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Graph-based subspace learning is a class of dimensionality reduction technique in face recognition.
The technique reveals the local manifold structure of face data that hidden in the image space via
a linear projection. However, the real world face data may be too complex to measure due to both
external imaging noises and the intra-class variations of the face images. Hence, features which are
extracted by the graph-based technique could be noisy. An appropriate weight should be imposed
to the data features for better data discrimination. In this paper, a piecewise weighting function,
known as Eigenvector Weighting Function (EWF), is proposed and implemented in two graph
based subspace learning techniques, namely Locality Preserving Projection and Neighbourhood
Preserving Embedding. Specifically, the computed projection subspace of the learning approach
is decomposed into three partitions: a subspace due to intra-class variations, an intrinsic face
subspace, and a subspace which is attributed to imaging noises. Projected data features are
weighted differently in these subspaces to emphasize the intrinsic face subspace while penalizing
the other two subspaces. Experiments on FERET and FRGC databases are conducted to show the
promising performance of the proposed technique.

1. Introduction

In general, a face image with size m × n can be perceived as a vector in an image space
Rm×n. If this high-dimensional vector is input directly for classification, poor performance is
expected due to curse of dimensionality [1]. Therefore, an effective dimensionality reduction
technique is required to alleviate this problem. Conventionally, the most representative
dimensionality reduction techniques include Principal Component Analysis (PCA) [2]
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and Linear Discriminant Analysis (LDA) [3]; and they have demonstrated a fairly good
performance in face recognition. These algorithms assume the data is Gaussian distributed,
but turn out to be not usually assured in practice. Therefore, they may fail to reveal the
intrinsic structure of the face data.

Recent studies show the intrinsic geometrical structures of the face data are useful
for classification [4]. Hence, a couple of graph-based subspaces learning algorithms has
been proposed to reveal the local manifold structure of the face data hidden in the image
space [4]. The instances of graph-based algorithms include Locality Preserving Projection
(LPP) [5], Locally Linear Discriminate Embedding [6] and Neighbourhood Preserving
Embedding (NPE) [7]. These algorithms were shown to unfold the nonlinear structure of
the face manifold by means of mapping nearby points in the high-dimensional space to the
nearby points in a low-dimensional feature space. They preserve the local neighbourhood
relation without imposing any restrictive assumption on the data distribution. In fact, these
techniques can be unified with a general framework so-called graph embedding framework
with linearization [8]. The dimension reduction problem by means of graph-based subspace
learning approach can be boiled down by solving a generalized eigenvalue problem

ST
1ν = βS2ν, (1.1)

where S1 and S2 are the matrices to be minimized and maximized, respectively. Different
notions of S1 and S2 correspond to different graph-based algorithms. The computed
eigenvector, ν (or eigenspace) will be utilized to project input data into a lower-dimensional
feature representation.

There are rooms to further exploit the underlying discriminant property of graph-
based subspaces learning algorithms since the real-world face data may be too complex. Face
images per subject are varying due to external factors (e.g., sensor noise, unknown noise
sources, etc.) and the intraclass variations of the images caused by pose, facial expression
and illumination variations. Therefore, features extracted by the subspace learning approach
may be noisy and may not be favourable for classification. An appropriate weight should be
imposed to the eigenspace for better class discrimination.

In this paper, we propose to decompose the whole eigenspace, constituted by all the
eigenvectors computed through (1.1), of subspace learning approach into three subspaces:
a subspace due to facial intraclass variations (noise I subspace, N-I), an intrinsic face
subspace (face subspace, F), and a subspace that is attributed to sensor and external
noises (noise II subspace, N-II). The justification for the eigenspace decomposition will be
explained in Section 3. The purpose of the decomposition is to weight the three subspaces
differently to stress the informative face dominating eigenvectors, and to demphasize the
eigenvectors in the two noise subspaces. Therefore, an effective weighting approach, known
as Eigenvector Weighting Function (EWF) is introduced. We apply EWF on LPP and NPE for
face recognition.

The main contributions of this work include: (1) the decomposition of the eigenspace
of subspace learning approach into noise I, face and noise II subspaces, where the
eigenfeatures are weighted differently in these subspaces (2) an effective weighting function
that enforces appropriate emphasis or de-emphasis on the eigenspace, and (3) a feature
extraction method with an effective eigenvector weighting scheme to extract significant
features for data analysis.

The paper is organized as follows: in Section 2, we present a comprehensive
description about the Graph Embedding framework, and this is followed by the proposed
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Eigenvector Weighting Function (denoted as EWF) in Section 3. We also discuss the
numerical justification of EWF in Section 4. The effectiveness of EWF in face recognition is
demonstrated in Section 5. Finally, Section 6 contains our conclusion of this study.

2. Graph Embedding Framework

In graph embedding framework, each facial image in vector form is represented as a vertex
of a graph G. Graph embedding transforms the vertex to a low-dimensional vector that
preserves the similarities between the vertex pairs [9]. Suppose that we have n numbers
of d-dimensional face data {xi ∈ Rd | i = 1, 2, . . . , n} and are represented as a matrix
X = [x1, x2, . . . , xn]. Let G = {X,W} be an undirected weighted graph with vertex set X and
similarity matrix W ∈ Rn×n, where W = {Wij} is a symmetric matrix that records the similarity
weight of a pair of vertices i and j.

Consider that all vertices of the graph are mapped onto a line and y = [y1, y2, . . . , yn]T

be such a map. The target is to make the vertices of the graph stay as close as possible. Hence,
a graph-preserving criterion is defined as

y∗ = arg min
∑

i,j

(
yi − yj

)2
Wij (2.1)

under certain constraints [10]. This objective function ensures that yi and yj are close if larger
similarity between xi and xj . With some simple algebraic tricks, (2.1) can be expressed as

∑

i,j

(
yi − yj

)2
Wij = 2yTLy, (2.2)

where L = D −W is the Laplacian matrix [9] and D is a diagonal matrix whose entries are
column (or row, since W is symmetric) sums of W, Dii =

∑
j Wji. Finally, the minimization

problem reduces to,

y∗ = arg min
yTDy=1

yTLy = arg min
yTLy
yTDy

.
(2.3)

The constraint yTDy = 1 removes an arbitrary scaling factor in the embedding. Since L =
D −W, the optimization problem in (2.3) has the following equivalent form

y∗ = arg max
yTDy=1

yTWy = arg max
yTWy
yTDy

. (2.4)

Assume that y is computed from a linear projection y = XTν, where ν is the unitary projection
vector, (2.4) becomes

ν∗ = arg max
νTXDXTν=1

νTXWXTν = arg max
νTXWXTν

νTXDXTν
. (2.5)



4 Discrete Dynamics in Nature and Society

The optimal ν’s can be computed by solving the generalized eigenvalue decomposition
problem

XWXTν = λXDXTν. (2.6)

LPP and NPE can be interpreted in this framework with different choices of W and D [9]. A
brief explanation about the choices of W and D for LPP and NPE is provided in the following
subsections.

2.1. Locality Preserving Projection (LPP)

LPP optimally preserves the neighbourhood structure of data set based on a heat kernel
nearest neighbour graph [5]. Specifically, let Nk(xi) denote the k nearest neighbours of xi,
W and D of LPP are denoted as WLPP and DLPP, respectively, in such that,

WLPP
ij =

⎧
⎪⎪⎨

⎪⎪⎩

exp

(
−
∥∥xi − xj

∥∥2

2σ2

)
, if xi ∈Nk

(
xj
)

or xj ∈ Nk(xi),

0, otherwise

(2.7)

and DLPP
ii =

∑
j W

LPP
ji , which measures the local density around xi. The reader is referred to

[5] for details.

2.2. Neighbourhood Preserving Embedding (NPE)

NPE takes into account the restriction that neighbouring points in the high-dimensional space
must remain within the same neighbourhood in the low-dimensional space. Let M be a n × n
local reconstruction coefficient matrix. For ith row of M, Mij = 0 if xj /∈ Nk(xi) where Nk(xi)
represents the k nearest neighbours of xi. Otherwise, Mij can be computed by minimizing
the following objective function

min

∥∥∥∥∥∥
xi −

∑

xj∈Nk(xi)

Mijxj

∥∥∥∥∥∥

2

,
∑

xj∈Nk(xi)

Mij = 1. (2.8)

W and D of NPE are denoted as WNPE and DNPE, respectively, where WNPE = M+MT −MTM
and DNPE = I. Refer to [7] for the detailed derivation.

3. Eigenvector Weighting Function

Since y = XTν, (2.3) becomes

ν∗ = arg min
νTXDXTν=1

νTXLXTν = arg min
νTXLXTν

νTXDXTν
. (3.1)
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Figure 1: A typical eigenspectrum.

The optimal ν’s are the eigenvectors of the generalized eigenvalue decomposition problem
associated with the smallest eigenvalues β’s

XLXTν = βXDXTν where β = 1 − λ. (3.2)

Cai et al. defined the locality preserving capacity of a projection ν as [10]:

f(ν) =
νTXLXTν

νTXDXTν
. (3.3)

The smaller the value of f(ν) is, the better the locality preserving capacity of the projection ν.
Furthermore, the locality preserving capacity has a direct relation to the discriminating power
[10]. Based on the Rayleigh quotient form of (3.2), f(ν) in (3.3) is exactly the eigenvalue in
(3.2) corresponding to eigenvector ν. Hence, the eigenvalues β’s reflect the data locality. The
eigenspectrum plot of β against the index q is a monotonically increasing function as shown
in Figure 1.

3.1. Eigenspace Decomposition

In graph-based subspace learning approach, local geometrical structure of data is defined
by the assigned neighbourhood. Without any prior information about class label, the
neighbourhood, Nk(xi) is selected blindly in such a way that neighbourhood is simply
determined by the k nearest samples of xi from any classes. If there are large within-class
variations, Nk(xi) may not be from the same class of xi; and, the algorithm will include them
to characterize the data properties, in which lead to undesirable recognition performance.

To inspect the empirical eigenspectrum of graph-based subspace learning approach,
we take 300 facial images of 30 subjects (10 images per subject) from Essex94 database [11]
and 360 images of 30 subjects (12 images per subject) from FRGC face database [12] to render
eigenspectra of NPE and LPP. The images in Essex94 database for a particular subject are
similar in such a way that there are very minor variations in head turn, tilt and slant, as well
as very minor facial expression changes as shown in Figure 2. Besides, there is no changing in
terms of head scale and lighting. In other words, Essex94 database is simpler with minimum
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Figure 2: Five face image samples from the Essex94 database.

Figure 3: Five face image samples from the FRGC database.

intraclass variation. On the other hand, FRGC database appears to be more difficult due to
variations of scale, illumination and facial expressions as shown in Figure 3.

Figures 4 and 5 illustrates the eigenspectra of NPE and LPP. For better illustration, we
zoom into the first 40 eigenvalues, as shown in part (b) of each figure. We observe that the
first 20 NPE-eigenvalues in Essex94 are zero, but not for FRGC. Similar result is found in
LPP. The reason is that the facial images of Essex94 of a particular subject are nearly identical,
which imply low within-class variations in the images cause better neighbourhood selection
for defining local geometrical properties, leading to high data locality. On the other hand,
images of FRGC are of vary due to large intraclass variations, thus lower data locality is
obtained due to inadequate neighbourhood selection. For practical face recognition without
controlling the environmental factors, the intravariations of a subject are inevitably large
due to different poses, illumination and facial expressions. Hence, the first portion of the
eigenspectrum spanned by q eigenvectors corresponding to the first q smallest eigenvalues is
marked as noise I subspace (denoted as N-I).

Eigenfeatures that are extracted by graph-based subspace learning approach are noise
prompted due to external factors, such as sensors, unknown noise sources, and so forth,
which will affect the recognition performance. From the empirical results shown in Figure 6,
it is observed that after q = 40, recognition error rate increased for Essex94; and no further
improvement in recognition performance on FRGC even q > 80 was considered. Note that the
recognition error rate is average error rate (AER), which is the mean value of false accept rate
(FAR) and false reject rate (FRR). The results demonstrated that the inclusion of eigenfeatures
that correspond to large β could be detrimental to recognition performance. Hence, we name
this part as noise II subspace, denoted as N-II. The intermediate part between N-I and N-II
is then identified as the intrinsic face dominated subspace, and denoted as F.

Since face images have similar structure, facial components are intrinsically resided in
a very low-dimensional subspace. Hence, in this paper, we estimate the upper bound of the
eigenvalues, β that associated with face dominating eigenvectors is λm where m = �0.25 ∗Q�,
where Q is the total number of eigenvectors. Besides that, we assume the span of N-
I is relatively small compared to F, in such a way that N-I is about 5% and F is about
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Figure 4: Typical real NPE-eigenspectra of (a) a complete set of eigenvectors and (b) the first q
eigenvectors.
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Figure 5: Typical real LPP- eigenspectra of (a) a complete set of eigenvectors and (b) the first q eigenvectors.
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Figure 6: Recognition performances of NPE in term of average error rate on (a) Essex94 and (b) FRGC
databases.
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Figure 7: Decomposition of the eigenspace.

20% of the entire subspace. The subspace above λm is considered as N-II. The eigenspace
decomposition is illustrated in Figure 7.

3.2. Weighting Function Formulation

We devise a piecewise weighting function, coined as Eigenvector Weighting Function (EWF)
to weight the eigenvectors differently in the decomposed subspaces. The principal of EWF
is that larger weights will be imposed to the informative face dominating subspace, whereas
smaller weighting factors are granted to the noise I and noise II subspaces to deemphasize
the effect of the noisy eigenvectors in recognition performance. Since the eigenvectors in N-II
contribute nothing to recognition performance, as validated in Figure 6, zero weight should
be granted to the eigenvectors. Based on the principal, we propose a piecewise weighting
function in such that weight values are increased from N- I to F and decreased from F to N-II
until zero value to the remaining eigenvectors in N-II, refer to Figure 8. EWF is formulated
as,

wq =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sq + c, 1 ≤ q ≤ m −
(
Q

5

)
,

wqm−(Q/5) , m −
(
Q

5

)
< q ≤ m,

−sq + c +
(
s

(
2m −

(
Q

5

)))
, m < q ≤ 2m −

(
Q

5

)
,

0, q > 2m −
(
Q

5

)
,

(3.4)

where s = (h−c)/(m−(Q/10)−1) is the slope of a line connecting from (1, c) to (m−(Q/10), h).
In this paper, we set h = 100 and c = 0.1.
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3.3. Dimensionality Reduction

New image data xi is transformed into lower-dimensional representative vector yi via a linear
projection as shown below

yi = ν̃Txi, (3.5)

where ν̃ is the set of regularized projection directions, ν̃ = [wiνi]
Q
i=1 = [w1ν1, . . . ,wQνQ].

4. Numerical Justification of EWF

In order to validate the effectiveness of the proposed weighting selection, we compare the
recognition performance of EWF with other arbitrary weighting functions: (1) InverseEWF,
(2) Uplinear, and (3) Downlinear. In contrast to EWF, InverseEWF imposes very small weights
to F but emphasizes the noise I and II eigenvectors by decreasing the weights from N-I to
F, while increasing the weights from F to N-II. The Uplinear weighting function increases
linearly while the Downlinear weighting function decreases linearly. Figure 9 illustrates the
weighting scaling of EWF and the three arbitrary weighting functions.

Without loss of generality, we use NPE for the evaluation. The NPE with the above
mentioned weighting functions are denoted as EWF NPE, InverseEWF NPE, Uplinear NPE
and Downlinear NPE. In this experiment, a 30-class sample of FRGC database is adopted.
From Figure 10, we observe that EWF NPE outperforms the other weighting functions.
By imposing larger weights to the eigenvectors in F, both EWF NPE and Uplinear NPE
achieve lower error rates with small feature dimensions. Besides, the performance of
Uplinear NPE deteriorates in higher feature dimensions. The reason is that the emphasis of
N-II eigenvectors leads to noise enhancement in this subspace.

Both InverseEWF NPE and Downlinear NPE emphasize N-I subspace and suppress
the eigenvectors in F. These weighting functions have negative effects on the original NPE
as illustrated in Figure 10. Specifically, InverseEWF NPE ignores the significance of the face
dominating eigenvectors by enforcing very small weighting factor (nearly zero weight) to
the entire F. Hence, InverseEWF NPE consistently shows the worst recognition performance
for all feature dimensions. In Section 5, we investigate further the performance of the EWF
for NPE and LPP using different face databases with larger sample size.
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Figure 9: Different weighting functions: (a) the proposed EWF, (b) InverseEWF, (c) Uplinear, and (d)
Downlinear.

5. Experimental Results and Discussions

In this section, EWF is applied to two graph-based subspace learning techniques: NPE and
LPP, denoted as EWF NPE and EWF LPP, respectively. The effectiveness of EWF NPE and
EWF LPP are assessed by two considerably difficult face databases: (1) Face Recognition
Grand Challenge Database (FRGC) and (2) Face Recognition Technology (FERET) database.
The FRGC data was collected at the University of Notre Dame [12]. It contains controlled
images and uncontrolled images. The controlled images were taken under a studio setting.
The images are full frontal facial images taken under two lighting conditions (two or three
studio lights) and with two facial expressions (smiling and neutral). The uncontrolled
images were taken under varying illumination conditions, for example, hallways, atria, or
outdoors. Each set of uncontrolled images contains two expressions, smiling and neutral. In
our experiments, we use a subset from both controlled and uncontrolled sets and randomly
assign as training and testing sets. Our experimental database consists of 140 subjects with 12
images per subject. There is no overlapping between the images of this subset database and
those of the 30-class sample database used in Section 4. The FERET images were collected
for about three years, between December 1993 and August 1996, managed by the Defense
Advanced Research Projects Agency (DARPA) and the National Institute of Standards and
Technology (NIST) [13]. In our experiments, a subset of this database is used, comprising 150
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Figure 11: Five face image samples from the FERET database.

subjects with 10 images per subject. Five sample images from the FERET database are shown
in Figure 11.

These images are preprocessed by using geometrical normalization in order to
establish correspondence between face images. The procedure is based on automatic location
of the eye positions, from which various parameters (i.e., rotation, scaling and translation) are
used to extract the central part of the face from the original image. The database images are
normalized into a canonical format. We apply a simple nearest neighbour classifier for sake
of simplicity. The Euclidean metric is used as distance measure. Since the proposed approach
is an unsupervised method, to have a fair performance comparison, it is tested and compared
with the other unsupervised feature extractors, such as Principal Component Analysis (PCA)
[14], NPE and LPP. The qualities of the feature extraction algorithms are evaluated in term of
average error rate (AER).

For each subject, we randomly select nj samples and they are partitioned into training
and testing sets with nj/2 samples for each. Both training and testing sets have no overlap
in the sample images between the training and testing sets. We conduct experiment with
a 4-fold cross-validation strategy. In the first-fold test, the odd numbered images of each
subject (nj/2 samples per subject) are served as training images, while the even numbered
images (nj/2 samples per subject) are used as testing images. In the second-fold test, the even
numbered images (nj/2 samples per subject) are training set and the odd numbered images
(nj/2 samples per subject) are testing set. In the third-fold test, the first nj/2 samples per
subject are used for training and the rest are for testing. For forth-fold test, the training set is
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Table 1: Details of FRGC and FERET databases.

Database Number of subjects,
c

Number of samples per
subject, nj

Number of training
samples, nj/2

Number of testing
samples, nj/2

FRGC 140 12 6 6
FERET 150 10 5 5
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Figure 12: Error rates (%) of (a) PCA, NPE and EWF NPE, (b) PCA, LPP and EWF LPP on FRGC database.

formed by the last nj/2 samples per subject and the rest are for testing. Table 1 summarizes
the details of each database.

We set Nk(xi) = (nj/2) − 1, that is, Nk(xi) = 5 and Nk(xi) = 4 on FRGC and FERET,
respectively, for EWF NPE, EWF LPP, NPE and LPP. Besides, we evaluate the effectiveness
of the techniques with different parameter settings. The ranges of the parameters are shown
in Table 2. PCA ratio is the percentage of principal component kept in the PCA step and σ
indicates the spread of the heat kernel. The optimal parameter settings based on the empirical
results are illustrated in Table 2. These parameter settings will be used in our subsequent
experiments.
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Figure 13: Error rates (%) of (a) PCA, NPE and EWF NPE, (b) PCA, LPP and EWF LPP on FERET
database.

Table 2: Parameter ranges used in the experiments.

Methods Parameters Parameter ranges Optimal parameter settings

NPE PCA ratio 98% and 100% PCA ratio = 100% in FRGC;
PCA ratio = 98% in FERET

EWF NPE PCA ratio 98% and 100% PCA ratio = 100% in FRGC;
PCA ratio = 98% in FERET

LPP PCA ratio 98% and 100% PCA ratio = 98% in FRGC and
FERET

σ 1, 10 and 100 σ = 1 in FRGC
σ = 100 in FERET

EWF LPP PCA ratio 98% and 100% PCA ratio = 98% in FRGC and
FERET

σ 1, 10 and 100 σ = 1 in FRGC
σ = 100 in FERET
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Table 3: Performance comparison in terms of average error rate.

Approach Feature
dimension

Error rate of
1st fold test

(%)

Error rate of
2nd fold test

(%)

Error rate of
3rd fold test

(%)

Error rate of
4th fold test

(%)

Average
error ± std
deviation

(%)

FRGC database

PCA 200 52.624 51.569 44.681 47.155 49.007 ± 3.73

NPE 130 45.587 43.078 39.062 40.378 42.026 ± 2.90

EWF NPE 110 44.409 40.424 36.969 39.686 40.372 ± 3.07

LPP 190 41.127 38.063 38.957 35.679 38.456 ± 2.25

EWF LPP 70 41.300 38.919 36.684 36.621 38.381 ± 2.22

FERET database

PCA 80 46.823 38.971 31.514 44.811 40.530 ± 6.87

NPE 70 44.169 37.883 32.538 45.737 40.082 ± 6.06

EWF NPE 30 43.644 37.998 33.029 38.561 38.308 ± 4.33

LPP 70 44.631 38.657 32.516 46.358 40.541 ± 6.28

EWF LPP 20 43.351 36.924 32.948 39.719 38.235 ± 4.39

PCA is a global technique that analyzes image as a whole data matrix. Technically,
PCA relies on sample data to compute total scatters. On the other hand, NPE and LPP
signify the intrinsic geometric structure and extract the discriminating features for data
learning. Hence, NPE and LPP outperform PCA on the FRGC database as demonstrated
in Figure 12. However, the good recognition performance of both graph-based methods is
not guaranteed when applied to the FERET database. From Figure 13, NPE and LPP show
inferior performance compared to PCA when small feature dimension as well as large
feature dimension is considered. The unreliable features at the lower order and higher order
eigenvectors could be the factor for the performance degradation.

From Figures 12 and 13, we observe that EWF NPE and EWF LPP achieve lower error
rate than their counterpart at smaller feature dimension on both databases. This implies
that the strategy of penalizing the eigenvectors in N-I and emphasizing the face dominating
eigenvectors in F is promising. Furthermore, the robustness of EWF can be further validated
through the recognition results of FERET database. In FERET database, even though both
NPE and LPP do not perform in the higher feature dimension, EWF NPE and EWF LPP
consistently demonstrate better results due to small or zero weighting on eigenvectors in
N-II.

Table 3 shows the average error rates, as well as the standard deviation of the error,
on FRGC and FERET databases. The table summarizes the recognition performances along
with the subspace dimension corresponding to the best recognition. In FRGC database, EWF
shows its robustness in face recognition when implemented in NPE algorithm. Besides, we
can see that the performance of EWF LPP is comparable to that of LPP. However, the former
is able to reach the optimal performance with smaller number of features. On the other
hand, both EWF NPE and EWF LPP outperform their counterparts (NPE and LPP) on FERET
database. Furthermore, they achieve such good performance with smaller number of features.
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6. Conclusion

We have presented an eigenvector weighting function (EWF) and implemented it on two
graph-based subspace learning techniques: Locality Preserving Projection and Neighbour-
hood Preserving Embedding. In EWF, the eigenspace of the learning approach is decomposed
into three subspaces: (1) a subspace due to facial intraclass variations, (2) an intrinsic face
subspace, and (3) a subspace that is attributed to sensor and external noises. Then, weights
are imposed to each subspace differently. It grants higher weighting to the face variation
dominating eigenvectors, while demphasizing the other two noisy subspaces with smaller
weights. The robustness of EWF is assessed in two graph-based subspace learning techniques:
Locality Preserving Projection (LPP) and Neighbourhood Preserving Embedding (NPE) on
FRGC and FERET databases. The experimental results exhibit the robustness of the proposed
EWF in face recognition.
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