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This paper presents two methods for accurately computing the periodic regions’ centers. One
method fits for the general M-sets with integer index number, the other fits for the general M-
sets with negative integer index number. Both methods improve the precision of computation
by transforming the polynomial equations which determine the periodic regions’ centers. We
primarily discuss the general M-sets with negative integer index, and analyze the relationship
between the number of periodic regions’ centers on the principal symmetric axis and in the
principal symmetric interior. We can get the centers’ coordinates with at least 48 significant digits
after the decimal point in both real and imaginary parts by applying the Newton’s method to the
transformed polynomial equation which determine the periodic regions’ centers. In this paper, we
list some centers’ coordinates of general M-sets’ k-periodic regions (k = 3, 4, 5, 6) for the index
numbers α = −25,−24, . . . ,−1 , all of which have highly numerical accuracy.

1. Introduction

According to the idea of complex dynamic system theory presented by Julia and Fatou, the
famous mathematician Mandelbrot constructed and studied the M-sets of complex mapping
z ← zα + c (α = 2) utilizing computer graphics technologies [1]. During the last 20 years,
people have researched the embedded-layer relationship and distribution of the bifurcation
sequence and topological rule of periodic trajectories in the general M-sets with α ∈ R

and found there existed orderly structure within the M-sets [2–16]. For example, Álvarez
et al. studied the location and number of each periodic region in M-sets [9]; Buchanan et al.
studied the location of periodic region of the general M-sets with α = −2 [11]; Geum and
Kim analyzed the quantitative relationship of each periodic region in the general Mandelbrot
sets with positive integer index number, and calculated the coordinates of periodic regions’
centers [15]; The author studied the structure and distribution of the general M-sets with
integer index number [16].



2 Discrete Dynamics in Nature and Society

M-sets consist of different-period regions which constitute the fractal structures of the
M-sets. The analysis on the stability of the maps uncovered new and unexpected algebraic
properties of the periodic regions. The centers of the periodic regions are determined by the
transformed polynomials we worked on. The motivation for computing the periodic regions’
centers is provided by the need to consider the locations of the periodic regions and fractal
structures of the M-sets, which are useful to understand the inner infinite structures of the
M-sets.

On the basis of above research, we study the periodic region’s centers in the general
M-sets with integer index number, determine the relationship between each periodic region’s
number in the general M-sets with positive index number and negative index number, and
then present a new method of calculating the coordinates of periodic regions’ centers in
the general M-sets with negative integer index number. Our research has good prospects
in physics, information science, and other fields.

2. Periodic Region Theory of General M-Sets

Definition 2.1 (see [15]). Let fc(z) = zα + c for α ∈ Z with z, c ∈ C, then the general M-sets is
defined to be the set

M =
{
c ∈ Ĉ, lim

k→∞
fk
c (0)/=∞

}
. (2.1)

Definition 2.2 (see [15]). The sets defined by Pm = {c ∈ Ĉ : c = reiφm , 0 ≤ r, φm = mπ/|α − 1|}
for m ∈ {1, 2, . . . , 2|α − 1|} are called the rays of symmetry. The set P1 is called the principal
ray of symmetry. As is shown in Figure 1(b).

Definition 2.3. The set S1 = {c ∈ Ĉ : c = reiθ, 0 ≤ r, 0 < θ ≤ π/|α − 1|} is called the principal
symmetric sector, as is shown in Figure 1(b).

Theorem 2.4. In the Ĉ parameter plane, M is symmetric about Pm.

Proof. Let c = ρeiφ with ρ ≥ 0, 0 ≤ φ < 2π, i =
√−1. For all k ∈ N, there exists the following

recursive relations:

Tk+1
(
φ
)
= T1

(
φ
)(
1 + Tk

(
φ
))α

, (2.2)

where T1(φ) = cα−1 = ρα−1ei(α−1)φ. Using the mathematical induction, for all k ∈ N and m ∈
{1, 2, . . . , 2|α − 1|},

Tk(φ) = Tk
(−φ) = Tk

(
2φm − φ

)
(2.3)

exists. So we obtain fk+1
c (0) = c(1 + Tk) since

∣∣∣fk+1
c (0)

∣∣∣ = ρ
∣∣1 + Tk

(
φ
)∣∣ = ρ

∣∣1 + Tk(φ)
∣∣ = ρ

∣∣∣1 + Tk(φ)
∣∣∣ = ρ

∣∣1 + Tk
(−φ)∣∣

= ρ
∣∣1 + Tk

(
2φm − φ

)∣∣ = ∣∣c∗(1 + Tk
(
2φm − φ

))∣∣ = ∣∣∣fk+1
c∗ (0)

∣∣∣ (2.4)

with c∗ = ρei(2φm−φ), we have c∗ ∈M whenever c ∈M. This completes the proof.
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Figure 1: General M-sets and their periodic region.

Definition 2.5 (see [15]). An attracting k-periodic region is denoted by M′k and is defined as a
region of the set

{
c ∈ C : there exist z0 ∈ C such that fk

c (z0) = z0,

∣∣∣∣ d

dz
fk
c (z)

∣∣∣∣
z=z0

< 1

}
. (2.5)

Definition 2.6. When α is a positive, if c0 satisfying fk
c0(0) = 0 and c0 ∈ M′k, then c0 is called

the center of an attracting k-periodic region.

Definition 2.7. When α is a negative, c0 is the center of a stable k-periodic region only if ∞
belongs to this k-periodic region and c0 satisfies fk

c0(0) = 0.

3. Calculation of Periodic Regions’ Centers in General M-sets with
Integer Index Number

3.1. Calculation Method

The center of periodic region can be located by numerically solving the governing equation
fk
c (0) = 0 which is a polynomial of c. The equation can be written as

fk
c (0) = c

(
1 + gk(c)

)
, (3.1)



4 Discrete Dynamics in Nature and Society

where gk is a recursive function defined as

gk+1(c) = cα−1
(
1 + gk(c)

)α
, g1(c) = 0, k ≥ 1. (3.2)

The c in (3.2) has a degree of αk−1−1 and thus will encounter a difficulty in obtaining accurate
solutions as α and k increase. But the transformationw = 1+c|α−1| reduces the degree by |α−1|.

Let Hk(w) = 1 + gk(c).
(1)When α is a positive integer, (3.2) can be written as

Hk+1(w) = 1 + (w − 1)Hk(w)α, k ≥ 1, (3.3)

where H1(w) = 1 and w = 1 + cα−1.

Definition 3.1 (see [15]). Let ki (1 ≤ i ≤ ν) is a integer smaller than k and satisfying 1 < k1 <
k2 < · · · < kν < k, let

Fk(w) =

⎧⎪⎪⎨
⎪⎪⎩
Hk(w), if k = prime, α is a positive integer,

Hk(w)∏ν
i=1Fki(w)

, if k /=prime, α is a positive integer.
(3.4)

(2)When α is a negative integer, (3.2) can be written as

Hk+1(w) = 1 +
1

(w − 1)Hk(w)α
, k ≥ 2, (3.5)

where H2(w) = 1 and w = 1 + c1−α.
So we can solve the roots of (3.4) or (3.5) instead of (3.1). If α is a positive integer, we

can use (3.4) to calculate the center of periodic region. If α is a negative integer, we can use
(3.5) to calculate the center of periodic region.

3.2. Numerical Algorithm

Through solving the roots of Fk(ω) = 0 or Hk(w) = 0, we can solve the roots of 1 + gk(c) = 0.
Let ωj (j = 1, 2, . . . , r) with Im(ωj) ≥ 0 be a root of Fk(ω) = 0 or Hk(w) = 0. The
transformation ωj = 1 + c|α−1| with the symmetry of M-sets yields

cj = ρ
1/|α−1|
j ei(θj/|α−1|), (3.6)

where ρj =
√
(Re(ωj) − 1)2 + Im(ωj)

2. If Re(ωj)−1 ≥ 0, then θj = tan−1(Im(ωj)/(Re(ωj)−1));
If Re(ωj) − 1 < 0, then θj = π + tan−1(Im(ωj)/(Re(ωj) − 1)).

Among these cj values, we select the ones in the interior of the primary symmetric S1

and the ones on the primary symmetric axis P1. Then by the rotation symmetry, we can get
the center’s coordinate of each periodic region.
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Using the Newton method, the following algorithm can locate the center of periodic
region [15].

(1) Set n, k, ε1, ε2, and Digits (number of precision digits).

(2) Construct Fk(w).

(3) Construct SolveCenter(k) that does the following. (1) Using the solve function in
maple to find the approximate roots of Fk(w) = 0; (2) Select the roots with
nonnegative imaginary parts, and compute r and ‖Fk(w)‖ = max{|Fk(w)|}.

(4) Construct Newton (f,w,N) that does the following. (1) Take the initial values w
of about three decimal digits of accuracy from the results of solve to precede
the Newton sequence {wm}; (2) Set the maximum iteration number N; (3) Set ε
satisfying ‖Re(wm+1 −wm)‖ < ε and ‖ Im(wm+1 −wm)‖ < ε.

(5) Construct DefCenter(k) finding coordinate of the periodic region’s center: (1) Reset
Digits to a higher number NtDigits; (2) If k = 2, then w∗ = 0; If k /= 2, then call
Newton (f,w,N) to get refined roots w∗; (3) Compute c∗ = (w∗ − 1)1/|n−1|, m1, m2,
and ‖Fk(w)‖.

(6) Call SolveCenter(k), Compute residual error Fk(wj) (j = 1, 2, . . . , r) and ‖Fk(w)‖ =
max{|Fk(wj)|}.

(7) If ‖Fk(w)‖ < ε1 is not met, increase Digits and call SolveCenter (k); If ‖Fk(w)‖ < ε1 is
met, then do the following. (1) IncreaseNtDigits; (2) CallDefCenter(k) to get refined
rootsw∗, and calculate ‖Fk(w∗)‖; (3) If ‖Fk(w∗)‖ < ε2 is not met, increaseNtDigits
and call DefCenter(k); If ‖Fk(w∗)‖ < ε2 is met, the check the convergence of the
sequence ηm = ‖em+1/e

2
m‖, where em = wm − w∗: If ηm is not convergent, increase

NtDigits and call DefCenter (k); If ηm is convergent, then accept c∗ = (w∗ − 1)1/|n−1|
as the desired solution and terminate the entire procedure.

The above algorithm is appropriate for α as a positive integer; if α is a negative integer,
we can take Hk(w) instead of Fk(w). The algorithm is achieved by the maple. Tables 1 and 2
list typical coordinates of periodic region’ centers for α = −1,−2,−5,−10,−25 and 3 ≤ k ≤ 6;
the accuracy is of 48 precision digits, but only the first 40 precision digits were printed for the
tabulation. Table 3 shows the residual error defined by ‖Fk(w)‖ and the values of asymptotic
error η = limm→∞‖em+1/e

2
m‖. The parameters are defined as ε = 0.5 × 10−48, ε1 = 0.5 × 10−3,

and ε2 = 0.5 × 10−90 in the experiment.

3.3. Numerical Results

Now, we study the relationship between the numbers of roots on P1 and in the interior of
S1. According to the Rotation symmetry, we consider that c is and only is on P1 and in the
interior of S1.

Let W = {w ∈ C : Im(w) ≥ 0}, we select roots having only nonnegative imaginary
part and suppose r is the number of all such roots. Let d denotes the number of roots for
Hk(w) = 0 in the complex plane C, m1 denotes the number of centers lying in the interior
of S1, m2 denotes the number of centers lying on P1, and Nk(α) denotes the total number of
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Table 1: Typical coordinates (x, y) of periodic regions’ centers in general M-sets for α = −1,−2.

α k x y

3 0 1

4 0 1.414213562373095048801688724209698078569

−1 5 0 0.6180339887498948482045868343656381177203

0 1.618033988749894848204586834365638117720

6 0 1.732050807568877293527446341505872366942

−2

3 0.5000000000000000000000000000000000000000 0.8660254037844386467637231707529361834714

0.3627813151231631703818060700603897671678 0.6283556698299741263420784051580976696723

4 0.6891203862446050962006675963540742790418 1.193591521507144896512098353766295629638

0.4042236905404564572994748850027253568563 0.7001359696390695520682473983836636804246

0.5865601716578127357562434844914253929171 0.5227469154574305782207221081920783006446

5 0.6424754430209604509055886086291122942941 1.112800109927626758089719675886061908473

0.7796925046167080079396216213156599757773 1.350467032276769692645172849662184857212

periodic regions’ centers lying in the complex plane C. Then, the following relation holds
[15]:

m1 +
m2

2
=

d

2
= r − m2

2
. (3.7)

Next we discuss the calculation of periodic regions’ centers and the relation among
m1, m2, d and Nk(α) when α is a positive integer and a negative integer, respectively.

(1) If α is a positive integer,
The generalM-sets with positive integer index number are similar to flowers combined

with α−1major petals, and stable region is embedded in unstable region. If α = 1, the complex
mapping f degenerates into linear mapping, the general M-sets is only a circular which is a
trivial structure without complex boundary and self-similar structure. Once deviating from
α = 1, the complex structure appear immediately [3].

Theorem 3.2. If α is a positive integer, then the relation m1 + m2/2 = Nk(α)/(2(α − 1)) (or d =
Nk(α)/(α − 1)) yields the following [15].

(1) If k = 2, thenm1 = 0 and m2 = 1 for any α;

(2) If k ≥ 3, thenm1 = Nk(α)/(2(α − 1)) and m2 = 0 for all odd α;

(3) If k ≥ 3, thenm1 ≤ (1/2){Nk(α)/(α − 1) − 1} and m2 ≥ 1 for all even α.

(4) If k = 3, thenm1 = α/2 and m2 = 1 for all even α;

(5) If k = 4, thenm1 = α(α + 1)/2 − 1 and m2 = 2 for all even α;

(6) If k = 5, 6, 7, 8, 9, 10, thenm2 = 3, 5, 9, 16, 28, 51, respectively, for all even α.

We can get the following from Theorem 3.2. Statement (1) implies that a two-periodic
region’s center lies on P1; Statements (1) and (2) show that only a two-periodic region’s center
lies on P1 when α is odd. Statements (2) and (3) show that every k-periodic region’s center
with k ≥ 2 lies on P1 when α is even. Statements (4) and (5) show that for any even integer α ≥
2 one three-periodic and two four-periodic periodic region’s centers lie on P1, respectively.
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Table 2: Typical coordinates (x, y) of periodic regions’ centers in general M-sets for α = −5,−10,−25.

α k x y

3 0.8660254037844386467637231707529361834714 0.5000000000000000000000000000000000000000

0.9396926207859083840541092773247314699362 0.3420201433256687330440996146822595807630

4 1.094712686823523213316928247829558702952 0.6320326644228596128930478581312699907336

0.7967257215431642519980222116419896073370 0.3953814333548772060210763599797199632167

0.7360864941961324414193625731274047816387 0.4249797355709849680198964443168932113036

0.7856338587327582965401249656709551480181 0.4120235779535403654938100729256015955341

0.8004446001570064882132416909959852686047 0.4092017895850238127786028651284440809001

0.8094119533872972312608524004319383353154 0.4018233097208282401257748308404147230355

0.8145813321090840057351012061818996720571 0.3879152634894074458735794003658374945526

0.8149958514928554223788166213145277073539 0.3399448426590958688275107331963268401499

0.9044125863898232379201681820588098667113 0.3455698635303133428003524080560280276196

−5 5 0.9993362715743393720427440998655224791940 0.2835926532018401463511538519480040901230

0.9255117037432101887468727385681042741597 0.3620033396828505808335124008216734556202

0.9451946379157873907177917158114553649862 0.3656567095496140760775285440549985909933

0.9694641741107180623575027320447562316133 0.3560080961927332150121341389871777368834

1.116580526363573971834197527235703888800 0.5742412863507625718458386348765152916070

1.069955621295139064555534263833642005509 0.5962126122905732351174863126710137613208

1.193991828397960001427726051713155781130 0.6893515035357756591531775646851958338755

3 0.9594929736144973898903680570663276990624 0.2817325568414296977114179153466168990357

0.8978574653776339543388693405463208894818 0.2636347387173656727162596943859324534622

0.9104989079407236885753517227873123437832 0.2367915193754428000032888830923803306147

−10 0.9334500946949781808039823343794415287503 0.2123497779324388912409043034218249820178

4 0.9727622997546039520643435173301435568623 0.1918489833048745070912754338127184654426

1.049709676698295730342527736899250962728 0.1891462127512417587632393395560253753949

1.130312524668417811908520163810539185497 0.3318897025426986348883996121722492432445

3 0.9927088740980539928007516494925201793436 0.1205366802553230533490676874525435822736

0.9664323195132830361308380363378676828569 0.1148937164822188020505801496289032369093

0.9676238283276849427272723258657042546928 0.1101302140885335128510533436733831564012

0.9694433016226217291495915766991654290410 0.1054329018630946912670388018574858083463

0.9719398783923833692895002322210280317735 0.1008010956452396592463960335789059436667

0.9751959506314899516234021845256167661412 0.09623846922724149376992938643944612574927

0.9793414975878867446486836531597425442696 0.09175563494485486517255996206353137944357

−25 4 0.9845812519718114260081505085282976395498 0.08737586254212876216122055789839027979179

0.9912488732365256071521286888973731367570 0.08314879742066106441534388013424937098513

0.9999255170838100020444386490494074709296 0.07918810138395086586130693931721388479083

1.011737534937634869467650731889283987347 0.07579806851536097318670223194619562054147

1.029258691458743926993593711963441023480 0.07406101804917325155983540234868545886878

1.059396476738641643674942308389869077720 0.08045677368903782206077846838233504471072
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Table 3: Residual errors and asymptotic error constant for α = −1,−2 − 5,−10,−25.

α k ‖Hk(w)‖ η

−1

3 0 not available

4 0 not available

5 0.100000e − 99 2.4472136 at c = 0.61803398874989484820i

6 0 not available

−2
3 0 not available

4 0.892511e − 100 2.7888544 at c = 0.36278131512316317038 + 0.6283556698299741263i

5 0.150000e − 99 3.4739187 at c = 0.64247544302096045091 + 1.112800109927626758i

−5
3 0 not available

4 0.101663e − 97 7.9352875 at c = 0.79672572154316425199 + 0.39538143335487720602i

5 0.8609622e − 98 78.011649 at c = 0.81458133210908400573 + 0.38791526348940744587i

−10 3 0 not available

4 0.188919e − 98 16.988191 at c = 0.91049890794072368857 + 0.23679151937544280000i

−25 3 0 not available

4 0.375119e − 98 39.779704 at c = 0.97193987839238336928 + 0.10080109564523965924i

(2) If α is a negative integer
The general M-sets with negative integer index number have planetary configuration

consisting of a central planet with |α − 1| major satellite structures, and the unstable region
is embedded in the stable region, as is shown in Figure 1. The numbers and locations of the
periodic region’s centers in the general M-sets with negative integer index number can be
calculated using the same method as α being a positive integer.

Theorem 3.3. If α is a negative integer, then the relation m1 + m2/2 = Nk(α)/(2|α − 1|) (or d =
Nk(α)/|α − 1|)) yields the following:

(1) If α = −2 and k ≥ 3, thenNk(α) = Nk(−α);

(2) If α ≤ −3 and k ≥ 3, then Nk(−α) = |α + 1|Nk(α), namely Nk(α) with negative integer α is
equal to d with −α;

(3) If k = 2 or 3, thenm1 = 0, m2 = 1, d = 1,Nk(α) = |α − 1| for all α;

(4) If k = 4, then m2 = 2 and m1 = |α|/2 − 1 for |α| being even; m2 = 1, m1 = (|α| − 1)/2 for
|α| being odd;

(5) If k = 4, then d = |α| for all α.

We can get the following from Theorem 3.2. Statement (3) implies that one two-
periodic and one three-periodic region’s center lies on P1; Statement (4) state that two four-
periodic region’s center lies on P1 when |α| is even, as is shown in Figure 1(d); When |α| is
odd, only one four-periodic region’s center lies on P1, as is shown in Figure 1(f). Table 4 shows
the relationship among m1, m2, d and Nk(α) when α is a negative integer, which testifies
Theorem 3.3 and (3.7). The numbers in Table 4 are m1/m2. The corresponding d and Nk(α)

satisfy Theorem 3.2.
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Table 4: (m1/m2) versus (α, k).

α
k

2 3 4 5 6 7 8 9 10

−1 2/1 2/1 2/1 4/2 4/2 6/3 6/3 8/4 8/4
0/1 0/1 0/1 0/2 0/2 0/3 0/3 0/4 0/4

−2 3/1 3/1 6/2 15/5 27/9 63/21 120/40 252/84
0/1 0/1 0/2 1/3 2/5 6/9 12/16 28/28

−3 4/1 4/1 12/3 40/10 116/28
0/1 0/1 1/1 4/2 14/1

−4 5/1 5/1 20/4 85/17
0/1 0/1 1/2 7/3

−5 6/1 6/1 30/5 156/26
0/1 0/1 2/1 12/2

−6 7/1 7/1 42/6 259/37
0/1 0/1 2/2 17/3

−7 8/1 8/1 56/7 400/50
0/1 0/1 3/1 24/2

−8 9/1 9/1 72/8 585/65
0/1 0/1 3/2 31/3

−9 10/1 0/1 90/9 820/82
0/1 0/1 4/1 40/2

−10 11/1 11/1 110/10
0/1 0/1 4/2

−11 12/1 12/1 121/12
0/1 0/1 5/1

−12 13/1 13/1 156/12
0/1 0/1 5/2

−13 14/1 14/1 182/13
0/1 0/1 6/1

−14 15/1 15/1 210/14
0/1 0/1 6/2

−15 16/1 16/1 240/15
0/1 0/1 7/1

−16 17/1 17/1 272/16
0/1 0/1 7/2

−17 18/1 18/1 306/17
0/1 0/1 8/1

−18 19/1 19/1 342/18
0/1 0/1 8/2

−19 20/1 20/1 380/19
0/1 0/1 9/1

−20 21/1 21/1 420/20
0/1 0/1 9/2

−21 22/1 22/1 462/21
0/1 0/1 10/1

−22 23/1 23/1 506/22
0/1 0/1 10/2

−23 24/1 24/1 552/23
0/1 0/1 11/1
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Table 4: Continued.

α
k

2 3 4 5 6 7 8 9 10

−24 25/1 25/1 600/24
0/1 0/1 11/2

−25 26/1 26/1 650/25
0/1 0/1 12/1

Table 5: Expression of hk(c) when α = −1.

k hk(c)
2 c

3 c2 + 1
4 c3 + 2c
5 c4 + 3c2 + 1

4. Calculation of Periodic Regions’ Centers in General M-sets with
Negative Integer Index Number

Let fk
c (0) = hk(c)/hk−1(c)

|α|, then

hk(c) = hk−2(c)|α|
2
+ chk−1(c)|α| (k ≥ 2), (4.1)

where h0(c) = 0 and h1(c) = 1. The coordinates of periodic regions’ centers can be obtained
by solving the equation hk(c) = 0 with c satisfying fk

c (0) = 0.
Tables 5 and 6 list the expressions of centers’ coordinates from two-periodic to five-

periodic region.
For the M-set constructed from the complex mapping f : z ← z−1 + c (shown in

Figure 1(a)), one-periodic region’s center is ∞ for f1(0) = ∞. Two-periodic region’s center
reaches the one-periodic region’s center by one iteration, so the origin is the center of two-
periodic region, that is, h0(c) = 0 in Table 5 deduces c = 0. Similarly, three-periodic region’s
centers can be located by the roots of c2 + 1 = 0.

For the M-set constructed from the complex mapping f : z ← z−2 + c (shown in
Figure 1(c)), one-periodic region is a huge area whose boundary is defined by c = 21/3e−iθ −
2−2/3e2iθ. Two-periodic stable region divides the area outside of one-periodic region into three
parts. One-periodic region’s center is∞. Two-periodic region’s center is the origin. Similarly,
three-periodic region’s centers can be located by the roots of c3 + 1 = 0.

The discussion above indicates that k-periodic region’s centers can be located by the
roots of hk(c) = 0. The results of centers’ coordinates are almost the same as the results
obtained by the first method described in Section 2 when α is a negative integer.

5. Conclusions

(1) In this paper, we proposed two methods for calculating the periodic regions’ centers
of the general M-sets. The first method fits for calculating the periodic regions’ centers
in the general M-sets with integer index number, which is to transform the polynomial
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Table 6: Expression of hk(c) when α = −2.

k hk(c)
2 c

3 c3 + 1
4 c7 + 3c4 + c

5 c15 + 7c12 + 5c9 + 12c6 + 5c3 + 1

equation that governs the periodic regions’ centers, obtain high precision of the coordinates
by the simple method, and analyze the relationship between the number of each periodic
regions’ centers on the principal symmetric axis and in the principal symmetric interior,
then comparatively analyze the relation of periodic regions’ number in general M-sets with
opposite integer index number. The second methods as discussed in Section 3 suits for
calculating the periodic regions’ centers in the general M-sets with negative integer index
number, which also transforms the polynomial equation. The results of centers’ coordinates
obtained by the second method are almost the same as that of the first method when α is a
negative integer which is described in Section 2.

(2) The investigation of the periodic regions’ centers of the M-sets can help us explore
the distribution of periodic regions of the M-sets, which can further help us to study the
fractal structures of the M-sets. The centers of the periodic regions are located as the roots of
certain polynomials, which are shown to coincide with solutions of the Douady and Hubbard
formula [17]. In addition, the methods we proposed are helpful for solving polynomial
equations, especially of high degree.

(3) This research is some inspiration for the people studying on the difficult problems
in their professional and interdisciplinary fields.

As a classical example of physics, Brownian movement is the most simple and typical
random movement. The Langevin equation can depict the rule of a charged particle under
the circularly successive influence of the impulse functions. However, it is difficult to visually
depict the trajectory and dynamics of these systems with many random variables. If we
construct the complex general M-sets using the rules of Langevin equation, the fractal
structure characteristics of the general M-sets can reveal the changing rule of the particle
velocity visually [18]. This study makes it possible to depict complex Brownian movement
more accurately.

In addition, the theories of M-sets have potential applications on image processing.
We have known that general M-sets are illustrated dictionary of the corresponding general
Julia sets [16], which means a single point on the M-sets can represent the huge amount
image data of the general Julia sets with manifold shapes and complicated structures. This
research provides the technology support for determining rapidly the coordinates of the
points on the M-sets by the Julia images. On the basis of the above research results, future
work includes establishing dictionary of fractal compression and studying the corresponding
coding algorithm to improve the transmission and memory of the information, which could
provide the new thoery for fractal compression technology.
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[13] M. Romera, G. Pastor, G. Álvarez, and F. Montoya, “External arguments of Douady cauliflowers in
the Mandelbrot set,” Computers & Graphics, vol. 28, no. 3, pp. 437–449, 2004.
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