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We introduce a new kind of equation, stochastic differential equations with self-exciting switching.
Firstly, we give some preliminaries for this kind of equation, and then, we get the main results
of our paper; that is, we gave the sufficient condition which can guarantee the existence and
uniqueness of the solution.

1. Introduction

In this paper, we propose a new kind of stochastic differential equation (SDE) with self-
exciting switching which has the form

dX(t) = b(J(t), X(t))dt + σ(J(t), X(t))dB(t), (1.1)

where b(·, ·) and σ(·, ·) are appropriate functions, B(·) is a multidimensional standard
Brownian motion, and J(·) is a switching process taking values in the space M =
{0, 1, 2, . . . , h, h ≤ ∞} and the value of J(·) depends on X(·). The dependence of J(·) on
X(·) is given in terms of the value of X(·) to be specified later. Throughout the whole paper,
we call such equations SDEs with self-exciting. One of the distinct features is that in these
systems, discrete events are highly correlate with continuous dynamics. The SDEs with self-
exciting is different from the SDEs with Markovian switching, which is discussed in [1]
because for Markovian switching-diffusion processes, the switching process is a continuous-
time Markov chain, which is independent of the Brownian motion. It is also different from
SDEs with continuous-state-dependent switching (see, e.g., [2]) in which the dependence of
the switching process onX(·) is in terms of transition probabilities. So, the equation discussed
in our paper is not only different from but not included in these two kind of equations. The
equation in our paper can be regarded as the general SDEs switching from one to the other
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according to the movement of the control, and the switching is determined by the state of the
solution of the equation. Moreover, the state space of the switching process in our paper is
M = {0, 1, 2, . . . , h}, h ≤ ∞, while it is a finite state space in [1, 2].

Owing to the increasing demands on regime-switching diffusions from emerging
applications in financial engineering and wireless communications, much attention has been
paid to switching diffusion processes. The introduction of hybrid models makes it possible to
describe stochastic volatility in a relatively simplemanner. One of the early efforts of using the
continuous-state-dependent hybrid models for financial applications can be traced back to
[3], in which both the appreciation rate and the volatility of a stock depend on a continuous-
time Markov chain.

Ourmodel can be used to describe the mechanism of a market. For example, letX(·) be
a market, and the central bank would adjust the bank interest rates according to the changes
of the market aperiodically. The adjustment often occurs on a randommoment, and often, the
adjusted interest rates will sustain for a period of time. Another example is from stockmarket,
in the simplest case, a stock market may be considered to have finite or infinite “modes” or
“regimes” (determined by J(·)), up and down, resulting from the value of X(·), which can
be interpreted as the state of the underlying economy, the general mood of investors in the
market, and so on. The rationale is that in the different modes or regimes, the volatility and
return rates are very different, and they may change their value according to the value of the
stock. Every changing happens on a random time, and the value will keep for a period. This
can be described by the changing of the value of J(·) on the surface Sk.

As far as we know, there are no papers which studied this kinds of equations. So moti-
vated by the arising applications, we firstly study the existence and uniqueness of the solution
of such equation, and this is a fundamental work for the further studying of the other proper-
ties of SDEs with self-exciting. We divided the whole space R

n into h parts, and the changing
of the value of J(·) only occurs on a random time when the stochastic process X(t) touch
the curved surface Sk, and it does not change its value until the sample path of the solution
process touch Sk−1 or Sk+1 for the first time. That is to say that the switching of the equation
only occurs on the surface, and it keeps the state until X(t) contact the adjacent surface.

The rest of the paper is arranged as follows. Section 2 begins with some preliminaries
of the SDEs with self-exciting switching together with the switching mechanism of the equa-
tion. In Section 3, we give the main results of our paper, that is, the existence and uniqueness
of the solution to (2.1). In order to illustrate the difference of our model with other switching
process, we give some conclusions and discussions in Section 4 at the end of our paper.

2. SDE with Self-Exciting Switching

Throughout this paper, unless otherwise specified, let (Ω,F, {Ft}t≥0, P) be a probability space
with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right continuous and F0

contains all P -null sets); that is, (Ω,F, {Ft}t≥0, P) is complete. Let B(t) = (B1
t , . . . , B

m
t )

T be a
givenm-dimensional standard Brownian motion defined on this probability space. If x ∈ R

n,
its norm is denoted by |x| = (

∑n
i=1 x

2
i )

1/2. For convenience, we let

(a) 1Lp

Ft
(Ω;Rn): the family of R

n-valuedFt-measurable random variables ξwith E|ξ|p <
∞,

(b) Lp([a, b];Rn): the the family of R
n-valued Ft-adapted process {f(t)}a≤t≤b such that

∫b
a |f(t)|pdt < ∞ a.s.,
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(c) M2([a, b];Rn): the family of processes {f(t)}a≤t≤b in Lp([a, b];Rn) such that
E
∫b
a |f(t)|pdt < ∞.

Define Uk, k ∈ M = {0, 1, 2, . . . , h, h ≤ ∞} such that U0 ∪ U1 ∪ · · · ∪ Uh = R
n and

Ui ∩Uj = ∅ for i /= j. Consider the following stochastic differential equation:

dX(t) = b(X(t), J(t))dt + σ(X(t), J(t))dB(t), (2.1)

with the initial data X(0) = x0 ∈ L2
F0
(Ω;Rn) and J(0) = J0, where J0 is a M-value F0-

measurable random variable. Here, we let

Uk = {x ∈ R
n | k ≤ |x| < k + 1},

Sk = {x ∈ R
n | |x| = k} ,

(2.2)

for k = 0, 1, 2, 3, . . . , h, h ≤ ∞. Then, U0 ∪U1 ∪ · · · ∪Uh = R
n and Ui ∩Uj = ∅ for i /= j. Hence

(2.1) has h regimes, and we assume that J(t) is described by

(i) if X(0) ∈ Sk then, J(0) = k and J(t) = k until X(t) ∈ Sk−1 or X(t) ∈ Sk+1,

(ii) if k < X(0) < k + 1, then

(a) J(0) = k and J(t) = k until X(t) ∈ Sk−1 or X(t) ∈ Sk+1, or
(b) J(0) = k + 1 and J(t) = k + 1 until X(t) ∈ Sk or X(t) ∈ Sk+2,

(iii) for any k ∈ M, J(t) = k if X(t) ∈ Sk.

By the same procedure, we will give the value of J(t) in view of the state ofX(t). From
the description of J(t) above, we observe that the coexistence of continuous dynamics X(t)
and discrete events J(t) in (2.1). The value of J(t) depends on the state of the solution process,
and then, J(t) controls the equation. The switching of (2.1) occurs on the curved surface Sk,
that is, J(t) changes its value only when X(t) touch on Sk. We call (2.1) is the stochastic
differential equations (SDEs) with self-exciting switching. Note that the state space of M
may have infinite states, and this is different from the equations with finite switchings.

3. Existence and Uniqueness for SDE with Self-Exciting Switching

In this section, we will establish the existence-and-uniqueness theorem for SDEs with self-
exciting switching which has the form of (2.1). We first give the definition of the solution to
(2.1).

Definition 3.1. An R
n ×M-valued stochastic process {(X(t), J(t))}0≤t≤T is called the solution to

(2.1) if it satisfies

(a) X(t) is t-continuous and Ft-adapted,

(b) {b(X(t), J(t))}0≤t≤T ∈ L1([0, T];Rn) and {σ(X(t), J(t))} ∈ L2([0, T];Rn×m),

(c) for each t ∈ [0, T], equation

X(t) = x0 +
∫ t

0
b(X(s), J(s))ds +

∫ t

0
σ(X(s), J(s))dB(s) (3.1)

hold with probability 1.
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The assertion of uniqueness means that if X(t, ω) and X̃(t, ω) are two t-continuous
process, the pair of the process (X(t, ω), J(t, ω)) and (X̃(t, ω), J̃(t, ω)) satisfy the definition of
the solution to (2.1) above, then

P
(
ω : X(t, ω) = X̃(t, ω), J(t, ω) = J̃(t, ω) ∀t ∈ [0, T]

)
= 1, (3.2)

that is, (X(t, ω), J(t, ω)) is indistinguishable from any other solution (X̃(t, ω), J̃(t, ω)).
Let b(x, i) and σ(x, i) be an n-vector and n ×m-matrix valued functions, respectively,

defined for (x, i) ∈ R
n ×M. In order to give the existence-and-uniqueness theorem, we define

the stopping times sequences {τk}k≥0 on the basis of the movement of J(t) in the following
ways:

τ0 = 0,

τ1 = inf
{
t > τ0 | X(t) ∈ SJ(τ0)−1 ∪ SJ(τ0)+1

}
,

. . .

τk+1 = inf
{
t > τk | X(t) ∈ SJ(τk)−1 ∪ SJ(τk)+1

}
.

(3.3)

Remark 3.2. From the description of J(t) in Section 2, we get the stopping times sequences
{τk}k>0 are the switching points of J(t) and satisfy

(i) every switching point {τk}k≥0, k ∈ M is not a cluster point, since the distance of
every curved surface Sk is a positive number,

(ii) for almost every ω ∈ Ω, there is a finite k = k(ω) for 0 = τ0 < τ1 < · · · < τk = T and
τk = T if k > k,

(iii) J(·) is a random constant on every interval [τk, τk+1), namely,

J(t) = J(τk) on τk ≤ t < τk+1 for k ∈ M. (3.4)

Theorem 3.3. Assume that there exist two positive constants C and D, for all x, y ∈ R
n, t ∈ [0, T]

and i ∈ M, such that (linear growth condition)

|b(x, i)|2 ∨|σ(x, i)|2 ≤ C
(
1 + |x|2

)
, (3.5)

(Lipschitz condition)

∣
∣b(x, i) − σ

(
y, i
)∣
∣2∨∣∣σ(x, i) − σ

(
y, i
)∣
∣2 ≤ D

∣
∣x − y

∣
∣2. (3.6)

Then, there exists a unique solution X(t) to (2.1), and, moreover,

E

(

sup
0≤t≤T

|X(t)|2
)

≤
(
1 + 3E|x0|2

)
e3CT(T−4). (3.7)
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Proof. From the description of J(·), we can get almost every sample path of J(·) is a right-
continuous step function with a finite number of simple jumps on [0, T]. For t ∈ [τ0, τ1], (2.1)
becomes

dX(t) = b(X(t), J(τ0))dt + σ(X(t), J(τ0))dB(t), (3.8)

with the initial data X(0) = x0 and J(0) = J(τ0) = J0, which is determined by the value of
x0. By the classical existence and uniqueness theorem for SDE, (3.8) has a unique solution
which belongs to M2([τ0, τ1];Rn). In particular, X(τ1) ∈ L2

Fτ1
(Ω;Rn). We next consider (2.1)

on t ∈ [τ1, τ2]which becomes

dX(t) = b(X(t), J(τ1))dt + σ(X(t), J(τ1))dB(t), (3.9)

with the initial data X(τ1) and J(τ1), the value of J(τ1) is a random constant determined
by X(τ1) which touch the curved surface S1 at τ1. Again, by the classical existence and
uniqueness theorem for SDE, (3.9) has a unique solution which belongs to M2([τ1, τ2];Rn).
We see that (2.1) has a unique solutionX(t) on [0, T] by repeating this procedure. In the same
way, as the mean square estimation of the SDEs was proved, we can obtain the assertion
(3.7) (see, e.g., [4]). Moreover, we get the solution of (2.1) that cannot be explosive under the
conditions of this Theorem, so J(t) < ∞ for any t ∈ [0, T]; that is, J(t) takes value in a finite
state space and (2.1) can be regard as the finite equations switching from one to the other
according to the movement of J(t).

Remark 3.4. We can prove that the solution to (2.1) has semigroup property. In fact, we denote
the solution to (2.1) by the pair of the process (X(t; 0, x0, J0), J(t; 0, x0, J0)). Note that

X(t) = X(s) +
∫ t

s

b(X(u), J(u))du +
∫ t

s

σ(X(u), J(u))dB(u) ∀s ≤ t ≤ T. (3.10)

Then, X(t) can be regarded as the solution of (2.1) with the initial data X(s) = X(s; 0, x0, J0)
and J(s) = J(s; 0, x0, J0). So, we have

(X(t; 0, x0, J0), J(t; 0, x0, J0))

= (X(t; s,X(s; 0, x0, J0), J(s; 0, x0, J0)), J(t; s,X(s; 0, x0, J0), J(s; 0, x0, J0)))
(3.11)

for 0 ≤ s ≤ t ≤ T . This demonstrates that the pair of the solution process
(X(t; 0, x0, J0), J(t; 0, x0, J0)) has flow or semigroup property.

Next, we will give the conditions which can guarantee the existence of a unique
maximal local solution. For the readers convenience, we give the definition though it is
similar to the definition of maximal local solution of SDE.

Definition 3.5. Let σ∞ be a stopping time such that 0 ≤ σ∞ ≤ T a.s. The pair of the process
(X(t), J(t)) is called a local solution to (2.1) if

(a) X(t) is an R
n-valued Ft-adapted continuous stochastic process on [0, σ∞);

(b) J(·) is a right-continuous step function with a finite number of simple jumps on
[0, σ∞),
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(c) there exists a nondecreasing sequence {σk}k≥1 of stopping times such that 0 ≤ σk ↑
σ∞ a.s., and

X(t) = X(0) +
∫ t∧σk

0
b(X(s), J(s))ds +

∫ t∧σk

0
σ(X(s), J(s))dB(s) (3.12)

holds for any t ∈ [0, T) and k ≥ 1 with probability 1.
If, furthermore,

lim
t→σ∞

sup|X(t)| = ∞ whenever σ∞ < T, a.s.,

lim
t→σ∞

J(t) = ∞ whenever σ∞ < T, a.s.,
(3.13)

then it is called a maximal local solution, and σ∞ is called the explosion time.
The uniqueness of a maximal local solution {(X(t), J(t)) : 0 ≤ t < σ∞} means that

any other maximal solution {(X(t), J(t)) : 0 ≤ t < σ∞} is indistinguishable from it, namely,
X(t) = X(t), J(t) = J(t), and σ∞ = σ∞ for 0 ≤ t < σ∞ with probability 1.

Remark 3.6. The value of hmay,∞, and from the definition of maximal local solution, we find
that (2.1)may be switching between infinite equations according to the description of J(t) of
our paper.

Next, we will give the conditions which can guarantee the existence and uniqueness
of maximal local solution to (2.1).

Theorem 3.7. Assume that for every integer k ≥ 1, there exists a positive constant hk such that, for
all t ∈ [0, T], i ∈ M and those x, y ∈ R

n with |x| ∨ |y| ≤ k,

∣
∣b(x, i) − σ

(
y, i
)∣
∣2 ∨ ∣∣σ(x, i) − σ

(
y, i
)∣
∣2 ≤ hk

∣
∣x − y

∣
∣2, (3.14)

that is, local Lipschitz condition holds. Then, there exists a unique maximal local solution to (2.1).

Proof. For each N ≥ 1, define the truncation function as

bN(x, i) =

⎧
⎪⎨

⎪⎩

b(x, i), |x| ≤ N,

b

(
Nx

|x| , i
)

, |x| > N,
(3.15)

and σN(x, i) defined similarly. Then bN and σN satisfy the Lipschitz condition and the linear
growth condition. Then, Theorem 3.3 implies that there is a unique solution (XN(t), JN(t) to

dXN(t) = bN(XN(t), JN(t))dt + σN(XN(t), JN(t))dB(t), t ∈ [0, T], (3.16)

with the initial data X(0) = x0 and J(0) = J0 which is determined by the value of x0 and
XN(t) inM2([0, T];Rn), JN(t) ∈ M. Define the stopping time as

σN = T ∧ inf{t ∈ [0, T] : |XN(t)| ≤ N}. (3.17)
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It is easy to show that

XN(t) = XN+1(t), JN(t) = JN+1(t) if 0 ≤ t ≤ σN. (3.18)

This implies that σN is increasing and has its limit σ∞ = limN→∞σN . Define {X(t) : 0 ≤ t <
σ∞} by

X(t) = XN(t), t ∈ (σN−1, σN), N ≥ 1, (3.19)

and {J(t) : 0 ≤ t < σ∞} by

J(t) = JN(t), t ∈ (σN−1, σN),N ≥ 1, (3.20)

where σ0 = 0. Equation (3.18) implies that X(t∧σN) = XN(t∧σN) and J(t∧σN) = JN(t∧σN).
Therefore, we observe from (3.16) that

X(t ∧ σN) = x0 +
∫ t∧σN

0
bN(X(s), J(s))ds +

∫ t∧σN

0
σN(X(s), J(s))dB(s)

= x0 +
∫ t∧σN

0
b(X(s), J(s))ds +

∫ t∧σN

0
σ(X(s), J(s))dB(s),

(3.21)

for any t ∈ [0, T) andN ≥ 1. It is also easy to see if σ∞ < T , then

lim
t→σ∞

sup|X(t)| ≥ lim
N→∞

sup|X(σN)| = lim
N→∞

sup|XK(σN)| = ∞,

lim
t→σ∞

J(t) ≥ lim
N→∞

J(σN) = lim
N→∞

sup JK(σN) = ∞.
(3.22)

Hence, {(X(t), J(t)) : 0 ≤ t < σ∞} is a maximal local solution. To show the uniqueness, let
{(X(t), J(t)) : 0 ≤ t < σ∞} be another maximal local solution. Define

σN = σ∞ ∧ inf
{
t ∈ [0, σ∞) :

∣
∣
∣X(t)

∣
∣
∣ ≥ N

}
. (3.23)

It is easy to show that σN → σ∞ a.s. as N → ∞ and

P

{
X(t) = X(t), J(t) = J(t)∀ t ∈ [0, σN ∧ σN)

}
= 1 ∀ N ≥ 1. (3.24)

Letting N → ∞ yields that

P

{
X(t) = X(t), J(t) = J(t)∀ t ∈ [0, σ∞ ∧ σ∞)

}
= 1. (3.25)
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We claim that

σ∞ = σ∞ a.s. (3.26)

If this is not true, then {σ∞ < σ∞} or {σ∞ > σ∞}. Then, for almost all ω ∈ {σ∞ < σ∞}, we have

∣
∣
∣X(σ∞, ω)

∣
∣
∣ = lim

N→∞

∣
∣
∣X(σN,ω)

∣
∣
∣ = lim

N→∞
|X(σN,ω)| = ∞, (3.27)

which contradicts the fact thatX(t, ω) is continuous on t ∈ [0, σ∞). So we must have σ∞ ≥ σ∞
a.s. Similarly, we can show σ∞ ≤ σ∞ a.s. Therefore, we must have σ∞ = σ∞ a.s..

Corollary 3.8. For i ∈ M and x, y ∈ R
n with |x|∨|y| ≤ N, suppose that the local Lipschitz condition

∣
∣b(x, i) − σ(y, i)

∣
∣2∨∣∣σ(x, i) − σ(y, i)

∣
∣2 ≤ hN

∣
∣x − y

∣
∣2, (3.28)

and linear growth hold. Then, we still have the conclusions of Theorem 3.3.

Proof. For each N ≥ 1, define the truncation function bN(x, i) and σN(x, i) as in the proof
of Theorem 3.7. Then, bN and σN satisfy the linear growth condition (3.5) and the Lipschitz
condition (3.6). So, we can prove that

E

(

sup
0≤t≤T

|XN(t)|2
)

≤
(
1 + 3E|x0|2

)
e3C(T)(T+4). (3.29)

That is,

E

(

sup
0≤t≤σN

|X(t)|2
)

≤
(
1 + 3E|x0|2

)
e3C(T)(T+4). (3.30)

Letting N → ∞, we get

E

(

sup
0≤t≤σ∞

|X(t)|2
)

≤
(
1 + 3E|x0|2

)
e3C(T)(T+4). (3.31)

This implies that σ∞ = T a.s. and J(t) < ∞ for t ∈ [0, T]. So, we can get the the conclusion of
Theorem 3.3.

Theorem 3.9. Assume that the monotone condition holds; that is, there exists a positive constant C
such that

xTb(x, i) +
1
2
|σ(x, i)|2 ≤ C

(
1 + |x|2

)
, (3.32)

for all (x, i) ∈ R
n×M. If also local Lipschitz condition (3.28) holds, then there exists a unique solution

X(t) to (2.1) inM2([0, T];Rn).
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The local Lipschitz condition guarantees that the solution exists in [0, σ∞) while the monotone
condition guarantees that the solution exists on the whole interval [0, T]. This Theorem can be proved
in a similar way as Corollary 3.8, and we omit it here.

To give more general result, we suppose that the transition probability of J(t) is dependent on
the value of X(t); that is, for i /= j,

P
{
J(t + Δ) = j | J(t) = i, X(s), J(s), s ≤ t

}
= γij(X(t))Δ + o(Δ). (3.33)

Then, the evolution of the switching process J(·) can be represented by a stochastic integral with respect
to a Poisson random measure (see, e.g., [1, 5]). Suppose that Γ(x) = (γij(x)) satisfies the q-property
(see, e.g., [2, 6]). For a suitable function h(·, ·),

Γ(x)h(x, ·)(i) =
∑

j∈S

γij(x)
(
h
(
x, j
) − h(x, i)

)
, for each i ∈ M. (3.34)

Let C2(Rn ×M;R+) denote the family of all nonnegative functions V (x, i) on R
n ×M which

are continuously twice differentiable in x. If V (·, i) ∈ C2(Rn × M;R+), we introduce an important
operatorLV (·, i) (see, e.g., [2]) associated with the process (X(t), J(t)) defined by the (2.1) as follows:

LV (·, i) = 1
2

n∑

j,k=1

ajk(x, i)
∂2V (x, i)
∂xj∂xk

+
n∑

j=1

bj(x, i)
∂V (x, i)
∂xj

+ Γ(x)V (x, ·)(i), (3.35)

where a = σσT . Then, the generalized Itô formula (see [7, Lemma 3.1]) reads as follows: for V (x, i) ∈
R

n × S,

EV (X(τ2), r(τ2)) = EV (X(τ1), r(τ1)) + E

∫ τ2

τ1

LV (X(s), r(s))ds, (3.36)

with any stopping times 0 ≤ τ1 ≤ τ2 < ∞ as long as the integrations involved exist and are finite.

Theorem 3.10. Assume that there is a function V (x, i) ∈ C2(Rn×M;R+) and a constant α > 0 such
that

lim
|x|→∞

(

inf
i∈M

V (x, i)
)

= ∞, (3.37)

LV (x, i) ≤ α(1 + V (x, i)), ∀(x, i) ∈ R
n ×M. (3.38)

If also the local Lipschitz condition (3.28) holds, then there exists a unique global solution (X(t), J(t))
to (2.1).

Proof. It is easy to observe from Theorem 3.7 and the local Lipschitz condition (3.28) that the
maximal solution (X(t), J(t)) exists on [0, σ∞), where σ∞ is the explosion time. In order to
prove the existence of the unique global solution, we only need to show that σ∞ = ∞ a.s. If
this is not true, then for any ε > 0, there exist a positive constant T such that

P{σ∞ ≤ T} > ε. (3.39)
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For V (x, i) ∈ C2(Rn ×M;R+), we define

ρk = inf{V (x, i) : |x| ≥ k, t ∈ [0, T], i ∈ M}. (3.40)

Then, by the condition (3.37), we get that ρk → ∞ when k → ∞. On the other hand, we
define the sequences of stopping time

σk = inf{t ≥ 0 : |X(t)| ≥ k}, (3.41)

for each k ≥ 1. Then, there exists a sufficiently large integer N such that

P{σk ≤ T} >
ε

2
, ∀k ≥ N, (3.42)

since σk → σ∞ a.s. as k → ∞. For any t ∈ [0, T], by (3.34), and condition (3.38)we have that

EV (X(t ∧ σk), J(t ∧ σk)) = V (x0, J0) + E

∫ t∧σk

0
LV (X(s), J(s))ds

≤ V (x0, J0) + αT + α

∫ t

0
EV (X(s ∧ σk), J(s ∧ σk))ds.

(3.43)

So, the Gronwall inequality implies that

EV (X(T ∧ σk), J(T ∧ σk)) ≤ [V (x0, J0) + αT]eαT . (3.44)

Therefore,

E
(
I{σk≤T}V (X(σk), J(σk))

) ≤ [V (x0, J0) + αT]eα
T

. (3.45)

By the definition of ρk, we have

ρkP{σk ≤ T} ≤ E
(
I{σk≤T}V (X(σk), J(σk))

)
. (3.46)

Fix k ≥ N, we observe from (3.42) and (3.45) that

[V (x0, J0) + αT]eαT ≥ ρkP{σk ≤ T} ≥ ερk
2

. (3.47)

Letting k → ∞ yields a contradiction so, we must have σ∞ = ∞ a.s.

Remark 3.11. For the equation in our paper, J(t)may take values in a infinite state space; that
is, the equation may be switching between infinite equations, and this is drastically different
from stochastic differential equations with Markovian switching in [1] and stochastic
differential equations with continuous-state-dependent switching in [2], because there the
switching process taking values in a finite state space.
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4. Conclusions and Discussions

This paper mainly discussed a new kind of SDE, that is, the SDE with self-exciting switching.
As far as we know, there are no papers which involve this kind of equations. The main feature
of this equation is that the switching depends on the state of the solution, and the solution
is also affected by the switching through the equation. The dependence of J(·) on X(·) is not
exactly the same as the equation discussed in [2]. Moreover, the equationmay switch between
infinite equations. In order to illustrate the difference of the equation with the switching, we
give the following example. Consider the equation

dX(t) = b(X(t), J(t))dt + σ(X(t), J(t))dB(t), t ≥ 0. (4.1)

In view of [2], the switching process J(t) has finite states with generator Q(x); for example,
we assume that it has two states and the x-dependent generator is expressed as

Q(x) =

(−5 − sinx 5 + sinx

2 + sin2x −2 − sin2x

)

. (4.2)

Then, (4.1) can be regard as the following two equations:

dX(t) = b(X(t), 1)dt + σ(X(t), 1)dB(t) ,

dX(t) = b(X(t), 2)dt + σ(X(t), 2)dB(t),
(4.3)

switching back and forth from one to the other according to the movement of the jump
process J(t) which has the generator Q(x). That is to say that the dependence of J(t) on x
is given in terms of transition probabilities of X(t). If Q(x) = Q that generates a Markov
chain independent of the Brownian motion, then (4.1) can be regard as the two equations
switching from one to the other according to the movement of the Markov chain, and this is
the equation with Markovian switching which is discussed in [1].

For example, we defineU1 andU2 such thatU1 ∪U2 = R
n andU1 ∩U2 = ∅. According

to the description of our paper, J(t) is defined by

J(t) =

⎧
⎨

⎩

1 if X(t) ∈ U1,

2 if X(t) ∈ U2.
(4.4)

So (4.1) can be regard as the two (4.3) switching back and forth from one to the other
according to the movement of J(t). Of course, if we define U1, U2, . . . such that ∪∞

i=1Ui = R
n

and Ui ∩Uj = ∅ for i /= j, then J(t) will be defined by

J(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if X(t) ∈ U1,

2 if X(t) ∈ U2,

· · · ,
(4.5)
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that is, J(t) take values in a infinite space M = {1, 2, . . . ,∞}. Noting that the value of J(t)
depends on the value of the solution of equation, the equation in our paper is different from
the equation discussed in [1, 2].

In the future, we will concentrate all our efforts on other properties of this kind
of equation discussed in our paper, such as Lp-estimates, kinds of stabilities and other
asymptotic properties. Most importantly, SDE with self-exciting switching can be used to
describe many practical models. So, the work in our paper is a foundation of the future work
on this aspect.
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