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The Fourier transform and spectral analysis are employed to estimate the fractal dimension and
explore the fractal parameter relations of urban growth and form using mathematical experiments
and empirical analyses. Based on the models of urban density, two kinds of fractal dimensions of
urban form can be evaluated with the scaling relations between the wave number and the spectral
density. One is the radial dimension of self-similar distribution indicating the macro-urban patterns,
and the other, the profile dimension of self-affine tracks indicating the micro-urban evolution. If a
city’s growth follows the power law, the summation of the two dimension values may be a constant
under certain condition. The estimated results of the radial dimension suggest a new fractal
dimension, which can be termed “image dimension”. A dual-structure model named particle-ripple
model (PRM) is proposed to explain the connections and differences between the macro and micro
levels of urban form.

1. Introduction

Measurement is the basic link between mathematics and empirical research in any factual
science [1]. However, for urban studies, the conventional measures based on Euclidean
geometry, such as length, area, and density, are sometimes of no effect due to the scale-
free property of urban form and growth. Fortunately, fractal geometry provides us with
effective measurements based on fractal dimensions for spatial analysis. Since the concepts
of fractals were introduced into urban studies by pioneers, such as Arlinghaus [2], Batty
and Longley [3], Benguigui and Daoud [4], Frankhauser and Sadler [5], Goodchild and
Mark [6], and Fotheringham et al. [7], many of our theories of urban geography have been
reinterpreted using ideas from scaling invariance. Batty and Longley [8] and Frankhauser
[9] once summarized the models and theories of fractal cities systematically. From then on,
research on fractal cities has progressed in various aspects, including urban forms, structures,
transportation, and dynamics of urban evolution (e.g., [10–20]). Because of the development
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of the cellular automata (CA) theory, fractal geometry and computer-simulated experiment of
cities became two principal approaches to researching complex urban systems (e.g., [21–25]).

Despite all the above-mentioned achievements, however, we often run into some
difficult problems in urban analysis. The theory on the fractal dimensions of urban space
is less developed. We have varied fractal parameters on cities, but we seldom relate them
with each other to form a systematic framework. Moreover, the estimation methods of
fractal dimensions remain in need of further development. The common approaches to the
fractal analysis of cities are limited by self-affine structures. In this instance, three methods,
including scaling analysis, spectral analysis, and spatial correlation analysis, are helpful for
us to evaluate fractal parameters. The mathematical models of urban density are significant
in our research of the fractal form of cities. A density distribution model is usually a spatial
correlation function of the distance from city center [26]. In the theory of spectral analysis,
the correlation function and energy spectrum can be converted into one another using
Fourier transform [27]. Using spectral analysis based on correlation functions, we can find
the relations among different fractal parameters, which in turn help us understand urban
structure and evolution.

This paper is devoted to exploring the relation between the radial dimension and the
self-affine record dimension. The rest of the paper is arranged as follows. In the second
section, the wave-spectrum scaling equations for estimating fractal dimensions of urban
form are presented. In the third section, two mathematical experiments are implemented
to determine the error-correction formula of fractal dimension estimation, and an empirical
analysis of Beijing, China, is performed to validate the models and method presented in
the text. In the fourth section, a new model of dual structure is proposed to explain urban
evolution. Finally, the paper is concluded with a brief summary of this study.

2. Mathematical Models and Fractal Dimension Relations

2.1. Urban Density Functions—Special Spatial Correlation Functions

A fractal is a scale-free phenomenon, but a fractal dimension seems to be a measurement with
a characteristic scale. Urban growth and form take on several features of scaling invariance,
which can be characterized with fractal dimensions. Three basic concepts about city fractals
and fractal dimensions can be outlined here. First, the models of fractal cities are defined
in the 2-dimensional Euclidean plane. That is, we investigate the fractal structure of cities
through 2D remotely sensed images, digital maps, and so forth. In short, the Euclidean
dimension of the embedding space is d = 2 [8]. On the other hand, the smallest image-
forming units of a city figure can be theoretically treated as points, so the topological
dimension of a city form is generally considered to be dT = 0. In terms of the original
definition of simple fractals [28], the fractal dimension value of urban form ranges from
dT = 0 to d = 2. Empirically, the dimension of fractal cities is between 1 and 2. Second,
the center of the circles for measuring radial dimension should be the center of a city. The
box dimension of fractal cities is affirmatively restricted to the interval 1 ∼ 2. However, the
radial dimension denominated by Frankhauser and Sadler [5] can go beyond the upper limit
confined by a Euclidean space. If the measurement center is the centroid of a fractal body,
the dimension will not exceed d = 2. Otherwise, the radial dimension value may be greater
than 2 [23]. Third, for the isotropic growing fractals of cities, the radial dimension is close
to the box dimension or the grid dimension [29]. The radial dimension of a regular self-similar
growing fractal equals its box dimension (see [8]). As for cities, if the measurement center is



Discrete Dynamics in Nature and Society 3

properly located within an urban figure on the digital map, the box dimension will be close
to the radial dimension.

Fractal research on urban growth and form is related to the concepts of size, scale,
shape, and dimension [30, 31]. Two functions are basic and all-important for these kinds of
studies. One is the negative exponential function, and the other is the inverse power function,
both of which are associated with fractal cities. They are often employed as density models
to describe urban landscapes. The former is mainly used to reflect a city’s population density
[32–34] while the latter is usually employed to characterize the urban land use density [8, 9].
In fact, the inverse power law can be sometimes applied to describing a city population’s
spatial distribution [35]. If the fractal structure of a city degenerates to some extent, the land
use density also follows exponential distribution. The negative exponential model can be
written in the form

ρ(r) = ρ0e
−r/r0 , (2.1)

where ρ(r) denotes the population density at the distance r from the center of the city (r =
0), ρ0 refers to a constant coefficient, which theoretically equals the central density ρ(0), and
r0 is the characteristic radius of the population distribution. The reciprocal of r0 reflects the
rate at which the effect of distance decays.

The inverse power law is significant in the spatial analysis of urban form and structure.
Formally, given r > 0, the power function of urban density can be expressed as

ρ(r) = ρ1r
−(d−Df ), (2.2)

in which ρ(r) and r fulfill the same roles as in (2.1), ρ1 denotes a proportionality constant,
d = 2 is the dimension of the embedding space, and Df is the radial dimension of city form.
When r = 0, there is a discontinuity and the urban density can be specially defined as ρ0.
Equation (2.1) is the well-known Clark’s [34] model and (2.2) Smeed’s [36] model.

Urban density functions are in fact special correlation functions that reflect the spatial
correlation between a city center and the areas around the center. In theory, almost all fractal
dimensions can be regarded as a correlation dimension in a broad sense. For urban growth
and form, the Df can be demonstrated as a one-point correlation dimension (the zero-order
correlation dimension) while the spectral exponent, β, of the power-law density function can be
shown to be a point-point correlation dimension (the second-order correlation dimension). These
two dimensions can be found within the continuous spectrum of generalized dimensions. By
comparing the values of the two correlation dimensions, we can obtain useful information
on urban evolution. A fractal dimension is a measurement of space-use extent. Both the box
dimension and the Df can act as two indices for a city. One is the index of uniformity for
spatial distribution and the other is the index of space filling, indicative of land use intensity
and built-up extent. In addition, the box dimension is associated with information entropy
while the Df is associated with the coefficient of spatial autocorrelation [12].

2.2. The Wave-Spectrum Relation of Urban Density

To simplify the analytical process of spatial scaling, a correlation function can be converted
into an energy spectrum using Fourier transform [27]. One of the special properties of the
Fourier transform is similarity. By this property, a scaling analysis can be made to derive
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useful relations of fractal parameters. Any function indicative of self-similarity retains scaling
symmetry after being transformed. Consider a density function, f(r), that follows the scaling
law

f(λr) ∝ λ−αf(r), (2.3)

where λ is the scale factor, α denotes the scaling exponent (α = d − Df), and r represents
distance variable. Applying the Fourier transform to (2.3) will satisfy the following scaling
relation:

F(λk) = F
[
f(λr)

]
= λ−(1−α)F

[
f(r)

]
= λ−(1−α)F(k), (2.4)

in which F refers to the Fourier operator, k to the wave number, and F(k) to the image
function of the original function f(r). From (2.4), the wave-spectrum relation can be derived
as

S(k) ∝ k−2(1−α), (2.5)

where S(k) = |F(k)|2 denotes the spectral density of “energy”, which bears an analogy to the
energy concept in engineering mathematics [37].

The numerical relation between the spectral exponent and fractal dimension can be
revealed by comparison. Equation (2.1) fails to follow the scaling law under dilation, while
(2.2) is a function of scaling symmetry. Thus, (2.2) can be related to the wave-spectrum
scaling. Taking α = d −Df in (2.5) yields

S(k) ∝ k−2(1−d+Df ) = k−2(Df−1) = k−β. (2.6)

Thus, we have

β = 2
(
Df − 1

)
. (2.7)

The precondition of (2.7) is 1 < Df < 2. As stated above, the spectral exponent β can
be demonstrated to be the point-point correlation dimension. This implies that (2.7) is a
dimension equation that shows the relation between the one-point correlation dimension
(Df) and the point-point correlation dimension (β).

The parameter Df is the fractal dimension of the self-similar form of cities. We
can derive another fractal dimension, the self-affine record dimension, Ds, from the wave-
spectrum relation by means of dimensional analysis [38–41]. The well-known result is as
follows:

β = 5 − 2Ds = 2H + 1, (2.8)

where Ds and H are the fractal dimensions of the self-affine curve and the Hurst exponent,
respectively [42]. The concept of the Hurst exponent comes from the method of the rescaled
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Figure 1: A DLA model showing the particle-ripple duality of city space. (Note that the cluster with a
dimension D ≈ 1.7665 is created in Matlab by using the DLA model. The center of the circles is the origin
of growth as the location of the “seed” of DLA.)

range analysis, namely, the R/S analysis [43], which is now widely applied to nonlinear
random processes. For the increment series Δx of a space/time series x, H is the scaling
exponent of the ratio of the range (R) to the standard deviation (S) versus space/time lag
(τ). In other words, H is defined by the power function R(τ)/S(τ) = (τ/2)H [42].

The parameter Df is mainly used to analyze the characters of spatial distribution at
the macrolevel whereas Ds is used to study the spatial autocorrelation at the microlevel. The
latter is termed profile dimension because it can be estimated by the profile curve of urban
form [37]. The Ds is the local dimension of self-affine fractal records instead of self-similar
fractal trails [26, 42]. A useful relation between the Df and Ds can be derived under certain
conditions. Combining (2.7) and (2.8) yields

Df =
7 − 2Ds

2
=

7
2
−Ds. (2.9)

The question is how to comprehend the relationships and differences between Df and
Ds. Let us look at the diffusion-limited aggregation (DLA) model (Figure 1), which was
employed by Batty et al. [44] and Fotheringham et al. [7] to simulate urban growth. In a
DLA, each track/trail of a particle has a self-affine record and Ds = 2 [42]. However, the final
aggregate comprised of countless fine particles takes on the form of statistical self-similarity.
In fact, the random walk of the particles in the growing process of DLA is associated with
Brownian motion. However, the spatial activity of the “particles” in real urban growth is
assumed to be representative of fractional Brownian motion (fBm) rather than standard
random walk, thus the Ds of real cities falls between 1 and 2 (see [42, 45] for a discussion
on fBm).
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Table 1: The numerical relationships between different fractal dimensions, scaling exponents, and
autocorrelation coefficients.

Radial
dimension (Df )

Profile
dimension (Ds)

Spectral
exponent (β)

Hurst exponent
(H)

Autocorrelation
coefficient (CΔ)

Correlation
function [C(r)]

1.00 (2.50) 0.0 (−0.50) −0.750 r−1.00

1.05 (2.45) 0.1 (−0.45) −0.732 r−0.95

1.25 (2.25) 0.5 (−0.25) −0.646 r−0.75

1.50 2.00 1.0 0.00 −0.500 r−0.50

1.70 1.80 1.4 0.20 −0.340 r−0.30

1.75 1.75 1.5 0.25 −0.293 r−0.25

1.95 1.55 1.9 0.45 −0.067 r−0.05

2.00 1.50 2.0 0.50 0.000 1.00
(2.25) 1.25 2.5 0.75 0.414 r0.25

(2.50) 1.00 3.0 1.00 1.000 r0.50

(1) The autocorrelation coefficient (CΔ) is defined at the micro level and associated with Ds while the correlation function
C(r) is defined at the macro level and associated with Df . (2) The values in the parentheses are meaningless because they
go beyond the valid range.

Based on fBm, the relation between H and the autocorrelation coefficient of a
increment series can be given as [38, 42]

CΔ = 22H−1 − 1, (2.10)

where CΔ denotes the autocorrelation coefficient. For urban evolution, CΔ is a spatial
autocorrelation coefficient that is different from Moran’s exponent (Moran’s I). Moran’s I
is based on the first-order lag 2-dimensional spatial autocorrelation [46] while CΔ is based
on the multiple-lag 1-dimensional spatial autocorrelation. When H = 1/2, CΔ = 0, indicating
Brownian motion (random walk), an independent random process. When H > 1/2, CΔ > 0,
indicating positive spatial autocorrelation. Finally, whenH < 1/2,CΔ < 0, indicating negative
spatial autocorrelation.

In light of (2.8), (2.9), and (2.10), we can reveal the numerical relationships between
Df , Ds, β, H, and CΔ. The examples are displayed in Table 1. Each parameter has its own
valid scale. The Df , as shown above, ranges from 0 to 2 in theory and 1 to 2 in empirical
results. The Ds ranges from 1 to 2, the H ranges from 0 to 1, and the CΔ ranges from −1 to
1. In sum, only when Df comes between 1.5 and 2, is the fractal dimension relation, (2.9),
theoretically valid. There are two special points in the spectrum of the Df from 0 to 2. One
is Df = 1.5, corresponding to the 1/f distribution, and the other is Df = 2, suggesting that a
space is occupied and utilized completely. Only within this dimension range, from 1.5 to 2,
can the city form be interpreted using the fBm process.

If an urban phenomenon, such as urban land use, follows the inverse power law, it
can be characterized by a Df that varies from 0 to 2. However, what is the dimension of the
urban phenomenon that follows the negative exponential law instead of the inverse power
law? How can we understand the dimension of urban population if the population density
conforms to the negative exponential distribution? These are difficult questions that have
puzzled theoretical geographers for a long time. Batty and Kim [35] conducted an interesting
discussion about the difference between the exponential function and the power function,
and Thomas et al. [20] discussed the fractal question related to the exponential model.
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Actually, the spectral density based on the Fourier transform of the negative
exponential function approximately follows the inverse power law [37]. The spectral density
of the negative exponential distribution meets the scaling relation as follows [38, 47]:

S(k) ∝ k−β = k−2, (2.11)

in which β = 2 is a theoretical value, indicating Ds = 1.5. In empirical studies, the calculations
may deviate from this standard value and vary from 0 to 3.

The dimension relation, (2.9), can be employed to tackle some difficult problems
on cities, including the dimension of urban population departing from self-similar fractal
distributions and the scaling exponent of the allometric relation between urban area and
population. If urban population density can be described by (2.1), β → 2 according to (2.11),
and thus we have Ds → 3/2 according to (2.8). Substituting this result into (2.9) yields
Df → 7/2 − 3/2 = 2. This suggests that the dimensions of urban phenomena that satisfy the
negative exponential distribution can be treated as Df → dE = 2.

To sum up, if we calculate the Df properly and the value falls between 1.5 and 2,
we have a one-point correlation dimension and can estimate the β, Ds, and so forth. Using
these fractal parameters, we can conduct spatial correlation analyses of urban evolution.
There are often differences between the theoretical results and real calculations because
of algorithms among others. However, we can find a formula to correct the errors in
computation. For this purpose, a mathematical experiment based on noise-free spatial series
is necessary. Moreover, an empirical analysis is essential to support the theoretical relations.
The subsequent mathematical experiments consist of two principal parts: one is based on
the inverse power law and the other on the negative exponential function. The empirical
analysis will involve both the negative exponential distribution and the inverse power-law
distribution.

3. Mathematical Experiments and Empirical Analysis

3.1. Mathematical Experiment Based on Inverse Power Law

All the theoretical derivations in Section 2.2 are based on the continuous Fourier transform
(CFT), which requires the continuous variable r to vary from negative infinity to infinity
(−∞ < r < ∞). However, in mathematical experiments or empirical analyses, we can only
deal with the discrete sample paths with limited length (1 ≤ r < N). Because of this, the
energy spectrum in (2.5), (2.6), and (2.11) should be replaced by the wave spectrum, thus we
have

W(k) =
S(k)
N

∝ k−β, (3.1)

where W(k) refers to the wave-spectral density and N to the length of the sample path.
In practice, CFT should be substituted with the discrete Fourier transform (DFT). The
calculation error is inevitable owing to the conversion from continuity and infinity to
discreteness and finitude.

For the power-law distribution, both Df and Ds of the urban form can be estimated
with the wave-spectrum relation. The procedures in the mathematical experiment are as



8 Discrete Dynamics in Nature and Society

follows: (1) Create noise-free series of density data for an imaginary land use pattern using
(2.2). A real space or time series often consists of trend component, period component, and
random component (noise). However, the series produced by theoretical model contain no
random component. The Df value is given in advance (1 < Df < 2). The length of the sample
path is taken as N = 2z, where z = 1, 2, 3 . . . is a positive integer. (2) Implement fast Fourier
transform (FFT) on the data. (3) Evaluate β using (3.1). (4) Estimate the fractal dimension
value through the spectral exponent and (2.7); the result is notated as D∗f in contrast to
the given value Df. (5) Compare the difference between the expected value, Df , and the
estimated result, D∗

f
. The index of difference can be measured by the squared value of error,

E2 = (Df −D∗f)
2.

The operation is very simple and all the steps can be carried out in Matlab or MS Excel.
Taking z = 8, 9, 10, and 11, for example, we have four sample paths of noise-free series of
urban land use densities with lengths of N = 256, 512, 1024, and 2048, respectively. The
length of a sample path is to a space or time series as the size of a sample is to population
[48]. It is measured by the number of elements. Given the Df and ρ1 values, the data can
be produced easily using (2.2). Through spectral analysis, the Df value can be estimated
using (2.7), and the Ds value can be estimated using (2.8). Three conclusions can be drawn
from the mathematical experiment. First, the longer the sample path is, the more precise
the estimation results will be. The change in accuracy of the fractal dimension estimation
over the sample path length is not very remarkable. Second, the closer the fractal dimension
value is to Df = 1.7, the better the estimated result will be. For instance, given N = 512
and Df = 1.05, 1.25, . . . , 1.95, the corresponding results of fractal dimension estimation are
D∗f = 1.4306, 1.5010, . . . , 1.7693, respectively. When Df = 1.6654, we have D∗f = 1.6654 and
minimal errors are found (Figure 2). This value is very close to Df = 1.7 (Table 2). Third, if
we add white noise (a random component) to the data series, the scaling relation between
the wave number and the spectral density will not change. The white noise is the simplest
series with various frequencies, and the intensity at all frequencies is the same. A formula of
error correction can be found by the data in Table 2, that is,

Df ≈
5
2

(
D∗f − 1

)
, (3.2)

which can be used to reduce the error of the estimated fractal dimension. It is easy to apply
the dimension estimation process to the fractal landscape of the DLA model displayed in
Figure 1, from which we can abstract a sample of spatial series with random noise.

One of the discoveries is that the estimated result becomes more precise the closer the
Df value approaches 1.7. The relation between the dimension (Df) and the squared error (E2)
produces a hyperbolic catenary, which can be converted into a concave parabola through the
Taylor series expansion. For example, when N = 2048, the empirical relation is

E2 = 0.3605D2
f − 1.2075Df + 1.0105. (3.3)

The goodness of fit for this relation is R2 = 0.9995. This suggests that when Df ≈ 1.2075/(2 ∗
0.3605) ≈ 1.675 → 1.7, the square error approaches the minimum (E2 → 0).

Another discovery is that the best fit of data to the wave-spectrum relation appears
when the fractal dimension approaches Df = 1.5 rather than when Df = 1.7. The relation
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Figure 2: A log-log plot of the wave spectrum relation based on the inverse power function. (Note that a
sample, withN = 512, can be produced by takingDf = 1.6654 and ρ1 = 1000 in (2.2). The spectral exponent
of this data set is computed as β ≈ 1.3308, thus (2.7) yields a dimension estimation D∗

f
≈ 1.6654.)

between the logarithm of the fractal dimension (lnDf) and the squared correlation coefficient
(R2) is a convex parabola. For instance, taking N = 2048, we have another parabola equation

R2 = −0.0438
[
ln
(
Df

)]2 + 0.0398 ln
(
Df

)
+ 0.986. (3.4)

The goodness of fit is R2 = 0.9942. This implies that when Df ≈ exp[0.0398/(2 ∗ 0.0438)] ≈
1.575, the R2 value approaches the maximum (R2 → 1). If Df = 1.5, we have β = 1 (Table 1).
In fact, when β → 3, the spectrum of short waves becomes divergent; when β → 0, the
spectrum of long waves becomes divergent. Only when β → 1, does the wave spectrum
converge in the best way [38].

3.2. Mathematical Experiment Based on Negative Exponential Function

For the negative exponential distribution, the Df of self-similar urban form does not exist.
However, we can estimate the Ds of self-affine curves by means of the wave-spectrum
relation. The procedure is comprised of five steps. The first step is to use (2.1) to produce
a noise-free series of the urban density by taking certain ρ0 and r0 values. The length of the
sample path is also taken as 2z (z = 1, 2, 3, . . .). The next four other steps are similar to those
used for estimating the Df in Section 3.1. The notation of the computed fractal dimension
is D∗s , differing from the given dimension Ds. The expected dimension value is Ds = 1.5,
and the estimation of the fractal parameter can be illustrated with a log-log plot (Figure 3).
The corresponding landscape of exponential distribution can be found in a real urban shape
(Figure 4). The longer the sample path is, the closer the spectral exponent value is to β = 2
and the closer the estimated value of the profile dimension is to Ds = 1.5 (Table 3). The length
of the spatial series is long enough in theory, so the spectral exponent will be infinitely close
to 2 and the D∗s value will be infinitely close to 1.5.

Random fractal forms can be associated with fBm, with H varying from 0 to 1, thus Ds

varying from 1 to 2. IfH = 1/2, thenCΔ = 0 andDs = 1.5, indicating Brownian motion instead
of fBm. This suggests that the city form that satisfies the negative exponential distribution is
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Table 2: Comparison between the fractal dimension values of an imaginary city form and its estimated
results from the spectral exponent.

Length of sample
path (N)

Radial
dimension (Df )

Spectral
exponent (β)

Goodness
of fit (R2)

Estimation
of Df (D∗

f
)

Estimation
of Ds (D∗s)

Square error
(E2)

256

1.0500 0.8684 0.9919 1.4342 2.0658 0.1476
1.2500 1.0044 0.9943 1.5022 1.9978 0.0636
1.5000 1.1904 0.9950 1.5952 1.9048 0.0091
1.6536 1.3072 0.9946 1.6536 1.8464 0.0000

1.7000 1.3417 0.9944 1.6709 1.8292 0.0008
1.7500 1.3783 0.9942 1.6892 1.8109 0.0037
1.9500 1.5126 0.9933 1.7563 1.7437 0.0375

512

1.0500 0.8612 0.9903 1.4306 2.0694 0.1449
1.2500 1.0020 0.9938 1.5010 1.9990 0.0630
1.5000 1.1974 0.9950 1.5987 1.9013 0.0097
1.6654 1.3308 0.9947 1.6654 1.8346 0.0000

1.7000 1.3582 0.9946 1.6791 1.8209 0.0004
1.7500 1.3970 0.9944 1.6985 1.8015 0.0027
1.9500 1.5386 0.9934 1.7693 1.7307 0.0327

1024

1.0500 0.8557 0.9889 1.4279 2.0722 0.1428
1.2500 0.9998 0.9933 1.4999 2.0001 0.0625
1.5000 1.2026 0.9951 1.6013 1.8987 0.0103
1.6756 1.3512 0.9947 1.6756 1.8244 0.0000

1.7000 1.3715 0.9946 1.6858 1.8143 0.0002
1.7500 1.4124 0.9944 1.7062 1.7938 0.0019
1.9500 1.5605 0.9934 1.7803 1.7198 0.0288

2048

1.0500 0.8517 0.9877 1.4259 2.0742 0.1413
1.2500 0.9981 0.9929 1.4991 2.0010 0.0620
1.5000 1.2066 0.9951 1.6033 1.8967 0.0107
1.6846 1.3691 0.9947 1.6846 1.8155 0.0000

1.7000 1.3825 0.9946 1.6913 1.8088 0.0001
1.7500 1.4152 0.9944 1.7076 1.7924 0.0018
1.9500 1.5790 0.9933 1.7895 1.7105 0.0258

based on the Brownian motion process with a self-affine fractal property. The local dimension
value of the self-affine fractal record can be estimated as Ds = 1.5 by the wave-spectrum
relation. In this case, according to (2.9), the dimension of the urban form can be treated as
Df = 3.5–Ds = 2. This is a special dimension value indicative of a self-affine fractal form.

3.3. Empirical Evidence: The Case of Beijing

The spectral analysis can be easily applied to real cities by means of MS Excel, Matlab, or
Mathcad. Now, we take the population and land use of Beijing city as an example to show
how to make use of the wave spectrum relation in urban studies. The fifth census data of
China in 2000 and the land use data of Beijing in 2005 are available. Qianmen, the growth
core of Beijing, is taken as the center, and a series of concentric circles are drawn at regular
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Figure 3: A log-log plot of a wave-spectrum relation based on negative exponential function. (Note that taking
ρ0 = 50000 and r0 = 32 in (2.1) yields a sample path of N = 512. A wave-spectrum analysis of this sample
gives β = 1.7116, which suggests that the fractal dimension of the self-affine record is around Ds = 1.6442.)

Table 3: Spectral exponent, fractal dimension, and related parameter values based on the standard
exponential distributions (partial results).

Characteristic
radius (r0)

Sample path
length (L)

Spectral exponent
(β)

Fractal dimension
(D∗s)

Goodness of fit
(R2)

4 = 22 64 = 26 = 64 1.3672 1.8164 0.9830
8 = 23 128 = 27 = 128 1.5387 1.7307 0.9867
16 = 24 256 = 28 = 256 1.6787 1.6607 0.9902
32 = 25 512 = 29 = 512 1.7116 1.6442 0.9900
64 = 26 1024 = 210 = 1024 1.7507 1.6247 0.9905
128 = 27 2048 = 211 = 2048 1.7738 1.6131 0.9905
256 = 28 4096 = 212 = 4096 1.7873 1.6064 0.9905

intervals (Figure 4). The width of an interval represents 500 meters on the earth’s surface. The
land use area between two circles can be measured with the number of pixels on the digital
map, and it is not difficult to calculate the area with the aid of ArcGIS software. Thus, the land
use density can be determined easily. The population within a ring is hard to estimate because
the census is taken in units of jie-dao (subdistrict) and each ring runs through different jie-daos.
This problem is solved by estimating the weighted average density of the population within
a ring [37]. We have 72 circles and thus 72 rings from center to exurb (suburban counties),
but only the first 64 data points are adopted because of the algorithmic need of FFT (N = 26)
[27]. The study area is then confined to the field with a radius of 32 kilometers. This is enough
for us to study the urban form of Beijing.

The population density distribution of Beijing follows Clark’s law and can be fitted to
(2.1). An ordinary least squares (OLSs) calculation yields

ρ(r) = 30774.8328e−r/3.3641. (3.5)
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Figure 4: A sketch map of the zonal system of Beijing with a system of concentric circles.

The goodness of fit is about R2 = 0.9951. The population within a certain radius, P(r),
does not satisfy the power law. In this instance, Beijing’s population distribution cannot be
described using the Df , but it can be depicted by the Ds. That is, the human activities of the
city may be based on Brownian motion and contain a set of self-affine fractal records.

The spectral density can be obtained by applying FFT to the population density,
involving 64 concentric circles. The relation between the wave number and the spectral
density follows the power law. A least squares computation gives the following result:

W(k) = 75348.7327k−2.0549. (3.6)

The goodness of fit is around R2 = 0.9537 (Figure 5). The estimated value of β (2.0549) is very
close to the theoretically expected value (β = 2). Using (2.8), we can estimate the Ds and have

Ds ≈
5 − 2.0549

2
≈ 1.4726. (3.7)

The result approaches the expected value of Ds(1.5). This suggests that the population
distribution of Beijing possess some nature of random walk. Then, according to (2.9), the
city form’s Df can be estimated to be

Df ≈
2.0549

2
+ 1 ≈ 2.0275. (3.8)

This value is close to the theoretical value of the Euclidean dimension, Df = d = 2.
Because of underdevelopment of fractal structure, the land use density of Beijing

seems to meet the negative exponential distribution rather than the power-law distribution.
In a sense, the land use density follows the inverse power law locally. However, as a whole,
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Figure 5: A log-log plot of the wave spectrum relation of Beijing’s population density (2000).

the total quantity of land use within a certain radius follows the power law (Figure 6). The
integral of (2.2) in the 2-dimensional space is

N(r) =N1r
Df , (3.9)

where N(r) denotes the pixel number indicating the land use area within a radius of r from
the city center and N1 is a constant. Fitting the data of urban land use to (3.9) yields

N(r) = 4.2724r1.7827. (3.10)

The goodness of fitness is about R2 = 0.985, and Df ≈ 1.7827. Accordingly, Ds ≈ 1.7173, and
β ≈ 1.5654.

For the standard power-law distribution, the Df of urban form can be estimated by
either (2.2) or (3.9). However, as indicated above, the Df of Beijing cannot be evaluated
through (2.2) because the city’s land use density fails to follow the inverse power law
properly. We can approximately estimate the fractal dimension through spectral analysis
based on (2.2). The spectral density is still generated with FFT. The linear relation between
the wave number and the spectral density is obvious in the log-log plot (Figure 7). A least
squares computation yields

W(k) = 0.0009k−1.703. (3.11)

The goodness of fit is about R2 = 0.9905, and β ≈ 1.7030. Correspondingly, the Df can be
estimated as

D∗f ≈
1.7030

2
+ 1 ≈ 1.8515, (3.12)
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Figure 6: A log-log plot of the relation between radius and corresponding land use quantity of Beijing
(2005).
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Figure 7: A log-log plot of the wave-spectrum relation of Beijing’s land use patterns.

which can be corrected to Df ≈ 1 + 0.4 ∗ 1.8515 ≈ 1.7406. Accordingly, the Ds is

D∗s ≈
5 − 1.7030

2
≈ 1.6485. (3.13)

This implies that the fractal dimension can be evaluated either by the integral result of (2.2)
or by the wave spectrum relation based on (2.2). The former method is more convenient,
while the latter approach can be used to reveal the regularity on a large scale due to the filter
function of Fourier transform.

To sum up, the Df of Beijing’s city form can be either directly evaluated (Df ≈ 1.7827)
or indirectly estimated through spectral analysis (D∗

f
≈ 1.8515). The difference between these

two results is due to algorithmic rules and random disturbance among others. The Ds cannot
be directly evaluated in this case. The spectral analysis is the most convenient approach to
estimating it (D∗s ≈ 1.6485). Of course, it can be indirectly estimated with the number-radius
scaling (Ds ≈ 1.7173). The Df of Beijing’s urban population can be treated as Df ≈ 2 (D∗

f
≈

2.0275), and Ds ≈ 1.5 (D∗s = 1.4727). The main results are displayed in Table 4, which shows
a concise comparison between the parameter values from different approaches.
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Table 4: Fractal dimensions, spectral exponents, and related statistics of land use and population
distribution in Beijing.

Type
Dimensions evaluated from Dimensions from direct calculation

wave spectrum relation or theoretical derivation

β D∗
f D∗s R2 Df Ds R2

Land use (2005) 1.7030 1.8515 1.6485 0.9905 1.7827a 1.7173a 0.9850

Population (2000) 2.0549 2.0275 1.4726 0.9537 2.0000b 1.5000b (1.0000)
Notes. aThe calculated value from the number-radius scaling; bThe expected values from the theoretical derivation. For the
power-law distribution, the results can be corrected with (3.2); while the results for the xponential distribution need no
correction.

From the fractal perspective, the main conclusions about Beijing’s population and land
use forms can be drawn as follows. First, the population density of Beijing follows Clark’s
law, so the spatial distribution of the urban population bears no self-similar fractal property.
Second, the land uses of this city take on self-similar fractal features, but the fractal structure
degenerates to some extent. The quantity of land use within a radius of r from the city center
can be approximately modeled with a power function, and the scaling exponent is the radial
dimension. Third, the dynamic process of population and land use possesses self-affine fractal
properties. Both the population and land use can be associated with self-affine fractal records.
The population pattern is possibly based on Brownian motion while the land use patterns are
mainly based on fBm. Fourth, the human activity of Beijing is of locality while the land use
is associated with action at a distance. The Ds of the population distribution is near Ds = 1.5,
which suggests that the H is close to 0.5. Therefore, the CΔ of the spatial increment series
is near zero, and this value reminds us of spatial locality [37]. The Ds of land use is around
1.65, and the corresponding H is 0.35. Thus, the CΔ is estimated to be about CΔ = −0.2, which
suggests a long memory and antipermanence of spatial correlation between the urban core
and periphery.

4. Questions and Discussions

The obvious shortcoming of this work is that the wave-spectrum scaling is only applicable
to static pictures of urban structures in mathematical experiments and empirical analyses. By
means of computer simulation techniques, such as CA and multiagent systems (MASs) [21],
perhaps we can base our urban analysis on the continuous process of urban evolution. This
is one of the intended directions of spectral analysis for urban growth and form. The focus
of this paper is on the theoretical understanding of fractal cities, rather than a case study of
real cities. After all, as Hamming [49] pointed out, the purpose of modeling and computing
is insight, not numbers.

To reveal the essential properties of fractal cities in a simple way, a new model of
monocentric cities, which can be termed the particle-ripple model (PRM), is proposed here
(Figure 1). A city system can be divided into two levels: the particle layer and the wave
layer. At the micro level, the city can be regarded as an irregular aggregate of “particles”
taking on random motion. In contrast, at the macro level, the city can be abstracted as some
deterministic pattern based on a system of concentric circles and the concept of statistical
averages. The former reminds us of the fractal city model, which can be simulated with the
DLA model, dielectric breakdown model (DBM), and CA model, among others [7, 21, 44, 50].
The latter remind us of von Thunen’s rings and the Burgess’s concentric zones, which
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Table 5: The similarities and differences between inverse power law and negative exponential dis-
tributions.

Distribution Level Fractal property Fractal dimension Physical base

Power-law distribution Macro level Self-similarity Radial dimension Dual entropy maximization

Micro level Self-affinity Profile dimension fBm

Exponential distributionMacro level Non-fractality Euclidean dimension Entropy maximization

Micro level Self-affinity Profile dimension Brownian motion
Notes. The physical bases of the inverse power law and the negative exponential law can be found in the work of Chen
[12, 37].

can be modeled with (2.1), (2.2), or (2.6). A simple comparison between the power-law
and exponential distributions can be made by means of PRM. The main similarities and
differences of the two distributions are outlined in Table 5.

The spatial feature of the particle level can be characterized by the fractal models based
on the wave layer. In theory, we can use (2.2), (2.6), or (3.9) to estimate the Df of the cluster
in Figure 1. For convenience, we will notate them as D(1)

f
,D(2)

f
, and D

(3)
f

, respectively. The

results are expected to be the same for each equation (i.e., D(1)
f = D

(2)
f = D

(3)
f ). However, the

estimated values in empirical analyses are usually different, that is, D(1)
f /=D

(2)
f /=D

(3)
f . In most

cases, the value of D(1)
f

cannot be properly estimated by using the inverse power function.

Taking Beijing as an example, the results are as follows: D(2)
f ≈ 1.7828, D(3)

f ≈ 1.8515 (Table 4).

However, D(1)
f ≈ 0.5036 is an unacceptable result because the dimensions of Beijing cannot be

less than 1.
The three power functions are related to but different from one another. As a special

density-density correlation function, (2.2) can capture more details at the micro level (particle
layer). Thus the results are usually disturbed to a great extent by random noises. In contrast,
as a function of correlation sum, (3.9) omits detailed information and reflects the geographical
feature as a whole (wave layer). Equation (2.6) is based on (2.2). The noise and particulars
can be filtrated by FFT so that (2.6) catches the main change trend. Both (2.2) and (3.9)
characterize the form of the particle layer through the wave layer. Equation (2.6) describes
the city form by projecting the particle layer onto the wave layer. The result of projection is
defined in the complex number domain rather than in the real number domain.

The Ds can also be used to characterize urban growth and form. A mathematical
model is often defined at the macro level, while the parameters of the model, including
fractal dimension, always reflect information at the micro level. Both Df and Ds are the
scaling exponents of spatial correlation based on the particle layer, but they are different from
each other. The relationships and distinctions between the Df and Ds can be summarized in
several aspects (Table 6). First, the Df is a measurement of self-similar form while the Ds is
one of the measurements of self-affine patterns. Second, the Df represents the dimension of
spatial distribution while the Ds indicates the dimension of a curve or a surface [26]. Third,
theDf represents density-density correlation at the wave layer, whileDs indicates increment-
increment correlation at the particle layer. The former is an exponent of spatial correlation
of density distribution while the latter is an exponent of spatial autocorrelation of density
increments. Finally, if the Df value falls between 1.5 and 2, the two dimensions can come into
contact with each other (Df +Ds = 3.5).
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Table 6: Comparison between the radial and profile dimensions.

Fractal dimension Description object Related process Geometrical meaning

Radial dimension
(Df )

Self-similar form

Macro pattern, growth, form,
action of core on periphery, and
spatial correlation of density
series

Extent of spatial uniformity,
space filling extent, and spatial
correlation at wave layer

Profile dimension
(Ds)

Self-affine track

Micro change, aggregation,
dynamics, influence of the
previous changes on the
following changes, and spatial
autocorrelation of increment
series

Irregularity of spatial pattern,
vestige of spatial motion, and
autocorrelation at particle
layer

By analogy with the fractal growth of DLA, we can understand city forms through
their dimensions. Let us examine the DLA model displayed in Figure 1. For the cluster, Df ≈
1.7665 and the goodness of fit is about R2 = 0.9924. In the aggregation process, each particle
moves by following a random path until it touches the growing cluster and becomes part of
the aggregate. The track of a particle is a self-affine curve, which cannot be recorded directly
and does not concern us. What interests us is the final distribution of all the particles with
remnant information on the self-affine movements. For a profile from the center to the edge,
on the average, β ≈ 1.4967. Thus, Ds ≈ (5 − 1.4967)/2 ≈ 1.7517, and further, we have D∗

f
=

3.5 −Ds ≈ 1.7484. H = 2 − β ≈ 0.2484, so CΔ ≈ −0.2945 as estimated at the micro level. At the
macro level, the one-point correlation function is C(r) = r−0.2335. The D∗f may be treated as a
new fractal dimension termed the image dimension of urban forms because it always differs
from Df in practice. This dimension can act as a complementary measurement of spatial
analysis, which remains to be discussed in future work.

5. Conclusions

Spectral analysis based on Fourier transform is one of powerful tools for the studies of fractal
cities. First of all, it can help reveal some theoretical equations, such as the relation between
Df and Ds. Next, it can be used to evaluate fractal dimensions, which are hard to calculate
directly, such as the Ds indicative of self-affine record of urban evolution. Finally, it can
provide us with a supplementary approach to computing the fractal dimension, which can
be directly determined by the area-radius scaling. When the urban density fails to follow the
inverse power law properly, spectral analysis is an indispensable way of estimating latent
fractal dimensions.

Based on the area-radius relation of cities, the main conclusions of this paper are as
follows. First, to describe the core-periphery relationships of urban form, we need at least
two fractal dimensions, the Df and the Ds. The Df can be either directly calculated with the
aid of the area-radius scaling or indirectly evaluated by the wave-spectrum relation. The Ds

is mainly estimated with the wave spectrum relation. When the Df ranges from 1.5 to 2, the
sum of the two dimension values is a constant. Second, the dimensions of city phenomena
satisfying the negative exponential distribution can be treated as d = 2. In spatial analysis, it
is important to determine the dimensions of a geographical phenomenon. The dimension
based on the power-law distribution is easy to evaluate. However, little is known about
the dimensions of geographical systems following the exponential distribution. One useful
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inference of this study is that the dimension of exponential distribution phenomena is 2. If so,
a number of theoretical problems, such as the allometric scaling exponent of urban area and
population, can be readily solved. Third, city form bears no characteristic scale, but the fractal
dimension of city form possesses a characteristic scale. Various fractal parameters, such asDf ,
Ds, β, and H, have mathematical relations with one another. However, the rational ranges of
these parameter values are not completely consistent with each other. Only when the value of
the Df varies from 1.5 to 2, will all these fractal parameters become valid in value. This seems
to suggest that the range of Df from 1.5 to 2 is a common scale for all these parameters, thus
it is a reasonable scale for the Df . This scale of fractal dimension is revealing for unborn city
planning and the spatial optimization of urban structures.
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