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We describe in an elegant and short way the behaviour of positive solutions of the higher-order
difference equation xn = cxn−pxn−p−q/xn−q, n ∈ N0, where p, q ∈ N and c > 0, extending some
recent results in the literature.

1. Introduction

Studying difference equations has attracted a considerable interest recently, see, for example,
[1–39] and the references listed therein. The study of positive solutions of the following
higher-order difference equations:
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, n ∈ N0, (1.1)

and

xn = A + B
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, n ∈ N0, (1.2)

where A,B > 0, pi, qi are natural numbers such that p1 < p2 < · · · < pk, q1 < q2 < · · · < ql,
ri, si ∈ R+, and k ∈ N was proposed by Stević in several talks, see, for example, [21, 26]. For
some results concerning equations related to (1.1) see, for example, [6, 7, 10, 29, 31, 32, 34, 38],
while some results on equations related to (1.2) can be found, for example, in [3, 8, 9, 11–
14, 18–20, 22, 25, 29, 32, 33, 35] (see also related references cited therein).
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Case A = 0 is of some less interest, since in this case positive solutions of (1.1) and
(1.2), by using the change yn = lnxn, become solutions of a linear difference equation with
constant coefficients. However, some particular results for the case recently appeared in the
literature, see [16, 17, 39].

Nevertheless, motivated by the above-mentioned papers, we will describe the
behaviour of positive solutions of the higher-order difference equation

xn =
cxn−pxn−p−q

xn−q
, n ∈ N0, (1.3)

where p, q ∈ N and c > 0, in, let us say, an elegant and short way.
Let us introduce the following.

Definition 1.1. A solution (xn)
∞
n=−(p+q) of (1.3) is said to be eventually periodic with period τ if

there is n0 ∈ {−(p + q), . . . ,−1, 0, 1, . . .} such that xn+τ = xn for all n ≥ n0. If n0 = −(p + q), then
we say that the sequence (xn)

∞
n=−(p+q) is periodicwith period τ.

For some results on equations all solutions of which are eventually periodic see, for
example, [2, 4, 8, 15, 28, 37] and the references therein.

Definition 1.2. One says that a solution (xn)
∞
n=n0

of a difference equation converges geometrically
to x∗ if there exist L ∈ R+ and θ ∈ [0, 1) such that

|xn − x∗| ≤ Lθn, ∀n ≥ n0. (1.4)

Now we return to (1.3).
First, note that if p = q, then (1.3) becomes

xn = cxn−2p, n ∈ N0, (1.5)

from which easily follow the following results:

(a) if c = 1, then all positive solutions of (1.5) are periodic with period 2p;

(b) if c ∈ (0, 1), then each positive solution of (1.5) converges to zero. Moreover,
its subsequences (x2pm−i)m∈N0

, i = 1, 2, . . . , 2p, converges decreasingly to zero as
m → ∞;

(c) if c ∈ (1,∞), then each positive solution of (1.5) tends to infinity as n → ∞.
Moreover, its subsequences (x2pm−i)m∈N0

, i = 1, 2, . . . , 2p, tend increasingly to infinity
asm → ∞.

We may assume that p and q are relatively prime integers, that is, gcd(p, q) = 1 (the
greatest common divisor of numbers p and q). Namely, if gcd(p, q) = r > 1, then by using the
changes z(i)m = xmr+i, i = 0, 1, . . . , r − 1, (1.3) is reduced to r copies of the following equation:

zn =
czn−p1zn−p1−q1

zn−q1
, n ∈ N0, (1.6)

where p1 = p/r, q1 = q/r, c > 0, and gcd(p1, q1) = 1.
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Further, note that from (1.3), we have that

xnxn−q = cxn−pxn−p−q, n ∈ N0, (1.7)

which implies that the sequence un = xnxn−q, n ≥ −p, satisfies the following simple difference
equation:

un = cun−p, n ∈ N0. (1.8)

2. Main Results

Here we formulate and prove our main results.

Theorem 2.1. Assume that c = 1, gcd(p, q) = 1, and p is odd, then all positive solutions of (1.3) are
eventually periodic with period τ = 2pq.

Proof. By using repeatedly relation (1.7) p-times, we obtain

xn =
un

xn−q
=

un

un−q
xn−2q = · · · = un

un−q

un−2q
un−3q

· · · un−2q(p−1)
un−q(2p−1)

xn−2pq. (2.1)

Now, note that from (1.8), it follows that in this case un is periodic with period p. On the other
hand, since gcd(p, q) = 1 for each i, j ∈ {0, 1, . . . , p − 1}, i /= j, we have that

(
n − (2i + 1)q

) − (
n − (

2j + 1
)
q
)
=
(
j − i

)
2q /≡ 0

(
mod p

)
,(

n − (2i + 2)q
) − (

n − (
2j + 2

)
q
)
=
(
j − i

)
2q /≡ 0

(
mod p

)
.

(2.2)

Hence, the indices (n − (2i + 1)q), i ∈ {0, 1, . . . , p − 1}, and (n − (2i + 2)q), i ∈ {0, 1, . . . , p − 1},
belong to p different subsequences. From this and the periodicity of un, it follows that

unun−2q · · ·un−2q(p−1) = un−qun−3q · · ·un−q(2p−1), (2.3)

from which the theorem follows.

By taking the logarithm of (1.3) and using the change vn = lnxn, we get

vn + vn−q − vn−p − vn−p−q = ln c, n ∈ N0. (2.4)

The characteristic polynomial of the homogeneous part of (2.4) is

λp+q + λp − λq − 1 = (λq + 1)(λp − 1) = 0, (2.5)
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from which it follows that all its roots are expressed by

exp
(
(2k + 1)πi

q

)
, k = 0, 1, . . . , q − 1, exp

(
2lπi
p

)
, l = 0, 1, . . . , p − 1. (2.6)

These roots are simple if and only if

2k + 1
q

/=
2l
p
, for each k, l ∈ N0. (2.7)

Clearly, if p is odd, inequality (2.7) holds. If p is even, that is, p = 2sr, for some s, r ∈ N,
then, since gcd(p, q) = 1, q must be odd. Then, for k = (q − 1)/2 and l = r, we will get that
inequality (2.7) does not hold.

From the above consideration and Theorem 2.1, we get the next corollary.

Corollary 2.2. Assume that c = 1 and gcd(p, q) = 1. Then all positive solutions of (1.3) are
eventually periodic if and only if p is odd. Moreover, if p is odd, then the period is τ = 2pq.

Since the root λ = 1 of characteristic polynomial (2.5) is a simple one, a particular
solution of nonhomogeneous (2.4) has the form

vP
n = An, (2.8)

from which, by a direct calculation, we easily get that A = ln c/2p.
Hence, if p is odd, the general solution of (1.3) is

xn = evn = cn/2p exp

(
q−1∑
k=0

(
ck,1 cos

(2k + 1)πn
q

+ ck,2 sin
(2k + 1)πn

q

)

+
p−1∑
l=1

(
dk,1 cos

2lπn
p

+ dk,2 sin
2lπn
p

))
.

(2.9)

Note that from (2.9), it follows that

xn = cn/2px̂n, (2.10)

and that x̂n is a positive solution of (1.3) with c = 1.
From (2.9), (2.10), and Theorem 2.1 the following results directly follow.

Theorem 2.3. Assume that c ∈ (0, 1), gcd(p, q) = 1, and p is odd, then every positive solution of
(1.3) converges geometrically to zero. Moreover, for each s ∈ {0, 1, . . . , 2pq − 1}, the subsequence
(x2pqm+s)m∈N0

converges monotonically to zero asm → ∞.

Theorem 2.4. Assume that c > 1, gcd(p, q) = 1, and p is odd, then every positive solution of (1.3)
tends to infinity. Moreover, for each s ∈ {0, 1, . . . , 2pq − 1}, the subsequence (x2pqm+s)m∈N0

converges
increasingly to infinity asm → ∞.
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Finally, there are two concluding interesting remarks.

Remark 2.5. Note that, since the functions cos((2k+1)πn/q) and sin((2k+1)πn/q) are periodic
with period 2q and the functions cos(2lπn/p) and sin(2lπn/p) are periodic with period p,
from the representation (2.9)we also obtain Theorem 2.1.

Remark 2.6. The results in papers [16, 17, 39], which are obtained in much complicated
ways, are particular cases of our results. Namely, in [16] Özban studied a system which is
transformed into (1.3) with p = 1, q = m + k + 1 and c = 1, in [17] he studied a system which
is transformed into (1.3) with p = 3, and c = b/a, while in [39] the authors considered a
system which is transformed into (1.3)with c = b/a, but they only considered the case when
p ≤ q.
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[37] S. Stević and K. S. Berenhaut, “The behavior of positive solutions of a nonlinear second-order
difference equation,” Abstract and Applied Analysis, vol. 2008, Article ID 653243, 8 pages, 2008.
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