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This paper focuses on the chaos control problem of the unified chaotic systems with structured
uncertainties. Applying Schur-complement and some matrix manipulation techniques, the
controlled uncertain unified chaotic system is then transformed into the linear matrix inequality
(LMI) form. Based on Lyapunov stability theory and linear matrix inequality (LMI) formulation,
a simple linear feedback control law is obtained to enforce the prespecified exponential decay
dynamics of the uncertain unified chaotic system. Numerical results validate the effectiveness of
the proposed robust control scheme.

1. Introduction

Chaotic behavior of physical systems has been studied since 1963 when the Lorenz system
was first introduced [1]. Since the pioneering work by Ott et al. [2], chaos control and
synchronization has been extensively investigated in recent years. Although the chaotic
systems are deterministic systems, their behavior is very sensitive to initial conditions
and system parameters and it is unpredictable. The Lorenz system is often taken as a
paradigm for demonstrating the effectiveness of control design techniques, since it captures
many of the features of chaotic dynamics. The Chen and Ueta [3] and Lü and Chen
[4] systems, which are derived from Lorenz system, are other popular paradigms. The
unified chaotic system was introduced in [5], which unified the Lorenz, Chen, and Lü
systems.

Recently, controlling and synchronizing this kind of complex dynamical systems
has attracted a great deal of attention within the engineering society. Chaos control, in
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a broader sense, can be divided into two categories: one is to suppress the chaotic dynamical
behavior and the other is to generate or enhance chaos in nonlinear systems. Nowadays,
many methods and techniques have been developed, such as OGY method [2], bang-bang
control [6], optimal control [7], intelligent control base on neural network [8], feedback
linearization [9], differential geometric method [10], adaptive control [11, 12], H∞ control
method [13], and linear matrix inequality (LMI) technique [14], among many others
[1].

An increasing number of studies have formulated the problem of obtaining the
Lyapunov-based quadratic stability of uncertain systems as a linear matrix inequality
(LMI) optimization problem [15, 16] lately. However, the use of a fixed quadratic function
as an optimization criterion generates conservative solutions in the case of parametric
variations. Accordingly, Gahinet et al. [17] proposed an improved (i.e., less conservative)
test for the robust stability of linear systems with uncertain real parameters in which the
fixed Lyapunov function was replaced by a Lyapunov function with an affine dependence
on the uncertain parameters. Similarly, Yang and Lum [18] showed that a Lyapunov
function formulated as a linear combination of the uncertain system parameters yielded
less conservative results than those obtained using a fixed Lyapunov function. However,
the use of a parameter-dependent Lyapunov function rather than a fixed function increases
the number of decision variables to be solved in the LMI optimization process and
therefore increased the time of the computational procedure. In 2009, Lien et al. [19]
studied global exponential stability for a class of uncertain delayed neural networks of
neutral type. In the basis of Lien et al., we brought up the robust exponential stability
and controller design of systems with structured uncertainties. Based on the Lyapunov
stability criterion, the problem of achieving the robust exponential stability of the uncertain
system has first been formulated as an LMI feasible problem. The problem of determining
the exponential decay rate of the structured uncertain system has then been formulated
as an LMI-generalized eignevalue problem. Finally, the controller required to achieve a
robust exponential stability of the uncertain system has been formulated as a second LMI
feasible problem. Therefore, the control gain could be found from the LMI formulation in the
MATLAB environment.

In 2009, Kuntanapreeda [14] presents an alternative synchronization design for the
unified chaotic systems based on Lyapunov stability theory and LMI formulation, when
the system uncertainty is not considered. However, the system uncertainties do exist in
real physical system. Therefore, we will take the time-varying perturbation of parameters
into account for the robust chaos suppression control problem of uncertain unified chaotic
systems in this paper, just by a simple structure linear feedback controller. Besides, as
is known, if physical systems operate in a state of aperiodic motion, the subsequently
large broadband variation may increase the likelihood of fatigue failure and shorten the
system lifetime. Therefore, designing a controller to suppress the chaotic behavior is more
important than designing a controller to synchronize the chaotic systems. Motivated by
the above observations, in this paper, we revisit the chaos suppressing control problem
of uncertain unified chaotic system. Based on the concept by LMI, a robust controller
design for chaos control can be easily obtained. There is guaranteed the exponential
stability of the controlled uncertain unified chaotic system. The rest of this paper is
organized as follows. Section 2 addresses the system description for the uncertain unified
chaotic system. In Section 3, an LMI based robust controller is derived. For illustration,
a numerical example is shown in Section 4. Finally, some conclusions are drawn in
Section 5.
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2. System Formulation

Consider the following unified chaotic system described by [5]

ẋ1 = (25α + 10)(x2 − x1),

ẋ2 = (28 − 35α)x1 + (29α − 1)x2 − x1x3,

ẋ3 = x1x2 −
8 + α

3
x3,

(2.1)

where x1, x2, and x3 are state variables and the parameter α belongs to[0, 1]. When α ∈ [0, 0.8),
system (2.1) is a Lorenz chaotic system, while the system becomes Lü’s chaotic system for
α = 0.8 and then becomes Chen’s chaotic system for α ∈ (0.8, 1]. Obviously, system (2.1)
always displays chaotic motion in the whole interval α ∈ [0, 1] [1]. Taking into consideration
the system’s uncertainties, system (2.1) can be expressed as

ẋ1 =
(
25
(
α0 + p1

)
+ 10

)
(x2 − x1),

ẋ2 =
(
28 − 35

(
α0 + p1

))
x1 +

(
29
(
α0 + p1

)
− 1

)
x2 − x1x3,

ẋ3 = x1x2 −
8 +

(
α0 + p1

)

3
x3,

(2.2)

where α0 is the nominal value of α and p1 is a system structured uncertainty of parameter α.
In general, it is assumed that Δα is bounded, that is,

∣∣p1
∣∣ ≤ p̃1. (2.3)

It is assumed that the uncertain unified chaotic system (2.2) still demonstrated a
chaotic behavior. To suppress the undesired chaotic dynamics of the uncontrolled system
(2.2), the proposed method adds a control-input u(t) to the differential equation of state x2.
The controlled system thus becomes

ẋ1 =
(
25
(
α0 + p1

)
+ 10

)
(x2 − x1),

ẋ2 =
(
28 − 35

(
α0 + p1

))
x1 +

(
29
(
α0 + p1

)
− 1

)
x2 − x1x3 + u(t),

ẋ3 = x1x2 −
8 +

(
α0 + p1

)

3
x3.

(2.4)

The addition of u(t) will be used to provide a robust controller to derive the system
state to the zero point in the state space, even when the system is experiencing match and
mismatch uncertainties. From (2.4), if x1 and x2 are both controlled to zeros and the coefficient
(8 + (α0 + p1))/3 is positive, then x3 converges to zero when t → ∞. As the result, the closed
loop system state is (x1(t), x2(t), x3(t)) → (0, 0, 0) as t → ∞. Consequentially, the chaos
behavior of system is suppressed.
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3. Robust Controller Design

Let the control input be u(t) = u1(t) + u2(t) and u1(t) = x1 · x3 such that the nonlinear term is
cancelled, and then the controlled system (2.4) becomes

ẋ1 =
(
25
(
α0 + p1

)
+ 10

)
(x2 − x1),

ẋ2 =
(
28 − 35

(
α0 + p1

))
x1 +

(
29
(
α0 + p1

)
− 1

)
x2 + u2(t),

(3.1a)

ẋ3 = x1x2 −
8 +

(
α0 + p1

)

3
x3. (3.1b)

From (3.1a) and (3.1b), it can be seen that the dynamics of x1 and x2 are decoupled
from x3. Equations (3.1a) and (3.1b) show that x3 represents the internal dynamics of the
control system, which will converge and stabilize when x1 and x2 converge to zero.

Let the uncertain control system (3.1a) be expressed as follows:

ẋ = (A + E)x + Bu, x ∈ Rn, u ∈ Rm, (3.2a)

where A ∈ Rn×n and B ∈ Rn×m are the nominal system matrices, and E ∈ Rn×n is the
system uncertainties. Furthermore, assume that the uncertainties E are linear combinations
of constant matrices Ei, respectively, and can be described as

E =
r∑

i=1

piEi,
∣∣pi

∣∣ ≤ p̃i for i = 1, . . . , r. (3.2b)

In synthesizing the controller, the following state feedback control law is defined:

u = Kx. (3.3)

Thus, the controlled system becomes

ẋ = (A + BK + E)x. (3.4)

The controller proposed in this study is designed to enforce certain prespecified exponential
decay dynamics. It is well known that the controlled system in (3.4) is exponentially stable if
and only if there exist a positive-definite matrix P = PT ∈ Rn and a positive scalar η > 0 such
that the following Lyapunov inequality holds:

(
A + BK + E + ηI

)T
P + P

(
A + BK + E + ηI

)
< 0, (3.5)

where η is the corresponding exponential decay rate. The condition required to achieve the
robust exponential stabilizing control of the uncertain system is defined in the following
theorem.
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Theorem 3.1. For the uncertain control system described in (3.2a) and (3.2b), if there exist
symmetric positive-definite matrices X ∈ Rn×n, Wi ∈ Rn×n, Wi = WT

i > 0, i = 1, . . . , r, and
Z ∈ Rm×n such that the following condition holds:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ(X,Z,Wi) XT · · · · · · XT

X −W1 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

X 0 · · · 0 −Wr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (3.6a)

where

Φ(X,Z,Wi) = XAT +AX + ZTBT + BZ + 2ηX +
r∑

i=1

p̃2
i E

T
i WiEi, (3.6b)

then the uncertain system can be robustly exponentially stabilized by the state feedback gain:

K = ZX−1, (3.7)

Proof. Let P be a symmetric positive-definite matrix and multiply each term in (3.5) by the
matrix X = P−1 such that (3.5) becomes

X
(
A + BK + E + ηI

)T +
(
A + BK + E + ηI

)
X < 0. (3.8)

Furthermore, introduce the matrix Z = KX and substitute the structured uncertainties
given in (3.2b) into (3.8) such that the left-hand side of (3.8) becomes

XAT +AX + ZTBT + BZ + 2ηX +XET + EX

= XAT +AX + ZTBT + BZ + 2ηX +
r∑

i=1

pi
(
XETi + EiX

)
.

(3.9)

Let Wi ∈ Rn×n, Wi =WT
i > 0, i = 1, . . . , r. From [15], it can then be shown that

XAT +AX + ZTBT + BZ + 2ηX +
r∑

i=1

pi
(
XETi + EiX

)

≤ XAT +AX + ZTBT + BZ + 2ηX +
r∑

i=1

(
p2
i E

T
i WiEi +XW−1

i X
)

≤ XAT +AX + ZTBT + BZ + 2ηX +
r∑

i=1

(
p̃2
i E

T
i WiEi +XW−1

i X
)
.

(3.10)
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Thus, the dynamics of the uncertain system in (3.2a) and (3.2b) can be exponentially
stabilized if the following inequality holds:

Φ(X,Z,Wi) +
r∑

i=1

XW−1
i X ≤ 0, (3.11)

where Φ(X,Z,Wi) = XAT +AX + ZTBT + BZ + 2ηX +
∑r

i=1 p̃
2
i E

T
i WiEi.

Using the Schur-complement lemma [15], (3.11) can be reformulated in the form of
(3.6a) and (3.6b). Thus, the uncertain control system in (3.2a) and (3.2b) can be stabilized
by the state feedback gain K = ZX−1 and the resulting exponential decay rate of the system
dynamics is given by η.

Corollary 3.2 (Obtain a robust exponential stabilizing controller). Consider the following LMI:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ(X,Z,Wi) XT · · · · · · XT

X −W1 0 · · · 0

... 0
. . .

. . .
...

...
...

. . .
. . . 0

X 0 · · · 0 −Wr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< βI, (3.12)

whereΦ(X,Z,Wi) = XAT +AX+ZTBT+BZ+2ηX+
∑r

i=1 p̃
2
i E

T
i WiEi. The uncertain control system

described in (3.2a) and (3.2b) can be robustly stabilized if the following LMI feasible problem has an
optimal solution of βmin < 0:

βmin = min
X,Z,W1,...,Wr ,V1,...,Vs

β (3.13)

subject to (3.12),

X = XT > 0, X ∈ Rn×n,

Wi =WT
i > 0, i = 1, . . . , r,

(3.14)

and β < 0.
The corresponding state feedback control law is

u = ZX−1x. (3.15)

Remark 3.3. In solving an LMI optimization problem utilizing a numerical technique, the
number of decision variables is an important concern. A matrix variable W ∈ Rn×n, W =
WT > 0, has a total of n(n + 1)/2 decision variables. However, if matrix W is replaced by a
diagonal matrix W = diag(wii) > 0 such that the condition W = WT > 0 is satisfied, then the
total number of decision variables is reduced to n. In other words, for systems with a large
order, the use of a diagonal matrix yields an effective reduction in the computational burden.
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Remark 3.4. If the multiscroll chaotic system [20–22] with system uncertainties can be written
as the form of (3.2a), then it also can be controlled by the same scheme in this paper.
Therefore, the main Theorem 3.1 can be extended to chaos suppression control of multiscroll
chaotic systems or other typical chaotic system which can be described as in (3.2a).

4. Numerical Simulations

In this section, computer simulations are used to illustrate the effectiveness of the proposed
scheme. The initial condition of uncertain unified chaotic system is (0.5, 2,−2). The fourth-
order Runge-Kutta technique is applied to the simulation results with a step size 0.0001. For
the controlled system (3.1a) and (3.1b), the matrices in (3.2a) are

A =

[
−(25α0 + 10) 25α0 + 10

28 − 35α0 29α0 − 1

]

, E = p1 ·
[
−25 25

−35 29

]

, B =

[
0

1

]

. (4.1)

Furthermore, the matrix in (3.2b) is

E1 =

[
−25 25

−35 29

]

. (4.2)

The parameter and uncertain term of uncontrolled system (2.2) are α0 = 0.5 and p1 =
0.49 × sin(t). Therefore, the parameter α = α0 + p1 varied in the range of [0.01, 0.99]. It
guarantees that the uncontrolled uncertain unified system is in the state of chaotic motion,
and its behavior changes among Chen, Lorenz, and Lü systems. The complex trajectory in
phase plane is shown in Figure 1. The perturbed parameter p1 = 0.49 × sin(t) is bounded as
|p1| ≤ 0.49 = p̃1. Assume that the objective here is to design a robust exponential stabilizing
controller which ensures that the dynamics of the controlled system have an exponential
decay rate of η = 0.5. By using Corollary 3.2, the decision variables can be obtained as

X =

[
0.4631 −0.1608

−0.1608 0.3026

]

, W1 =

[
0.6612 −0.4226

−0.4226 0.3555

]

, Z =
[
10.6817 −15.0971

]
. (4.3)

Therefore, the resulting robust state feedback gain is calculated as

K = ZX−1 =
[
7.0413 −46.1504

]
. (4.4)

The simulation results are shown in Figures 2 and 3 under the proposed control law (3.15)
which is active at time t = 10 seconds. Figure 2 shows the time responses of controlled system.
The continuous control signal is shown in Figure 3. These results show that the proposed
method works successfully to suppress chaos in the unified chaotic systems even though the
uncertainty is present.
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Figure 1: The phase plane trajectory of uncontrolled uncertain unified chaotic system when α0 = 0.5 and
p1 = 0.49 × sin(t).
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Figure 2: The time responses of controlled uncertain unified chaotic system when α0 = 0.5 and p1 = 0.49 ×
sin(t). The control is activated at time t = 10.
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Figure 3: The time response of control input when α0 = 0.5 and p1 = 0.49 × sin(t). The control is activated
at time t = 10.
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5. Conclusion

In this paper, the robust exponential stability and controller design of systems with
structured uncertainties is studied. Based on the Lyapunov stability criterion and linear
matrix inequality (LMI) technique, the controller of achieving the robust exponential stability
of the uncertain unified chaotic system can be obtained. Computer simulations show that the
proposed method is effective. For all simulation cases, the obtained control law is able to
chaos suppression control of the uncertain unified chaotic system as desired.
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