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A second-order linear hyperbolic equation with time-derivative term subject to appropriate initial
and Dirichlet boundary conditions is considered. Second-order unconditionally absolutely stable
difference scheme in (Ashyralyev et al. 2011) generated by integer powers of space operator is
modified for the equation. This difference scheme is unconditionally absolutely stable. Stability
estimates for the solution of the difference scheme are presented. Various numerical examples are
tested for showing the usefulness of the difference scheme. Numerical solutions of the examples
are provided using modified unconditionally absolutely stable second-order operator-difference
scheme. Finally, the obtained results are discussed by comparing with other existing numerical
solutions. The modified difference scheme is applied to analyze a real engineering problem related
with a lossy power transmission line.

1. Introduction

Second-order linear hyperbolic partial differential equations with both constant and variable
coefficients arise in many branches of science and engineering, for example, electromagnetic,
electrodynamics, thermodynamics, hydrodynamics, elasticity, fluid dynamics, wave propa-
gation, and materials science, see [1–13]. For example, they are used frequently for modelling
power transmission lines [7–10, 13]. In numerical methods for solving these equations, the
problem of stability has received a great deal of importance and attention (see [14–20]).
Specially, a suitable model for analyzing the stability is provided by a proper unconditionally
absolutely stable difference scheme with an unbounded operator.

In the literature, the work on new finite difference schemes has drawn important
attention for numerical solutions of linear hyperbolic partial differential equations, (see [21–
26] and the references given therein). However, these difference schemes are conditionally
stable since the stability estimates of them are based on some restrictions on choice of the
grid step sizes τ and hwith respect to the time and space variables, respectively.
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Many scientists have investigated unconditionally stable difference schemes for linear
hyperbolic differential equations. Such a difference scheme for approximately solving linear
hyperbolic differential equations was studied for the first time in [14]. The first-order
difference scheme was constructed for approximately solving the abstract Cauchy problem

d2u(t)
dt2

+A(t)u(t) = f(t), 0 ≤ t ≤ T,

u(0) = ϕ, u′(0) = ψ,

(1.1)

where A(t) is an unbounded selfadjoint positive linear operator with domain D(A(t)) in
an arbitrary Hilbert space H. It is known (see [27, 28]) that various initial-boundary value
problems for hyperbolic equations can be reduced to the initial value problem (1.1). Note
that (1.1) is the well-known wave equation in the special case when A(t) is equal to Laplace
operator Δ. The stability estimates for the solution of this difference scheme and for the first-
and second-order difference derivatives were established in Hilbert space.

Then, in the past decade, a huge variety of works on finite difference method for
numerical solutions of linear hyperbolic partial differential equations were studied. For
the problem (1.1) when A(t) = A, Ashyralyev and Sobolevskii [15] developed the first-
and two different types of second-order difference schemes. The stability estimates for
the solutions of these difference schemes and for the first- and second-order difference
derivatives have been established. For the same problem, they developed also the high-order
two-step difference methods generated by an exact difference scheme, and by the Taylor
expansion on three points in [16]; here, the stability estimates for approximate solutions
by these difference methods are also discussed. In [17, 18], two different types of second-
order difference methods for the problem (1.1) were studied, and the stability estimates
for the solutions of these difference schemes were established. But, the difference methods
developed in these references are generated by square roots of A(t). Further, an operator
A1/2(t) of which construction is not easy is required to realize these difference methods
practically. Therefore, in spite of derived theoretical results, it is not very practical to apply
these methods for solving an initial-value problem numerically. Another two different types
of second-order difference methods generated by integer powers ofA(t) for the problem (1.1)
were developed and the stability estimates for the solutions of these difference methods were
established in [19, 20]. We should mention that all difference methods in references [15–20]
are unconditionally absolutely stable and applicable for multidimensional linear hyperbolic
equations with space variable coefficient. Specially, the difference methods in [17–20] are also
applicable for multidimensional linear hyperbolic equations with time and space variable
coefficients.

For approximately solving the problem

utt + 2αut + β2u = uxx + f(t, x), α > β ≥ 0, a < x < b, t > 0,

u(0, x) = ϕ(x), ut(0, x) = ψ(x), a ≤ x ≤ b,
u(t, a) = G0(t), u(t, b) = G1(t), t ≥ 0,

(1.2)

when a = 0 and b = 1, a three-level implicit difference scheme of O(τ2 + h2) was discussed
in [29] wheres α and β are real numbers. For α > 0, β = 0, and α > β > 0, (1.2) is called as
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a damped wave equation and as a telegraph equation, respectively, see [22]. In [30], also a
three-level implicit difference scheme, whose order is the same as the previous literature for
approximately solving the equation

utt + 2α(t, x)ut + β2(t, x)u = γ(t, x)uxx + f(t, x), (1.3)

defined in the region Ω × [0 < t < T], where Ω = {x | 0 < x < 1} with the same initial and
boundary conditions of (1.2) at different points of the space variable, was developed. Gao and
Chi. [31] developed two explicit difference schemes to solve the problem (1.2) numerically.
The accuracy orders of these difference schemes are O(τ3 + h2) and O(τ5 + h2), respectively.
Recently, H.-W. Liu and L.-B. Liu. [32] developed a new implicit difference scheme based
on quartic spline interpolation in space direction and finite discretization in time direction
for solving the same problem. The accuracy order of this difference scheme is second order
in time direction and fourth order in space direction. In [33], a difference scheme based on
alternating direction implicit methods was presented for solving multidimensional telegraph
equations with different coefficients numerically. The order of accuracy of the proposed
scheme, in which two free parameters are introduced, is also O(τ2 + h4). All the difference
schemes in references [29–33] are unconditionally stable.

Note that Dehghan and Shokri [34] proposed a new numerical scheme based on radial-
based function method (Kansa’s method) for solving the equation

utt + αut + βu = uxx + f(t, x), (1.4)

with the same initial and Dirichlet boundary conditions in (1.2), where α and β are known
constants.

Although there are other important unconditionally stable difference schemes in the
literature [35, 36] to solve the equation in (1.2) numerically, it is not possible to consider all
of them in detail in a single paper.

The only alternative is the application of stable numerical methods for solving the
initial-boundary value problem (1.2) since the analytical solution cannot be determined for
arbitrary f(t, x). Being easy to implement and universally applicable, the finite difference
method outstands among many of the available numerical methods. For solving a linear
hyperbolic partial differential equation with time or space variable coefficient analytically,
there is no specific method in the literature.

In the present paper, the second order in both time and space direction unconditionally
absolutely stable operator-difference scheme in [20] generated by integer powers of A(t) is
modified for approximately solving the equation

d2u(t)
dt2

+ B(t)
du(t)
dt

+A(t)u(t) = f(t), 0 ≤ t ≤ T. (1.5)

Here, A(t) is an unbounded selfadjoint positive linear operator with domain D(A(t)) in an
arbitrary Hilbert spaceH. The initial conditions of the above equation consists of

u(0) = ϕ, u′(0) = ψ. (1.6)
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Numerical solutions of the equations (1.2), (1.3), and (1.4) are computed with the modified
difference scheme. The results are provided and compared with the difference schemes in
[29–34]. The differences among all these difference schemes are illustrated with numerical
examples by considering various initial-boundary value problems.

2. Operator Difference Schemes-Stability Estimates

Using the finite difference formulas

u(tk+1) − 2u(tk) + u(tk−1)
τ2

− u′′(tk) = O
(
τ2
)
,

u(tk+1) − u(tk−1)
2τ

− u′(tk) = O
(
τ2
)
,

(2.1)

in the equation

u′′(tk) + B(tk)u′(tk) = −A(tk)u(tk) + f(tk), (2.2)

we obtain

u(tk+1) − 2u(tk) + u(tk−1)
τ2

+ B(tk)
u(tk+1) − u(tk−1)

2τ
+A(tk)

(
u(tk) +

τ2

4
A(tk)u(tk+1)

)

= f(tk) +O
(
τ2
)
.

(2.3)

Further, we have

(
I + τ2A(0)

)u(τ) − u(0)
τ

=
τ

2
(−A(0)u(0) − B(0)ψ + f(0)

)
+ ψ +O

(
τ2
)
. (2.4)

Neglecting small terms O(τ2), we obtain the following second-order difference scheme:

uk+1 − 2uk + uk−1
τ2

+ Bk
uk+1 − uk−1

2τ
+Akuk +

τ2

4
A2
kuk+1 = fk,

Ak = A(tk), Bk = B(tk), fk = f(tk), tk = kτ, 1 ≤ k ≤N − 1, Nτ = T,
(
I + τ2A0

)
τ−1(u1 − u0) = τ

2
(
f0 −A0u0 − B0u

′
0
)
+ ψ, f0 = f(0), u0 = ϕ, u′0 = ψ

(2.5)

for approximately solving (1.5).

Theorem 2.1. For the solution of the difference scheme (2.5), the stability estimate

∥∥∥∥∥
{
uk − uk−1

τ

}N−1

1

∥∥∥∥∥
Cτ

+ ‖uτ‖Cτ
≤ C1

[∥∥∥A1/2(0)u0
∥∥∥
H
+
∥∥u′0
∥∥
H + τ

N−1∑
s=0

∥∥fs
∥∥
H

]
, (2.6)

holds, where u(0) ∈ D(A1/2(0)) and C1 does not depend on u0, u′0, fs(0 ≤ s ≤N − 1) and τ .



Discrete Dynamics in Nature and Society 5

Theorem 2.2. For the solution of the difference scheme (2.5), the stability estimate

∥∥∥∥
{
τ−2(uk+1 − 2uk + uk−1)

}N−1

1

∥∥∥∥
Cτ

+
∥∥∥{Akuk}N1

∥∥∥
Cτ

≤ C2

[
‖A(0)u0‖H +

∥∥∥A1/2(0)u′0
∥∥∥
H
+
∥∥f0
∥∥
H +

N∑
s=0

∥∥fs+1 − fs
∥∥
H

] (2.7)

holds, where u(0) ∈ D(A(0)), u′(0) ∈ D(A1/2(0)) and C2 does not depend on u0, u′0, fs(0 ≤ s ≤
N) and τ .

Proof. Theorems of the existence and uniqueness of the classical solutions of the initial value
problem

d2u(t)
dt2

+A(t)u(t) = f
(
t, u,

du(t)
dt

)
, 0 ≤ t ≤ T,

u(0) = ϕ, u′(0) = ψ,

(2.8)

for the hyperbolic equation in a Hilbert space H with the selfadjoint positive operator A(t)
with a region of definition that does not depend on t under some additional condition of
differentiability on the nonlinear maps were established in [37].

The proofs of the above Theorems are based on the symmetry properties of the
operators Ax

h
(t) defined by formula (2.5) and the following theorem on the coercivity

inequality for the solution of the elliptic difference problem in L2h.

Theorem 2.3. For the solutions of the elliptic difference problem

Ax
hu

h(x) = wh(x), x ∈ Ωh, uh(x) = 0, x ∈ Sh, (2.9)

the following coercivity inequality holds (Sobolevskii) [38]:

n∑
r=1

∥∥∥uhxrxr ,jr
∥∥∥
L2h

≤ C2

∥∥∥wh
∥∥∥
L2h
. (2.10)

3. Numerical Examples and Discussion

We have not been able to obtain a sharp estimate for the constants figuring in the stability
inequalities. So, in this section, the numerical results are presented by considering various
initial-boundary value problems. The executions in all examples are carried out by MATLAB
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7.01 and obtained by a PC Pentium (R) 2CPV, 2.00 6Hz, 2.87GB of RAM. The errors in the
numerical solutions are computed by the root mean square (RMS) error [39]

RMSerror =

√∑M
n=0 (u(T, xn) − û(T, xn))2

M + 1
, (3.1)

and by the absolute error,

Absolute error = max
0≤n≤M

|u(T, xn) − û(T, xn)|, (3.2)

where u(T, xn) and û(T, xn) represent the exact and numerical solutions at final time,
respectively.

Example 1. First, the following initial-boundary value problem [29]:

utt(t, x) + 2αut(t, x) + β2u(t, x)

= uxx(t, x) +
(
4 − 4α + β2 − 1

)
e−2t sinhx, α > β ≥ 0, 0 < x < 1, t > 0,

u(0, x) = sinhx, ut(0, x) = −2 sinhx, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = e−2t sinh 1, t ≥ 0

(3.3)

with the exact solution u(t, x) = e−2t sinhx is considered. According to the problem (3.3), the
differential operator can be defined follows:

Au(t, x) = −uxx(t, x) + β2u(t, x). (3.4)

Concerning the above differential operator, discrete operators can be defined as

Au(tk, xn) = −uxx(tk, xn) + β2u(tk, xn),

A2u(tk+1, xn) = uxxxx(tk+1, xn) − 2β2uxx(tk+1, xn) + β4u(tk+1, xn).
(3.5)

For the approximate solution of the problem (3.3) and the ones appearing in the sequel,
using the second order of approximation of second and fourth derivatives in the above
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Figure 1: Exact solution.

discrete operators and applying the second-order difference scheme (2.5), the system of linear
equations

uk+1n − 2ukn + u
k−1
n

τ2
+ 2α

uk+1n − uk−1n

2τ
− ukn+1 − 2ukn + u

k
n−1

h2
+ β2ukn

− τ2

4

(
uk+1n−2 − 4uk+1n−1 + 6uk+1n − 4uk+1n+1 + u

k+1
n+2

h4
− 2β2

uk+1n+1 − 2uk+1n + uk+1n−1
h2

+ β4uk+1n

)

= f(tk, xn),

f(tk, xn) =
(
4 − 4α + β2 − 1

)
e−2tk sinhxn, xn = nh, tk = kτ, 1 ≤ k ≤N − 1, 2 ≤ n ≤M − 2,

u0n = sinhxn, xn = nh, 1 ≤ n ≤M − 1,

u1n − u0n
τ

=
τ

2

(
u1n+1 − 2u1n + u

1
n−1

h2
− β2u1n + f(0, xn)

)
+ (1 − τα)ψ(xn),

ψ(xn) = −2 sinhxn, xn = nh, 1 ≤ n ≤M − 1,

uk0 = 0, ukM = e−2tk sinh, tk = kτ, 0 ≤ k ≤N
(3.6)

is obtained. Then, writing the system in the matrix form, a second-order difference equation
with respect to k with matrix coefficients is arrived. To solve this resulting difference
equation, iterative method is applied (see the third Chapter of [40]).

The exact and numerical solution obtained for α = 40 and β = 4 by using the second-
order difference scheme (2.5) with h = 1/5 and τ = 1/3(λ = 1.6) is shown in Figures 1 and
2, respectively, as an example. The exact and numerical solutions of the next examples are
shown in odd and even figure number, respectively.
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Figure 2: Numerical solution.

Table 1: RMS errors of scheme (2.5) and the scheme in [29] for α = 10, β = 0 when λ = 3.2.

t = 1.0 t = 2.0

h The scheme (2.5) [29] The scheme (2.5) [29]

1/32 0.1865 (−02) 0.3404 (−02) 0.1369 (−02) 0.2523 (−02)
1/64 0.4910 (−03) 0.8702 (−03) 0.3599 (−03) 0.6434 (−03)

The difference between Figures 1 and 2 is not clearly obvious though the largest step-
size values which correspond to minimum grid numbers, N = 3, M = 5, are used to graph
them. The errors should be computed for the accurate comparison of the numerical and exact
solutions as well as for the comparison of the two different difference schemes. RMS errors at
t = 1, t = 2 for different values of α and β(α > β ≥ 0) are tabulated in Tables 1 and 2, and the
results are compared with the solutions obtained by [29].

Though both difference schemes are of O(τ2 + h2), considering the errors in the
numerical results tabulated in Tables 1 and 2 for the different values of the parameters α,
β and the step sizes h, τ = hλ, it can be seen easily in Table 1 that the present scheme is
approximately 2 times better in the sense of accuracy than the scheme in [29] for α = 10,
β = 0. For the values of parameters indicated in Table 2, the present scheme is a little bit
better than the scheme in [29] for h = 1/32, but it yields approximately 1.5 times smaller
error for h = 1/64.

Although both of the schemes compared in this example are ofO(τ2 + h2), the scheme
in [29] requires adequate choice of its free parameters. Otherwise, the results come out to be
worse than the results of this paper.

Example 2. When the following equation [31, 32, 34]:

utt(t, x) + 4ut(t, x) + 2u(t, x) = uxx(t, x), 0 < x < π, t > 0 (3.7)

with initial conditions

u(0, x) = sinx, ut(0, x) = − sinx, 0 ≤ x ≤ π (3.8)
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Table 2: RMS errors of scheme (2.5) and the scheme in [29] for α = 40, β = 4 when λ = 1.6.

t = 1.0 t = 2.0

h The scheme (2.5) [29] The scheme (2.5) [29]

1/32 0.8123 (−03) 0.9134 (−03) 0.6010 (−03) 0.7485 (−03)
1/64 0.1655 (−03) 0.2588 (−03) 0.1240 (−03) 0.2018 (−03)
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Figure 3: Exact solution.

and boundary conditions

u(t, 0) = u(t, 1) = 0, t ≥ 0 (3.9)

is considered, then the analytical solution of this problem is u(t, x) = e−t sinx. We apply the
same procedure (3.3) for the approximate solution of the above problem.

The exact solution and the numerical solution obtained for α = 2 and β =
√
2 with the

largest step sizes h = π/5 and τ = hλ = 1/3 are shown in Figures 3 and 4.
The difference between the exact solution and numerical solutions for the given

example is not obvious though the largest step-size values are used to graph them. For
smaller values of h and τ , there is apparently no difference between the graphs of the exact
and numerical solutionswithout depending on the values of the parameters α and β. So again,
the errors should be computed for the accurate comparison. The absolute errors involved by
the scheme (2.5) and by the scheme (16) in [31] at t = 1, t = 2 are listed in Tables 3, 4 and 5 for
different values of h and τ .

All the results obtained by the scheme (2.5) are almost the samewith those obtained by
using the scheme in [31] except the results listed in the first rows of Tables 4 and 5. Although
the order of accuracy O(τ5 + h2) of the scheme (16) in [31] is much better than O(τ2 + h2)
of the present paper, this is not apparent in the results of Tables 3, 4 and 5. In fact, its effect
shows up when larger enough τ values (e.g., τ = 0.1) are used [31, 32].

The absolute errors given by the scheme (2.5) and by the scheme in [32] in numerical
solutions of the same example are listed in Tables 6 and 7 for h = π/30 and h = π/300,
respectively, with the same step size τ = 0.1 for time variable.
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Figure 4: Numerical solution.
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Figure 6: Numerical solution.



Discrete Dynamics in Nature and Society 11

Table 3: Absolute errors of scheme (2.5) and scheme (16) in [31] (h = π/30, τ = 0.001).

t = 1.0 t = 2.0

x The scheme (2.5) [31] The scheme (2.5) [31]

π/10 0.27545 (−04) 0.29477 (−04) 0.27995 (−04) 0.28834 (−04)
3π/10 0.76583 (−04) 0.77174 (−04) 0.74829 (−04) 0.75489 (−04)
5π/10 0.94484 (−04) 0.95392 (−04) 0.92662 (−04) 0.93309 (−04)

Table 4: Absolute errors of the present scheme (2.5) and scheme (16) in [31] (h = π/20, sτ = 0.001).

t = 1.0 t = 2.0

x The scheme (2.5) [31] The scheme (2.5) [31]

π/10 0.05154 (−03) 0.09740 (−03) 0.05867 (−03) 0.09529 (−03)
3π/10 0.16851 (−03) 0.19116 (−03) 0.16509 (−03) 0.18702 (−03)
5π/10 0.21460 (−03) 0.21191 (−03) 0.20535 (−03) 0.20732 (−03)

Table 5: Absolute errors of the present scheme (2.5) and scheme (16) in [31] (h = π/20, τ = 0.01).

t = 1.0 t = 2.0

x The scheme (2.5) [31] The scheme (2.5) [31]

π/10 0.05457 (−03) 0.09740 (−03) 0.05699 (−03) 0.09529 (−03)
3π/10 0.17669 (−03) 0.19116 (−03) 0.16073 (−03) 0.18702 (−03)
5π/10 0.22444 (−03) 0.21191 (−03) 0.19990 (−03) 0.20732 (−03)

Table 6: Absolute errors of scheme (2.5) and the scheme in [32] (h = π/30, τ = 0.1).

t = 1.0 t = 2.0

x The scheme (2.5) [32] The scheme (2.5) [32]

π/30 0.1723 (−03) 0.0321 (−03) 0.0117 (−03) 0.0532 (−03)
15π/30 1.6753 (−03) 0.2033 (−03) 0.1033 (−03) 0.3128 (−03)
29π/30 0.1723 (−03) 0.0412 (−03) 0.0117 (−03) 0.0331 (−03)

Table 7: Absolute errors of scheme (2.5) and the scheme in [32] (h = π/300, τ = 0.1).

t = 1.0 t = 2.0

x The scheme (2.5) [32] The scheme (2.5) [32]

π/30 0.1650 (−03) 0.0379 (−03) 0.0205 (−03) 0.0389 (−03)
15π/30 1.5787 (−03) 0.4033 (−03) 0.1961 (−03) 0.4128 (−03)
29π/30 0.1650 (−03) 0.0463 (−03) 0.0205 (−03) 0.0475 (−03)

Table 8: RMS errors of scheme (2.5) and the scheme in [34].

α = 4, β = 2 α = 6, β = 2

t The scheme (2.5) [34] The scheme (2.5) [34]

0.5 1.3139 (−06) 6.3239 (−06) 0.1050 (−05) 1.1210 (−05)
1.0 0.2457 (−05) 1.1579 (−05) 0.1838 (−05) 1.9542 (−05)
1.5 0.2489 (−05) 1.2645 (−05) 0.2054 (−05) 2.1819 (−05)
2.0 0.2402 (−05) 1.1285 (−05) 0.1960 (−05) 2.0821 (−05)
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Table 9: RMS errors of the scheme in [32].

h α = 10, β = 2 α = 100, β = 2 α = 10, β = 5 α = 100, β = 5

1/8 0.4116 (−02) 0.6115 (−02) 0.1149 (−01) 0.1737 (−01)
1/16 0.7773 (−04) 0.8872 (−03) 0.2174 (−02) 0.2570 (−02)
1/32 0.2591 (−04) 0.5430 (−04) 0.7906 (−04) 0.1684 (−03)
1/64 0.9078 (−05) 0.1220 (−05) 0.3331 (−05) 0.8204 (−05)

Table 10: RMS errors of the scheme in [33].

h α = 10, β = 2 α = 100, β = 2 α = 10, β = 5 α = 100, β = 5

1/8 0.5803 (−02) 0.2435 (−02) 0.2568 (−02) 0.1258 (−01)
1/16 0.1306 (−03) 0.5218 (−03) 0.2294 (−02) 0.3035 (−02)
1/32 0.5256 (−04) 0.4042 (−04) 0.6335 (−04) 0.2087 (−03)
1/64 0.1038 (−04) 0.8602 (−05) 0.4467 (−05) 0.2256 (−04)

For all values of h, the errors at t = 1.0 of the scheme in [32] are much smaller than
those of the present scheme (2.5). This is naturally expected since the order of accuracy of
the scheme in [32] is O(τ2 + h4) which is better than that of (2.5), namely, O(τ2 + h2). This
difference in the errors disappears at t = 2.0 on behalf of the scheme (2.5). In other words, as
t increases to 2.0, the errors of the scheme (2.5) are decreasing quietly for all values of h, but
the errors of the scheme in [32] remain almost at the same level when compared with those
at t = 1.0.

Now, consider the main equation in (1.2) in two cases α = 4, β = 2 and α = 6, β = 2
with the same exact solution and initial-boundary conditions of the problem (3.7). The errors
are tabulated in Table 8 for h = 1/50 and τ = 1/10000 and compared with those found by
using the radial basic function method in [34].

It is obvious that the scheme (2.5) is almost 5 and 10 times better in the sense of error
size than the scheme in [34] for α = 4, β = 2 and α = 6, β = 2 respectively. However, the
computation time of the solution in [34] is quite smaller than that of the present method.

Example 3. Third, consider the following equation [32, 33]:

utt(t, x) + 2αut(t, x) + β2u(t, x)

= uxx(t, x) +
(
β2 − 2

)
sinhx cos t − 2α sinhx sin t, α > β ≥ 0,

(3.10)

over a region Ω = [0 < x < 1] × [t > 0]. The initial and boundary conditions are given by

u(0, x) = sinx, ut(0, x) = 0, 0 ≤ x ≤ 1,

u(t, 0) = 0, u(t, 1) = sinh 1 cos t, t ≥ 0.
(3.11)

The analytical solution given in [32, 33] is u(t, x) = sinhx cos t. The exact and numerical
solutions obtained for α = 10 and β = 2 with h = 1/5 and τ = 1/3 are shown in Figures 5 and
6.
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Table 11: RMS errors of scheme (2.5).

h α = 10, β = 2 α = 100, β = 2 α = 10, β = 5 α = 100, β = 5

1/8 0.5577 (−02) 1.0809 (−02) 0.4685 (−01) 0.0735 (−01)
1/16 26.3103 (−04) 4.4087 (−03) 0.9412 (−02) 0.8668 (−02)
1/32 7.9742 (−04) 12.0832 (−04) 12.5707 (−04) 2.8841 (−03)
1/64 21.4628 (−05) 31.5917 (−05) 33.7970 (−05) 84.7773 (−05)

Table 12: RMS errors of scheme (2.5) and the scheme in [30].

t = 1.0 t = 2.0

h The scheme (2.5) [30] The scheme (2.5) [30]

1/16 0.0079 (−01) 0.1618 (−01) 0.0459 (−02) 0.9262 (−02)
1/32 0.0248 (−02) 0.4252 (−02) 0.0130 (−02) 0.1906 (−02)
1/64 0.0861 (−03) 0.9984 (−03) 0.0390 (−03) 0.4491 (−03)

The difference between the exact and numerical solutions for the given example is
not obviously apparent though the largest step-size values are used again to graph them.
Numerical solutions for different values of α and β when h = 1/8.2k , for k = 0, 1, 2, 3, and
τ = 3.2h, obtained by using the scheme (2.5) are compared with those obtained by using the
schemes in [32, 33]. The RMS errors in solutions are tabulated in Tables 9, 10 and 11 at t = 2.0.

The errors in Tables 9, 10 and 11 involved in the results obtained by using the schemes
of [32, 33] are naturally much smaller than those in Table 11. The reason of this huge
difference is based on that the order of accuracy of the schemes in [32, 33] is O(τ2 + h4),
whilst it is O(τ2 + h2) in the present paper.

Example 4. Finally, the following equation [30]:

utt(t, x) + 2ex+tut(t, x) + sin2(x + t)u(t, x)

=
(
1 + x2

)
uxx(t, x) +

(
3 − 4ex+t − x2 − sin2(x + t)

)
e−2t sinhx

(3.12)

with time and space variable coefficients that are defined in the regionΩ = [0 < x < 1] × [t >
0] is solved numerically. The initial and boundary conditions of this problem are the same
as the initial and boundary conditions of the first example because they have the same exact
solution. RMS errors are tabulated at the points t = 1.0 and t = 2.0 for a fixed values λ = 1.6,
and the results are listed in Table 12.

Apparently, for the given equation with both time and space variable coefficients, the
results of the scheme (2.5) aremuchmore satisfactory than the results of the scheme in [30] for
all values of h shown in Table 12 although the order of accuracy for both schemes is O(τ2 +
h2). On the other hand, when applied to solve an equation with constant coefficients, both
schemes result with the same order of errors.
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Figure 7: (a) The receiving- and sending-end voltages of the line in the case of slight loss. (b) The receiving-
and sending-end voltages of the line in the case of strong loss.

4. Application

As an example, consider the power transmission line having a length of d = 150 km with
the resistance, inductance, conductance, and capacitance parameters R = 0.03Ω/km,L =
1mH/km, G = 0.001μS/km, and C = 0.01μF/km in [8].

The line is represented by the following telegraphic equation:

LCVtt + (LG + RC)Vt + RGV = Vxx. (4.1)
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When the line parameters are normalized with respect to the impedance
√
L/C, frequency

w = 1/(d
√
LC), and distance d, then the above second-order partial differential equation

becomes

Vtt + 4.110961 × 10−7Vt + 3 × 10−14V = Vxx.

(4.2)

Due to the slight losses of the line the coefficients of Vt and V in the above equation are quite
small. When the relaxed line is excited at one end (sending end) by a unit pulse of duration
0.75/

√
10ms which corresponds to a normalized time of 0.5 s, the voltage at the receiving end

(x = 1) is computed by solving (4.2)with the boundary and initial conditions

V (t, 0) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, 0 ≤ t ≤ 0.5,

0, 0.5 < t,

Vx(t, 1) = 0, (4.3)

V (0, x) = Vt(0, x) = 0. (4.4)

The problem is solved by the difference scheme (2.5) for the intervals t ∈ [0, 4] for time and
x ∈ [0, 1] for space with number of grids 1000 and 100, respectively. The plot of the computed
receiving-end voltage is shown in Figure 7(a) including the exciting voltage as well. It is
obvious that the input pulse is reached at the end of the line at t = 1, and it is doubled
in magnitude by the reflection at the open end. The wave travels back to the sending end,
it gets inverted due to the short-circuit property of the sending end, and reflects back to the
receiving end after inversion. Since the travelling time along the line is 1, the wave reaches the
receiving end at t = 3 as the second time. Due to the very slight loss in the line parameters, the
attenuation is not obvious in Figure 7(a). The same problem is solved by increasing the line
losses (R and G parameters) by 107 times, though this is not a realistic case. The attenuation
in the receiving-end voltage is now obvious as plotted in Figure 7(b).

5. Concluding Remarks

In this work, the second-order unconditionally absolutely stable difference scheme in [20]
generated by integer powers of A(t) is modified for solving the abstract Cauchy problem
for the second-order linear hyperbolic differential equations containing the unbounded
selfadjoint positive linear operators. The modified difference scheme is applied for solving
various initial-boundary value problems and compared with other published papers in the
literature. It is observed that this scheme is more accurate as compared to the other difference
schemes whose order of accuracy is the same. Moreover, the present difference scheme (2.5)
is compared with difference schemes whose order of accuracy is higher, and it is observed
that the good results can be obtained using the difference scheme in the paper depending
on the type of the problem and solution parameters of the problem. The difference scheme
is applied to a linear hyperbolic equation with variable coefficients, and it is observed that
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it is much more satisfactory than the scheme obtained by radial basic function, having the
same order of accuracy. The modified difference scheme (2.5) is shown to be well applied to
analyze a real engineering problem involving a lossy power transmission line with constant
coefficients. Being defined by an operator, it can be applied to multidimensional linear
hyperbolic differential equations with time and space variables coefficients.
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