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This paper presents a study on a multiscale pore connectivity network derived from a sandstone
image. We first convert a grayscale sandstone image into pore and grain regions. The binary pore-
grain image is transformed into multiscale pore by performing morphological opening operations
with increasing structuring element size. A pore connectivity network (PCN), which is a skeleton
network that describes the structure of pore space from multiscale pore-grain images, is extracted.
The PCN can be computed by using morphological transformations with reference to three
different probing rules (in the form of octagon, square, and rhombus). It is observed that the length
of multiscale PCN varies with the number of opening transformations. This is due to the fact that
the intricacy of the pore image is reduced with the increasing cycle of opening transformations.
Next, we estimate the fractal dimensions of these multiscale PCNs using box-counting method.
The values obtained follow universal power-law relationships. We further analyze the relationship
of multidimensional opening in quantitative manner. A rescaled formula based on the linearity
of decreasing fractal dimension values of pore space is proposed. This technique is applied to
estimate the fractal dimensions of a sequence of multi-dimensional sandstone image generated by
morphological opening.

1. Introduction

Pore space is formed due to random process of grain deposition, cementation, secondary
geophysical and geochemical processes [1, 2]. Pore geometry and topological properties are
related to processes of porous media formation. One of the efficient ways of characterizing
processes of porous medium in a quantitative manner is by reducing the pore space into
the connectivity network [3, 4]. In order to understand the properties of material, it is thus
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essential to study the effect of the connectivity network models in material. Pore network
models are mechanistic models that idealize the complex geometry of the porous media
by representing the pore space with pore elements having simple geometric shapes. These
network models are effective tools to investigate or predict macroscopic properties from
fundamental pore scale behavior or processes and phenomena that are difficult to obtain
experimentally. Typical properties of network model include the network topology in which
pore connects a subset of the network geometry consisting of pore locations and volumes
and channel cross-sectional areas. Geometrical simplifications of pore and channel shapes
are often implicitly built into these models [4]. The most critical part in constructing a
pore network model is defining its structure and geometry. To overcome this problem,
various representations of pore networkmodels have been proposed to providemore realistic
description of the connectivity by defining pore-throat length distribution, pore-body size
distributions, throat-body size distribution, and the spatial correlation between pore bodies
and pore throats [5]. Due to the complexity of pore spacemorphology, pore bodies are usually
represented by simplified shapes such as spheres, cubes, or prisms, while pore throats are
represented by circular, rectangular, or triangular cross-section.

Several theoretical attempts have been made to deal with characterization of rock
through geometrical descriptors and fractal analysis of pore space. Vogel and Roth [3]
generated a pore network model based on pore-size distribution and connectivity function
obtained by calculating three-dimensional Euler number. The pore size distribution is
obtained by a series of erosion-dilation algorithm. On the other hand, Bird and Perrier [6]
have developed a fractal approach to model variations in soil bulk density and porosity with
scale of measurement or sample size. Most common network models are either cubic lattices
with restricted connectivity or random pore network models with variable connectivity
generated to provide more realistic representation of the pore space of the porous media.
Perrier et al. [7] have proposed pore-solid fractal (PSF) model, which is a multiscale model
of porous medium. They described the fractal approach to model soil structure, in which a
range of particles and pore sizes are incorporated in common geometric model.

In this paper, a multiscale structure of pore space is obtained by morphological
opening process using three different structuring elements. Classically, the process of
multiscale-dimensional pore images begins with the morphological opening technique by
smoothing and reducing the dimension of pore images [8, 9]. The multiscale approach leads
to the stabilized structuring elements used in opening transformations, which prevent the
excessive differences of area of opening process introduced in the pore space.

The outline of this paper is shown as follows. The techniques of morphological
transformations are employed to generate multiscale pore space and, further, to extract the
pore connectivity networks. Amathematical formulation is proposed to investigate the fractal
properties of pore connectivity networks. It is observed that the fractal dimension of pore
space decreases with the increasing opening process. Lastly, we show the fractal power-law
relationship based on number-decomposed network relationship.

2. Morphological Transformations

Mathematical morphology is a technique for the analysis and processing of geometrical
structures. Mathematical morphology was originally developed for binary images and was
later extended to grayscale images. In binary morphology, an image (M) is probed with a
simple, specific shape, called structuring element (S) to examine howwell this shape fits into
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the image under test. There are four basic morphological transformations namely: dilation,
erosion, opening, and closing [8, 9].

Dilation:

M
⊕

S = {m + s : m ∈ M,s ∈ S} =
⋃

s∈S
Ms. (2.1a)

Erosion:

M � S = {m − s : m ∈ M,s ∈ S} =
⋂

s∈S
Ms. (2.1b)

Opening:

M ◦ S = (M � S)
⊕

S. (2.1c)

Closing:

M • S =
(
M

⊕
S
)
� S. (2.1d)

Dilation and erosion are, respectively, useful to enlarge and shrink an image to a
desired degree and direction by toning the characteristic of structuring elements. On the other
hand, cascaded erosion-dilation or dilation-erosion operations are commonly employed to
smoothen an image [8, 9].

In this paper, a sandstone microphotograph obtained by a scanning electron
microscope (SEM) is considered. The sandstone image has 480 × 480 pixels, in grayscale (0–
255) levels (Figure 1(a)). By using a simple thresholding technique, the grayscale sandstone
image is converted to a binary pore space (black) and grain (white) regions (Figure 1(b)).
Morphological operations are then applied to transform this binary pore. Three basic
structuring elements S are considered here, namely, rhombus (Figure 2(a)), square 3 × 3
(Figure 2(b)), and octagon (Figure 2(c)). Multiscale pore space (Figures 3(a)–3(j)) is first
generated by performing 10 cycles of multiscale opening on the pore space, which is in fact
the multiscale closing of grain. Based on a sequence of multiscale pore images (Figure 3),
it is obvious that the pore region is gradually reduced with increasing cycle of structuring
template.

3. Pore Connectivity Network: Skeletonisation Transformation

In this section, a systematic approach is applied to extract the pore connectivity network
(PCN) from multiscale pore-space of sandstone image. The PCNs can be extracted by
implementing a skeletonization process where the basic morphological transformations are
systematically employed as shown in

PCNn(M) = (M � kS) − [(M � kS) ◦ S] k = 1, 2, . . .N. (3.1)
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(a) (b)

Figure 1: (a) The grayscale sandstone image obtained by SEM. (b) The binary pore image (black and white
colors represent grains and pore spaces, resp.).
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Figure 2: The structure templates of (a) rhombus, (b) square 3 × 3 and (c) octagon.

In the above expression, the PCNn(M) denotes the nth pore network subsets of pore
(M). Subtracting from the eroded version of M, the morphological opening by structuring
elements retains only the angular points, which are the connectivity points or subsets in
this model. The union of all such possible network subsets produces the PCNn(M). The
structuring elements used in this network extraction are rhombus, square 3 × 3, and octagon.
By combining these decomposed network subsets via logical union, PCNs are formed. This
operation can be mathematically defined as

PCN(M) =
N⋃

n=0

PCNn(M). (3.2)

Based on the PCN extraction procedure explained above, we transform all the
multiscale images (Figures 3(a)–3(j)) into their PCNs by means of three structuring elements.
Figures 4(a)–4(j) illustrate the extracted PCN by rhombus, square 3 × 3, and octagon,
respectively. Less intricacy of connectivity networks is observed in higher opening cycles of
model images. This is due to decreasing number of the small-diameter circles in pore space
at higher opening process, and hence, lesser intricate connectivity networks are formed. It
is also observed that the connectivity networks formed by octagon and square 3 × 3 are
more bounded, but are thicker in widths. As for the rhombus, although the appearance
of the network connectivity shown in branched forms, some parts are disconnected
(Figures 4(a)(i)–4(j)(i)) and are thinner in widths. Therefore, it may be misleading that
the connectivity formed by rhombus generally provides finer network information at lower
dimensions as compared to the thicker connectivity networks formed by square 3 × 3 and
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Figure 3: (a–j) A sequence of multiscale pore generated via opening transformations by a symmetric
rhombus.

octagon. However, less bounded network forms are observed at higher opening of pore
images.

In order to understand the characterization of networks formed by different
structuring elements on multiscale pore space, it is essential to estimate the length of PCNs
in multidimensional spaces. It is also important to indicate what kind of shape or structuring
element is employed to extract PCNs. The latter influences the PCN pattern. With the
increasing cycles of opening on pore space, it is reasonable to expect that less branched PCNs
formed due to the decreasing number of smaller grains as the opening transformation was
applied on pore space.

To characterize the connectivity networks, we measure their fractal properties. To
obtain the fractal properties of this network, the lengths of PCNs at their respective scale in
pixel units are computed. The fractal dimensions of these multiscale connectivity networks
can then be obtained by box-counting method. Figures 5(a)–5(j) illustrate the relationship
of the multiscale PCNs of a pore space. Figure 5(k) summarizes the estimated fractal
dimension for rhombus, square 3×3, and octagon at 1–10 iterations of opening process. Their
corresponding values are presented in Table 1.

The fractal values in Table 1 range between 1.1–1.7, suggesting that the PCNs do
not fall in a single universality class; it however depends on the surface area provided.
From these results, it is possible to define a variety of interesting topological properties of
connectivity networks formed in pore space. These fractal dimension values confirmwith the
values arousing from our previous study [10]. The fractal dimensions have decreasing trends
with the increasing cycle of opening transformation as shown in Table 1. Fractal dimensions
obtained for the connectivity networks extracted by rhombus at higher cycle of opening are
smaller than the square 3 × 3 and octagon. However, the fractal dimension of the networks
extracted by octagon is higher than that of square 3 × 3 and rhombus at higher iterations of
opening.
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Figure 4: (a–j) The opening transformations of pore images in Figure 3(a)–3(j) are used to extract pore
connectivity networks by structuring elements ((i) rhombus, (ii) square, and (iii) octagon).

Let M be a class of topology open set on Euclidean space, Z2, and let X ∈ M be
an open nonempty space. The spatial of this set is the space to be opened by mathematical
morphology transformation.

XI,X2, X3, . . . Xn ∈ M. (3.3)
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Figure 5: Continued.
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Figure 5: (a–j) Graphical plots between log (number of pixels of pore connectivity network formed by
structuring elements ((i) rhombus, (ii) square, (iii) octagon or pore space) versus log (step sizes) from the
first to the tenth iterations of opening process and (k) the fractal dimension for three structuring elements.

Table 1: Fractal dimension estimation on pore connectivity networks and pore space by using box-counting
method.

Number Fractal Dimension (Df )

Pore space (opening) Opening (pore connectivity network)

Rhombus Square Octagon

1 1.9276 1.7214 1.7156 1.7250
2 1.9176 1.6804 1.6974 1.7194
3 1.9031 1.6340 1.6675 1.6974
4 1.8834 1.5783 1.6335 1.6586
5 1.8612 1.5167 1.6029 1.6174
6 1.8308 1.4465 1.5589 1.5693
7 1.7996 1.3831 1.5198 1.5263
8 1.7637 1.3080 1.4692 1.4704
9 1.7280 1.2395 1.4276 1.4186
10 1.6889 1.1724 1.3675 1.3677
15 1.4561 0.7960 1.1202 1.0808

When the opening is performed on the pore space, smaller particles in the open
nonempty space disappear and hence the remaining space is smoother. Let R be the
connectivity network formed in the open nonempty space. When the space is smoothen
and less small particles are opened, the network connectivity will be reduced since opening
transformations (pi) and less intricate networks will be formed. Xi at i-times of opening
process will form network connectivity (Ri), as shown below:

X1 = M with one times of opening process
(
p1
) ∼ R1

X2 = M with two times of opening process
(
p2
) ∼ R2

X3 = M with three times of opening process
(
p3

) ∼ R3

...
...

Xn = M with n times of opening process
(
pn

) ∼ Rn.

(3.4)
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Table 2: The reduction factor by opening process in Figure 5(k).

Reduction Factors Pore space—opening Connectivity networks

(mi) Rhombus Square 3 × 3 Octagon

Sandstone 0.0625 0.0388 0.0418

(a) (b) (c) (d)

Figure 6: (a) Fifteen times of opening transformations applied at binary pore space; (b–d) opening image
of (a) is used to extract pore connectivity networks of structuring elements ((i) rhombus, (ii) square, and
(iii) octagon).

The lengths of connectivity network are reduced due to the increasing cycle of opening
process (pi), and as a result, less branched networks are observed. While measuring the
relative results of fractal (Di) with opening transformations (pi), it is observed that the
decreased graphical plots in Figure 5(k) for different types of structuring elements can be
rescaled appropriately. Therefore, it is proposed that

Di = mi

(
pi − 1

)
+D1, mi < 1. (3.5)

The gradient mi is obtained from the regression plot of Figure 5(k) for different types
of structuring elements, and D1 is the fractal dimension of the first opening transformation.

mi = gradient (D1,2,...,n, P1,2,...,n). (3.6)

The empirical values of mi for the rhombus, square, and octagon are presented in
Table 2.

We now address the question whether relation (3.5) can be regarded as a general
property to predict the subsequent fractal dimensions without performing opening
transformation. We applied this formula to estimate the fractal dimension of successive
opening. We choose arbitrarily 15 times of opening transformations as shown in Figure 6(a).
Same structuring elements (rhombus, square 3 × 3, and octagon) are employed to extract the
corresponding PCNs (Figures 6(b)–6(d)). After the 15th cycle of opening transformation,
the calculated values of fractal dimension D15 are 0.846, 1.172, and 1.140, respectively, as
compared to the experimental results of 0.796, 1.120, and 1.081. The differences are less than
6%. This comparison shows the significance of the scaling exponent that we derive from this
multiscale analysis of PCN via fractal dimension.
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Figure 7: Graphical plots between log (number of pixels of pore connectivity network in Figure 6(a)–6(c)
by structuring elements ((i) octagon, (ii) square or pore space) versus log (step sizes) from the first to the
tenth iterations of opening process.

4. Conclusions

Analysis of pore connectivity network is addressed in this paper. A grayscale microphoto-
graph of a sandstone sample is considered. The pore connectivity networks at multidimen-
sional pore space are extracted viamathematical morphology transformations.We investigate
the characterization of pore connectivity networks by estimating the fractal dimension of each
connectivity network.

A model that is capable of describing the characterization of connectivity networks
is developed. The decreasing trend in the smaller category of pore model reveals a strong
influence of the fractality in this system. This gives a clear indication that one must
characterize the possible self-similar fractal of model space in order to understand its
behavior under different dimensions of surface area. Themodeling techniques employed here
can provide some interesting information to characterize the complicated network pattern
problems. For example, our results show that the fractal dimensions of the network models
decrease as the effect of multiscale opening transformations. Another interesting result is
that the fractal dimension of connectivity network formed by rhombus at higher opening
process is lesser than those of the square 3 × 3 and octagon. We believe that this might
intimately be related to the characterization of lengths of connectivity networks by these
three structuring elements. The fractal dimension of pore connectivity network exhibits a
linear scaling distribution with opening processes of pore space image. The sandstone pore
space possesses a simple relationship between the fractal dimension and the porosity of the
rock as also opined by Mandelbrot [11]. The power-law relationship is observed in this pore
space decomposition by means of octagon, rhombus, and square structuring elements:

N(r) ∝ r−α with D = α − 1, (4.1)

whereN, r, α, andD are, respectively, the number of pixels of pore connectivity network, size
of structuring elements, slope of the regression line, and fractal dimension.

Furthermore, it is found that the fractal dimensions of the pore connectivity network
for square and octagon are deceased in scaling plots as increasing the opening processes. We
introduced a rescaled formula based on the linearity of decreasing values fractal dimension
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of pore space. This proposed formulation to estimate fractal dimension has been verified by
experimental data.
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