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The problem of stabilization by means of dynamic output feedback is studied for discrete-time
delayed systems with possible interval uncertainties. The control is under positivity constraint,
which means that the resultant closed-loop system must be stable and positive. The robust
resilient controller is respect to additive controller gain variation which also belongs to an interval.
Necessary and sufficient/sufficient conditions are established for the existence of the dynamic
output feedback controller. The desired controller gain matrices can be determined effectively via
the cone complementarity linearization techniques.

1. Introduction

A dynamical system is called positive if any trajectory of the system starting from
nonnegative initial states remains forever nonnegative. Such systems abound in almost all
fields, for instance, engineering, ecology, economics, biomedicine, and social science [1–3].
Since the states of positive systems are confined within a “cone” located in the positive
quadrant rather than in linear spaces, many well-established results for general linear
systems cannot be readily applied to positive systems. This feature makes the analysis and
synthesis of positive systems a challenging and interesting job, and many results have been
obtained, see [4–12]. It should be pointed out that in [9–12], the governed system is not
necessarily positive, while a control strategy can be designed such that the closed-loop system
is positive. We call systems in this class controlled positive.

The reaction of real world systems to exogenous signals is never instantaneous and
always infected by certain time delays. The delay presence may induce complex behaviors,
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such as oscillations, instability, and poor performance [13]. Recently, the study on delayed
positive systems has drawn increasing attention and many important results have been
obtained, see [14–17] for stability and [18–20] for control. It has been shown that the stability
of delayed positive systems has nothing to do with the amplitude of delays.

It should be noted that in most literature aforementioned for delayed systems, it is
assumed that the parameters of systems are exactly known, and the controller takes the form
of state feedback. However, in practical applications, it is inevitable that uncertainties enter
the system parameters and it is often impossible to obtain the full information on the state
variables. Hence, it is necessary to investigate the output feedback stabilization problem of
uncertain positive systemwith delays. On the other hand, in practice, instead of being precise
or exactly implemented, many controllers do have a certain degree of errors and may be
sensitive to these errors. Such controllers are often termed “fragile”. Therefore, it is considered
beneficial to design a “resilient” controller being capable of tolerating some level of controller
gain variations [21, 22]. All of the above motivate our research.

This paper deals with the dynamic output feedback stabilization problem for discrete-
time delayed systems (not necessarily positive) under the positivity constraint, which means
that the closed-loop systems are not only stable, but also positive. First, a new necessary
and sufficient condition is given for the stability of discrete-time positive systems with
delays, which is more useful for designing output feedback controllers. Then for systems
with/without uncertainties, necessary and sufficient/sufficient conditions for the existence of
the dynamic output feedback controllers are established in terms of linear matrix inequalities
(LMIs) together with a matrix equality constraint. The controller gain matrices can be
determined via the cone complementarity linearization techniques.

Notations

R, R
n, and R

n
0,+ denote the reals, the n-dimensional linear vector space over the reals the

nonnegative quadrant of R
n, respectively. Rn×m denotes the set of all n ×m real matrices. A �

0(� 0)means that the elements ofA are nonnegative (nonpositive). For matricesA,B ∈ R
n×m,

the notationA � B or B � Ameans thatA−B � 0.A > 0 (< 0) stands for a symmetric positive
(negative) definite matrixA. The symbol ρ(A) denotes the spectral radius of matrixA, that is,
ρ(A) = max{|λ| : λ ∈ σ(A)}with σ(A) being the spectrum of A. The superscript T represents
the transpose. The symbol ∗ will be used in some matrix expressions to induce a symmetric
structure.

2. Mathematical Preliminaries

In this section, we will give some definitions and lemmas about positive discrete-time
delayed systems.

Consider the discrete-time system with delay

x(t + 1) = Ax(t) +Aτx(t − τ),

y(t) = Cx(t),

x(t) = φ(t), t = −τ,−(τ − 1), . . . , 0,

(2.1)

where x(t) ∈ R
n is the state, y(t) ∈ R

m is the measurable output,A,Aτ , and C are known real
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constant matrices, τ ∈ N is a constant delay and φ(t) : [−τ,−(τ −1), . . . , 0] → R
n
0,+ is the vector

valued initial function.
First, some definitions and lemmas are given.

Definition 2.1 (see [17]). System (2.1) is said to be positive if for any φ(t) : [−τ,−(τ −
1), . . . , 0] → R

n
0,+, one has x(t) � 0 and y(t) � 0 for all t ∈ N.

Lemma 2.2 (see [17]). System (2.1) is positive if and only if A � 0, Aτ � 0 and C � 0.

Definition 2.3 (see [15]). A square matrix A is called a Schur matrix if ρ(A) < 1.

Lemma 2.4 (see [15]). Positive system (2.1) is asymptotically stable if and only if (A + Aτ) is a
Schur matrix.

Lemma 2.5 (see [3]). A matrix A � 0 is a Schur matrix if and only if there exists a diagonal matrix
P > 0 such that ATPA − P < 0.

Combining the above lemmas, we have

Lemma 2.6. Positive system (2.1) is asymptotically stable if and only if there exists a diagonal matrix
P > 0 such that

(A +Aτ)TP(A +Aτ) − P < 0. (2.2)

Lemma 2.7 (see [2]). For two matrices A,B ∈ R
n×n, if A � B � 0, then ρ(A) � ρ(B).

3. Dynamic Output Feedback Stabilization

Now consider the discrete-time system with delay and control

x(t + 1) = Ax(t) +Aτx(t − τ) + Bu(t),

y(t) = Cx(t),

x(t) = φ(t), t = −τ,−(τ − 1), . . . , 0,

(3.1)

where x(t) ∈ R
n, u(t) ∈ R

p, y(t) ∈ R
m are, respectively, the state, the control input and the

measurable output. A,Aτ , B and C are known constant matrices, τ ∈ N is a constant delay
and φ(t) : [−τ,−(τ − 1), . . . , 0] → R

n
0,+ is the vector valued initial function.

The purpose of this section is to design a dynamic output feedback controller

δ(t + 1) = Akδ(t) + Bky(t),

u(t) = Ckδ(t) +Dky(t),

δ(0) = δ0

(3.2)
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such that the resultant closed-loop system

[
x(t + 1)

δ(t + 1)

]
=

[
A + BDkC BCk

BkC Ak

][
x(t)

δ(t)

]
+

[
Aτ 0

0 0

][
x(t − τ)

δ(t − τ)

]
,

y(t) =
[
C 0

][x(t)
δ(t)

]
,

x(t) = φ(t), t = −τ,−(τ − 1), . . . , 0,

δ(0) = δ0

(3.3)

is positive and asymptotically stable. Where δ(t) ∈ R
r is the state of the controller, δ0 ∈ R

r
0,+,

Ak, Bk, Ck and Dk are the controller gain matrices to be determined. The above stabilization
problem will be called Problem DOFS (Dynamic Output Feedback Stabilization).

Remark 3.1. r may be either equal to or less than n. In the case of r = n or r < n, controller
(3.2) is called the full-order or reduced-order dynamic output feedback controller for system
(3.1), respectively.

First, similar to [8], in order to design dynamic output feedback controller for system
(3.1), we give an equivalent form of Lemma 2.6.

Theorem 3.2. Positive system (2.1) is asymptotically stable if and only if there exist diagonal matrices
P > 0 and Q > 0 satisfying the LMI

[
−P (A +Aτ)T

∗ −Q

]
< 0, (3.4)

and the matrix equality constraint

PQ = I. (3.5)

Proof. By Schur complement, it is easy to see that (2.2) holds if and only if the following
inequality holds:

[
−P (A +Aτ)T

∗ −P−1

]
< 0. (3.6)

Taking P−1 = Q, we have that there exist a diagonal matrix P > 0 satisfying (2.2) if and only
if there exist diagonal matrices P > 0 and Q > 0 satisfying (3.4) and (3.5).

Remark 3.3. Comparing with Lemma 2.6, the conditions in Theorem 3.2 are a little more
complicated since a matrix equality constraint is introduced. However, it can be seen that
in Theorem 3.2, the Lyapunov matrix P and the system parametric matrices have been
decoupled. Hence, Theorem 3.2 is more useful when designing output feedback controllers
for system (3.1).
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Based on Theorem 3.2, we will establish the necessary and sufficient conditions for the
solvability of Problem DOFS.

Theorem 3.4. For discrete-time delayed system (3.1) with Aτ � 0, C � 0, there exists a solution
to Problem DOFS if and only if there exist matrices Li, i = 1, 2, 3, 4, and diagonal matrices Pj > 0,
Qj > 0, j = 1, 2, satisfying the LMIs

L1 � 0,

L2C � 0,

BL3 � 0,

A + BL4C � 0,
⎡
⎢⎢⎢⎢⎢⎣

−P1 0 AT + CTLT
4B

T +AT
τ CTLT

2

∗ −P2 LT
3B

T LT
1

∗ ∗ −Q1 0

∗ ∗ ∗ −Q2

⎤
⎥⎥⎥⎥⎥⎦ < 0

(3.7)

and the matrix equality constraints

P1Q1 = I,

P2Q2 = I.
(3.8)

In this case, the controller gain matrices in (3.2) are designed as

Ak = L1, Bk = L2, Ck = L3, Dk = L4. (3.9)

4. Robust Resilient Stabilization of Interval Systems

In this section, we consider the discrete-time interval uncertain system (3.1), where the
system parametric matrices are all uncertain with

A ∈ [Am,AM], Aτ ∈ [Aτm,AτM], B ∈ [Bm, BM], C ∈ [Cm,CM],

Aτm � 0, Bm � 0, Cm � 0
(4.1)

and Am,AM,Aτm,AτM, Bm, BM,Cm,CM are known constant matrices.
For uncertain system (3.1), we will design a resilient dynamic output feedback

controller

δ(t + 1) = (Ak + ΔAk)δ(t) + (Bk + ΔBk)y(t),

u(t) = (Ck + ΔCk)δ(t) + (Dk + ΔDk)y(t),

δ(0) = δ0,

(4.2)
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such that the resultant closed-loop system

η(t + 1) = Acη(t) +Acτη(t − τ),

y(t) = Ccη(t),

x(t) = φ(t), t = −τ,−(τ − 1), . . . , 0,

δ(0) = δ0,

(4.3)

with

η(t) =

[
x(t)

δ(t)

]
, Ac =

[
A + BDkC + BΔDkC BCk + BΔCk

BkC + ΔBkC Ak + ΔAk

]
,

Acτ =

[
Aτ 0

0 0

]
, Cc =

[
C 0

]
,

(4.4)

is positive and robustly stable. In (4.2), δ(t) ∈ R
r is the state of the controller, Ak, Bk, Ck, and

Dk are the controller gain matrices to be determined and ΔAk, ΔBk, ΔCk, and ΔDk are the
controller gain variations which are assumed to satisfy

ΔAk ∈ [Akm,AkM], ΔBk ∈ [Bkm, BkM],

ΔCk ∈ [Ckm,CkM], ΔDk ∈ [Dkm,DkM]
(4.5)

with Akm, AkM, Bkm, BkM, Ckm, CkM, Dkm, DkM being known constant matrices.
In the sequel, the above stabilization problem will be stated as Problem RRDOFS

(Robust Resilient Dynamic Output Feedback Stabilization).

Assumption 4.1. Assume that

AkM � 0, BkM � 0, CkM � 0, DkM � 0, Akm = −AkM,

Bkm = −BkM, Ckm = −CkM, Dkm = −DkM.
(4.6)

Remark 4.2. In fact, Assumption 4.1 is without loss of generality. For example, for anymatrices
Akm and AkM with Akm � AkM, let Ak = (Akm + AkM)/2, Ak = (AkM − Akm)/2 � 0, then
Ak + ΔAk can be rewritten as

Ak + ΔAk = Ak +Ak + ΔAk −Ak = Âk + ΔÂk, (4.7)

where Âk = Ak +Ak is the new controller gain matrix to be determined and ΔÂk = ΔAk −Ak

is the new controller gain variation which satisfiesΔÂk =∈ [−Ak,Ak]. Similarly, we can prove
the generality of the assumption on ΔBk,ΔCk, and ΔDk.

Next, we will establish the sufficient conditions for the solvability of Problem
RRDOFS.
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Theorem 4.3. For the interval uncertain delayed system (3.1)with the parametric matrices satisfying
(4.1), there exists a solution to Problem RRDOFS if there exist matrices L1, Li � 0,Hi � 0, i = 2, 3, 4
and diagonal matrices Pj > 0, Qj > 0, j = 1, 2, satisfying the following LMIs:

L1 +Akm � 0, (4.8a)

L2Cm +H2CM + BkmCM � 0, (4.8b)

BmL3 + BMH3 + BMCkm � 0, (4.8c)

Am + BmL4Cm + BMH4CM + BMDkmCM � 0, (4.8d)
⎡
⎢⎢⎢⎢⎢⎣

−P1 0 AT
M +CT

MLT
4B

T
M+CT

mH
T
4 B

T
m+C

T
MDT

kM
BT
M+AT

τM CT
MLT

2 +C
T
mH

T
2 +C

T
MBT

kM

∗ −P2 LT
3B

T
M +HT

3 B
T
m + CT

kMBT
M LT

1 +A
T
kM

∗ ∗ −Q1 0

∗ ∗ ∗ −Q2

⎤
⎥⎥⎥⎥⎥⎦ < 0

(4.8e)

and the matrix equality constraints (3.8). In this case, the controller gain matrices in (4.2) are designed
as

Ak = L1, Bk = L2 +H2, Ck = L3 +H3, Dk = L4 +H4. (4.9)

Proof. Letting

Bk = Bk1 + Bk2, Ck = Ck1 + Ck2, Dk = Dk1 +Dk2 (4.10)

with Bk1 � 0, Bk2 � 0, Ck1 � 0, Ck2 � 0, Dk1 � 0, Dk2 � 0, and noting that (4.1) and (4.5)-(4.6),
we get

Am + BmDk1Cm + BMDk2CM + BMDkmCM

� A + BDkC + BΔDkC

= A + BDk1C + BDk2C + BΔDkC

� AM + BMDk1CM + BmDk2Cm + BMDkMCM,

(4.11a)

BmCk1+BMCk2+BMCkm � BCk+BΔCk

=BCk1+BCk2+BΔCk � BMCk1+BmCk2+BMCkM,
(4.11b)

Bk1Cm+Bk2CM+BkmCM � BkC+ΔBkC

=Bk1C+Bk2C+ΔBkC � Bk1CM+Bk2Cm+BkMCM,
(4.11c)

Ak +Akm � Ak + ΔAk � Ak +AkM, (4.11d)
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Ac+Acτ � M

:=

[
AM+BMDk1CM+BmDk2Cm+BMDkMCM+AτM BMCk1+BmCk2+BMCkM

Bk1CM + Bk2Cm + BkMCM Ak +AkM

]
.

(4.11e)

From (4.8a)–(4.8d), (4.9)–(4.11a), (4.11b), (4.11c), (4.11d), and (4.11e) and Bm � 0, Cm � 0,
Li � 0,Hi � 0, i = 2, 3, 4, we obtain thatAc � 0,Acτ � 0, Cc � 0 for all uncertainties andM � 0.
By using Lemma 2.2, we conclude that the closed-loop system (4.3) is positive.

Noting (4.8e) and by using Lemma 2.4 and Theorem 3.2, we have thatM � 0 is a Schur
matrix considering (4.9). From (4.11e) and Lemma 2.7, we get Ac + Acτ � 0 is also a Schur
matrix for all uncertainties. Hence, the positive system (4.3) is robustly stable.

Remark 4.4. From the proof of Theorem 4.3, we can see that the condition in (4.1) that Bm � 0,
Cm � 0 is given for the purpose to find the upper bound and the lower bound about the
parametric matrices of the closed-loop system (4.3).

If in system (3.2), there are no uncertainties in the parametric matrices B � 0 andC � 0,
that is, B � 0 and C � 0 are known constant matrices, we will obtain the the necessary and
sufficient conditions for the solvability of Problem RRDOFS, which will be given as follows.

Theorem 4.5. For the interval uncertain delayed system (3.1) with (4.1) and B � 0 and C � 0
being known constant matrices, there exists a solution to Problem RRDOFS if there exist matrices Li,
i = 1, 2, 3, 4 and diagonal matrices Pj > 0, Qj > 0, j = 1, 2, satisfying the following LMIs:

L1 +Akm � 0, (4.12a)

L2C + BkmC � 0, (4.12b)

BL3 + BCkm � 0, (4.12c)

Am + BL4C + BDkmC � 0, (4.12d)
⎡
⎢⎢⎢⎢⎢⎣

−P1 0 AT
M + CTLT

4B
T + CTDT

kM
BT +AT

τM CTLT
2 + CTBT

kM

∗ −P2 LT
3B

T + CT
kM

BT LT
1 +AT

kM

∗ ∗ −Q1 0

∗ ∗ ∗ −Q2

⎤
⎥⎥⎥⎥⎥⎦ < 0 (4.12e)

and the matrix equality constraints (3.8). In this case, the controller gain matrices in (4.2) are designed
as

Ak = L1, Bk = L2, Ck = L3, Dk = L4. (4.13)

Proof. The sufficiency can be easily obtained from Theorem 4.3 by letting Hi = 0, i = 2, 3, 4
and Bm = BM = B, Cm = CM = C.

Now we will prove the necessity. Suppose that for the interval uncertain delayed
system (3.1) with (4.1) and B � 0 and C � 0 being known constant matrices, Problem
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RRDOFS is solvable, that is, there exists matrices Ak, Bk, Ck and Dk such that the closed-
loop (4.3) is positive and asymptotically stable for any A ∈ [Am,AM], Aτ ∈ [Aτm,AτM] and
ΔAk ∈ [Akm,AkM],ΔBk ∈ [Bkm, BkM],ΔCk ∈ [Ckm,CkM],ΔDk ∈ [Dkm,DkM], then we have
that both the systems

[
x(t + 1)

δ(t + 1)

]
=

[
Am + BDkC + BDkmC BCk + BCkm

BkC + BkmC Ak +Akm

][
x(t)

δ(t)

]
+

[
Aτm 0

0 0

][
x(t − τ)

δ(t − τ)

]
, (4.14a)

[
x(t + 1)

δ(t + 1)

]
=

[
AM + BDkC + BDkMC BCk + BCkM

BkC + BkMC Ak +AkM

][
x(t)

δ(t)

]
+

[
AτM 0

0 0

][
x(t − τ)

δ(t − τ)

]
(4.14b)

are positive and asymptotically stable.
From Aτm � 0, we obtain that system (4.14a) is positive if and only if

[
Am + BDkC + BDkmC BCk + BCkm

BkC + BkmC Ak +Akm

]
� 0. (4.15)

Thus (4.12a)–(4.12d) hold considering (4.13).
From the positivity and stability of system (4.14b) and using Theorem 3.2 again, we

conclude that there exist matrices Li, i = 1, 2, 3, 4 and diagonal matrices Pj > 0,Qj > 0, j = 1, 2,
satisfying (3.8) and (4.12e). The necessity is proved.

Remark 4.6. We stress out that the conditions in above theorems do not impose the restriction
on the governed system that the system matrix A � 0. That is, the free system is not
necessarily positive. Therefore, the governed system considered in this paper is called
controlled positive system.

Remark 4.7. The matrix equality constraint in the above theorems can be solved via the cone
complementarity linearization techniques [8].

5. Numerical Examples

Example 5.1. Consider the discrete-time delayed system (3.1)with

A =
[
0.2 −0.1
0.4 0.6

]
, Aτ =

[
0.6 0
0 0.6

]
, B =

[−0.2 0
0 0.2

]
, C =

[
0 1

]
. (5.1)

It is easy to see that A is not nonnegative, which implies that the unforced system
(3.1) is not positive. By solving the conditions in Theorem 3.4, after 1 iteration, we obtain the
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full-order DOFS controller gain matrices

Ak =

[
0.2638 0.2638

0.2638 0.2638

]
, Bk =

[
0.1092

0.1092

]
,

Ck =

[−0.3517 −0.3517
0.3763 0.3763

]
, Dk =

[−0.6241
−2.8714

] (5.2)

and the reduced-order DOFS controller gain matrices

Ak = 0.2460, Bk = 0.2079, Ck =
[−0.5911
0.6413

]
, Dk =

[−0.6268
−2.8685

]
. (5.3)

Example 5.2. Consider the uncertain discrete-time delayed system (3.1) with

Am =

[
0.1 −0.08
0.3 0.5

]
, AM =

[
0.2 0.33

0.4 0.6

]
, Aτm =

[
0.1 0

0 0.1

]
, AτM =

[
0.2 0

0 0.2

]
,

Bm =

[
0.15 0

0 0.15

]
, BM =

[
0.2 0

0 0.2

]
, Cm =

[
0 1

]
, CM =

[
0 1.2

]
,

AkM =

[
0.1 0.1

0.1 0.1

]
, BkM =

[
0.1

0.1

]
, CkM =

[
0.1 0.1

0.1 0.1

]
, DkM =

[
0.1

0.1

]
.

(5.4)

It is easy to see that AM is nonnegative while Am is not, which implies that the
unforced system (3.1) is not always positive within the set of uncertain system matrices. And
computation shows that the eigenvalues of AM + AτM are 0.1853, 1.0147. From Lemma 2.4,
we know that the unforced system (3.1) is not always asymptotically stable.

Solving the conditions in Theorem 4.3 gives the RRDOFS controller gain matrices

Ak =
[
0.1019 0.1019
0.1019 0.1019

]
, Bk =

[
0.1206
0.1206

]
, Ck =

[
0.1390 0.1390
0.1389 0.1389

]
, Dk =

[
0.6945
−1.9818

]
(5.5)

after 1 iteration.

6. Conclusions and Future Works

In this paper, we have studied the dynamic output feedback stabilization problem for delayed
systems with/wihtout interval uncertainties. The controller/resilient controller which has
additive controller gain variation belonging to an interval, is designed to guarantee that
the resulting closed-loop systems are not only stable, but also positive. Necessary and
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sufficient/sufficient conditions for the existence of such controllers are established in terms
of linear matrix inequalities together with a matrix equality constraint. And the controller
gain matrices can be determined via the cone complementarity linearization techniques. The
approach presented in this paper can also solve the corresponding problems for continuous-
time delayed systems.
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