Definition A.2 we know system (A.6) is an impulsive
semidynamical system. The following theorem gives the conditions on which system (A.6)
has a periodic solution of order one defined by Definition A.4.

Theorem A.5 (Analogue of Zeng Theorem [16]). If system (A.6) satisfies assumptions H1 and
H2, and, there exist a bounded closed simply connected region Ω which has the following properties:

(i) there is no singularity in it and the boundary ∂Ω ofΩ is composed of two parts: L1 and L2;

(ii) L1 = Ω ∩ M cannot be tangent with trajectories of system (A.6) except at endpoints and
I(L1) ⊂ Ω;

(iii) trajectories with initial point in L2 will enter into interior of Ω,

then there must exist a period-1 solution of system (A.6) in region Ω.
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