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The dynamic behaviour of a Lotka-Volterra system, described by a planar map, is analytically and
numerically investigated. We derive analytical conditions for stability and bifurcation of the fixed
points of the system and compute analytically the normal form coefficients for the codimension
1 bifurcation points (flip and Neimark-Sacker), and so establish sub- or supercriticality of
these bifurcation points. Furthermore, by using numerical continuation methods, we compute
bifurcation curves of fixed points and cycles with periods up to 16 under variation of one and two
parameters, and compute all codimension 1 and codimension 2 bifurcations on the corresponding
curves. For the bifurcation points, we compute the corresponding normal form coefficients. These
quantities enable us to compute curves of codimension 1 bifurcations that branch off from the
detected codimension 2 bifurcation points. These curves form stability boundaries of various types
of cycles which emerge around codimension 1 and 2 bifurcation points. Numerical simulations
confirm our results and reveal further complex dynamical behaviours.

1. Introduction

The dynamic relationship between predators and their prey is one of the dominant themes
in both ecology and mathematical ecology due to its universal existence and importance; see
[1–6]. The prototype Lotka-Volterra predator-prey system has received a lot of attention from
theoretical and mathematical biologists; see [2–6]. This model is described by the following
system of ordinary differential equations:

ẋ(t) = x(r1 − a11x) − a12xy,

ẏ(t) = y
(−r2 − a22y

)
+ a21xy,

(1.1)
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where x(t) and y(t) represent the densities of the prey and the predator, r1, a12, r2, and a21

are the intrinsic growth rate of the prey, the capture rate, the death rate of the predator, and
the conversion rate, respectively, a11 and a22 denote the intraspecific competition coefficients
of the prey and the predator, and r1/a11 is the carrying capacity of the prey.

This and related models have been studied intensively in the previous decades
and it has been noted, in particular, that they present a wealth of bifurcations of various
codimensions. Organizing centers of codimension 3 have been investigated in great detail in
[7] and references therein. For background on bifurcation theory, we refer to [8, 9].

Far-reaching generalizations of the model have been studied both analytically and
numerically. We refer in particular to [10] where a five-parameter family of planar vector
fields is studied that takes into account group defense strategy, competition between
predators and a nonmonotonic response function. Though mathematical analysis is the prime
tool also in this case, numerical methods are indispensable for a detailed study. In [10]
not only the general-purpose languages Mathematica and Matlab were used, but also the
dedicated bifurcation packages AUTO [11] and MatCont [12].

However, in recent years, many authors [4–6, 13] have suggested that discrete-time
models are more appropriate than continuous ones, especially when the populations have
nonoverlapping generations. Furthermore, discrete-time models often provide very effective
approximations to continuous models which cannot be solved explicitly.

Though discrete models are by no means less complex than continuous ones, they
have the computational (numerical) advantage that no differential equations have to be
solved. In fact, the state-of-the-art in computational bifurcation study is in some respects more
advanced for discrete systems than for continuous ones. So far, normal form coefficients for
codimension 2 bifurcations of limit cycles are not computed by any available software. For
discrete systems, such coefficients can be computed and they can even be used to start the
computation of codimension 1 cycles rooted in such points; see [12, 14]. We will exploit this
possibility.

In this paper we investigate a map in the plane for a pair of populations, first studied in
[15, 16]. Danca et al. [15] investigated Neimark-Sacker bifurcations numerically. Murakami
[16] discussed its branch points, flip bifurcations, and Neimark-Sacker bifurcations,
establishing the sub- or supercritical character of the flip and Neimark-Sacker bifurcations by
an explicit reduction to the center manifolds, obtaining a prediction for the invariant curve
that branches off at the NS point. We undertake an analysis of the dynamics of the iterates
of the map. This paper is organized as follows. In Section 2, we first discuss the map and the
stability and bifurcations of its fixed points, proving the results in [16] by direct computations
of the normal form coefficients. Next, in Section 3, we numerically compute curves of fixed
points and bifurcation curves of the map and its iterates up to order 16 under variation of
one and two parameters. We compute the critical normal form coefficients of all computed
codim-1 and codim-2 bifurcations. These coefficients are powerful tools to compute stability
boundaries of the map and its iterates and to switch to other bifurcation curves. In Section 4,
we study more details on the bifurcation scenario of the system around a Neimark-Sacker
bifurcation point. We conclude our work in Section 5 with a discussion of the obtained results.

2. The Model, the Fixed Points, Their Stability, and Bifurcations

In this paper, we study the map

F :

(
x

y

)

�−→
(
ax(1 − x) − bxy

dxy

)

, (2.1)
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which is analogous to (1.1) for the case of predators and prey with nonoverlapping
generations; see [16, 17]. It can also be seen as an approximate discretization of the
continuous-time Lotka-Volterra model

ẋ(t) = α0x(t)(1 − x(t)) − αmx(t)y(t),

ẏ(t) = mx(t)y(t) − βy(t),
(2.2)

which is a simplification of (1.1) in which the intraspecific competition of the predator is
ignored and the carrying capacity of the prey is 1. x and y represent the densities of the prey
and predator, and α0, α, m, and β are nonnegative parameters. Applying the forward Euler
scheme to system (2.2) with the stepsize 1/β and assuming α0/β � 1, we obtain the map
(2.1) with nonnegative parameters a = α0/β, b = αm/β, and d = m/β.

We note that in (2.1) one of the two parameters b, d can be removed by a rescaling
of y. So, the system is in reality a two-parameter system and fully equivalent to the system
studied in [16]. We will generally choose d, a as the unfolding parameters in the bifurcation
study. In a way, it is the simplest possible discrete predator-prey model and, therefore, allows
a reasonably complete analytical treatment as far as the fixed points of the map are concerned.
However, we will see that even in this case the behaviour of cycles is very complicated and
can only be studied by numerical methods.

We naturally start the bifurcation analysis of (2.1) with the calculation of the fixed
points. These are the solutions (x∗, y∗) to

ax∗(1 − x∗) − bx∗y∗ = x∗, dx∗y∗ = y∗. (2.3)

The origin E1 = (0, 0) is a fixed point of (2.1) but is of little interest. Two further nontrivial
fixed points are E2 = ((a − 1)/a, 0) and E3 = (1/d, 1/b(a(1 − (1/d)) − 1)). We note that E2 is
biologically possible only if its coordinates are nonnegative, that is, a ≥ 1. E3 is biologically
possible only if the following conditions hold:

(i) a > 1,

(ii) d ≥ a/(a − 1).

We start the local bifurcation analysis of the map (2.1) by linearization of F around
each of its fixed points. The Jacobian matrix J(x, y) is given by

J
(
x, y
)
=

(
a − 2ax − by −bx

dy dx

)

. (2.4)

The characteristic equation of J(x, y) is given by

λ2 − tr(J) + det(J) = 0, (2.5)

where tr(J) = a − 2ax − by + dx and det(J) = dxa − 2dx2a.
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2.1. Stability and Bifurcation of E1

Proposition 2.1. The fixed point E1 is asymptotically stable for 0 ≤ a < 1. It loses stability via
branching for a = 1 and there bifurcates to E2.

Proof. Eigenvalues of the Jacobian at E1 are a and 0. So, E1 is stable if a < 1 and loses stability
at a = 1. In (a, x)-space E1 forms the curve (a, 0) with tangent vector (1, 0). E2 is represented
in (a, x)-space by the curve (a, (a − 1)/a). When a = 1, these curves intersect at (1, 0) and the
tangent vector in (a, x)-space is (1, 1), so it is clear that E1 branches to E2 for a = 1.

2.2. Stability and Bifurcation of E2

The Jacobian matrix of (2.1) at E2 is given by

J(E2) =

⎛

⎜
⎝

−a + 2
−b(a − 1)

a

0
d(a − 1)

a

⎞

⎟
⎠. (2.6)

Proposition 2.2. The fixed point E2 is linearly asymptotically stable if and only if a ∈]1, 3[ and
d < a/(a − 1). Moreover, it loses stability:

(i) via branching for a = 1 and there bifurcates to E1,

(ii) via branching for d = a/(a − 1) and there bifurcates to E3 if 1 < a < 3,

(iii) via a supercritical flip for a = 3 if d < 3/2.

Proof. The multipliers of J(E2) are λ1 = −a + 2 and λ2 = d(a − 1)/a. The fixed point E2 is
asymptotically stable if and only if |λ1| < 1 and |λ2| < 1, that is, if and only if a ∈]1, 3[ and
d < a/(a − 1). Boundary points of the stability region must satisfy one of three conditions:
a = 1, d = a/(a − 1), or a = 3.

In the first case, the conditions d < a/(a − 1) and a < 3 are satisfied for nearby values
a > 1, hence this is a real stability boundary. In Proposition 2.1, we proved that this is a branch
point and the new branch consists of E1 points.

In the second case, this is a stability boundary only if 1 < a < 3. The Jacobian (2.6) then
has an eigenvalue +1 and it is checked easily that these boundary points are also E3 points.

In the third case, this is a stability boundary only if d < 3/2. In this case, λ1 = −1 which
means that E2 loses stability via a period doubling point. For supercriticality of the period
doubling point, it is sufficient to show that the corresponding critical normal form coefficient
b1,

b1 =
1
6

〈
p, C
(
q, q, q

)
+ 3B

(
q, (I −A)−1B

(
q, q
))〉

, (2.7)

derived by center manifold reduction is positive; see [9], Ch. 8 and [14]. Here, A = J(E2),
and B(·, ·),C(·, ·, ·) are the second- and third- order multilinear forms, respectively, and p and
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q are the left and right eigenvectors of A for the eigenvalue −1, respectively. These vectors are
normalized by 〈p, q〉 = 1, 〈q, q〉 = 1, where 〈··〉 is the standard scalar product in �2 . We obtain

q =

(
q1

q2

)

=

(
1

0

)

,

p =

(
p1

p2

)

=

⎛

⎜
⎝

1

2b
3 + 2d

⎞

⎟
⎠.

(2.8)

The components of the multilinear form B(q, q) are given by

[
B
(
q, q
)]

1 =
2∑

j,k=1

∂2(ax(1 − x) − bxy
)

∂xj∂xk
qjqk = −2aq1q1 = −6,

[
B
(
q, q
)]

2 =
2∑

j,k=1

∂2(dxy
)

∂xj∂xk
qjqk = 2dq1q2 = 0,

(2.9)

where the state variable vector is for ease of notation generically denoted by (x1, x2)
T instead

of (x, y)T .
Let ζ = (I −A)−1B(q, q), then we have ζ =

( −3
0

)
and find

[
B
(
q, ζ
)]

1 = −2aq1ζ1 = −2a(−3) = 18,
[
B
(
q, ζ
)]

2 = dq1ζ2 = 0. (2.10)

The third-order multilinear form C(q, q, q) is identically zero. The critical normal form
coefficient b1 is given by

b1 =
1
6
pT
(

54

0

)

= 9, (2.11)

which is clearly positive. This completes the proof of supercriticality of the flip point at E2.

The stability region ΩS
E2

of E2, as obtained in Proposition 2.2, is shown in Figure 1.

2.3. Stability and Bifurcation of E3

To study the stability of E3, we use the Jury’s criteria; see [6, Section A2.1]. Let F(λ) = λ2 −
tr(J(E3))λ + det(J(E3)) be the characteristic polynomial of J(E3).
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According to the Jury’s criteria, E3 is asymptotically stable if the following conditions
hold:

F(−1) = 1 + tr(J(E3)) + det(J(E3)) > 0,

F(1) = 1 − tr(J(E3)) + det(J(E3)) > 0,

1 − det(J(E3)) > 0.

(2.12)

At E3, we have:

J(E3) =

⎛

⎜
⎝

d − a

d
− b

d
da − a − d

b
1

⎞

⎟
⎠. (2.13)

We note that tr(J(E3)) = (2d − a)/d and det(J(E3)) = a(d − 2)/d are independent of b.

Proposition 2.3. E3 is linearly asymptotically stable if and only if one of the following mutually
exclusive conditions holds:

(i) 3/2 < d < 9/4 and d/(d − 1) < a < 3d/(3 − d),

(ii) d = 9/4 and 1.8 = d/(d − 1) < a < d/(d − 2) = 3d/(3 − d) = 9,

(iii) d > 9/4 and d/(d − 1) < a < d/(d − 2).

Proof. The criterion F(1) > 0 is easily seen to be equivalent to the condition

a >
d

d − 1
, d > 1, (2.14)

or equivalently,

d >
a

a − 1
, a > 1. (2.15)

Next, the criterion det(J(F3)) < 1 is easily seen to be equivalent to

a <
d

d − 2
if d > 2. (2.16)

The criterion F(−1) > 0 translates as

a <
3d

3 − d
if d < 3. (2.17)

In Figure 1, the parts of the 3 curves a = d/(d − 1), a = d/(d − 2), and a = 3d/(3 − d)
where a and d are positive are depicted (resp., for d > 1, d > 2, and 0 < d < 3). The curves
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a = d/(d−1) and a = 3d/(3−d) intersect solely at (d = 3/2, a = 3) and the curves a = d/(d−2)
and a = 3d/(3 − d) at (d = 9/4, a = 9). It follows from the figure that the 3 inequalities are
fullfilled when (i), (ii), or (iii) holds. This can also easily be shown algebraic. In Figure 1, the
stability region ΩS

E3 of E3 is thus the union of ΩS1
E3 and ΩS2

E3 (which correspond to (i) and (iii)
in this proposition, resp.), and the open interval that separates them (and corresponds to (ii)).

Proposition 2.4. E3 loses stability:

(i) via a flip point when 3/2 < d < 9/4 and a = 3d/(3 − d),

(ii) via a Neimark-Sacker point when 9/4 < d and a = d/(d − 2),

(iii) via a branch point when d > 3/2 and a = d/(d − 1) where it bifurcates to E2,

(iv) via a branch-flip (BPPD) point when d = 3/2 and a = 3,

(v) via a resonance 1 : 2 point when d = 9/4 and a = 9.

Proof. By Proposition 2.3 the stability boundary of E3 consists of parts of three curves, namely,

(1) Curve 1: a = 3d/(3 − d).

(2) Curve 2: a = d/(d − 2).

(3) Curve 3: a = d/(d − 1).

The points of Curve 1 which are on the stability boundary of E3 satisfy F(−1) = 0, that is,
they have an eigenvalue −1 and, thus, are period doubling points. The points of Curve 2
which are on the stability boundary satisfy det(J(E3)) = 1, that is, they have two eigenvalues
with product 1 and, thus, are Neimark-Sacker points. The points of Curve 3 which are on the
stability boundary satisfy F(1) = 0, that is, they have an eigenvalue 1. It can be checked easily
that E3 then branches to E2.

Combining this with Proposition 2.2 we find that the interior points of the boundary
parts of Curves 1, 2, and 3 form the sets described in parts (i), (ii), and (iii) of Proposition 2.3,
respectively.

At the intersection of Curves 1 and 3 (when d = 3/2 and a = 3), the point is a branch-
flip point (BPPD) with eigenvalues −1 and 1. The intersection point of Curves 1 and 2 (when
d = 9/4 and a = 9) is a resonance 1 : 2 point with double eigenvalue −1.

Proposition 2.5. The flip point in Proposition 2.4, part (i), is subcritical.

Proof. For the subcriticality of the flip bifurcation, it is sufficient to show that the normal form
coefficient b1 in (2.7) is always negative. By using the same procedure as we used in the proof
of Proposition 2.2, we obtain

q =

(
q1

q2

)

=

⎛

⎜
⎝

1

d(2d − 3)
b(d − 3)

⎞

⎟
⎠, p =

(
p1

p2

)

=

⎛

⎜
⎝

1

b

2d

⎞

⎟
⎠. (2.18)
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To simplify computations, we do not normalize p and q, since rescaling does not change the
sign of b1 provided that 〈p, q〉 is positive (it can be proved easily that this is the case). B(q, q)
is computed as

B
(
q, q
)
=

⎛

⎜
⎝

−4d

2d2(2d − 3)
b(d − 3)

⎞

⎟
⎠. (2.19)

Let ζ = (I −A)−1B(q, q), then we have ζ =
(

d
−d2(4+(3/(3−d)))/b

)
and find

B
(
q, ζ
)
=

⎛

⎜⎜
⎝

2d2

3 − d
(6 − d) − 2ad

−2d3(6 − d)
b(3 − d)

⎞

⎟⎟
⎠. (2.20)

The third-order multilinear form C(q, q, q) is zero. The critical normal form coefficient b1 =
(−1/2)d3/(3 − d), which is clearly negative for 3/2 < d < 9/4. This completes the proof of
subcriticality of the flip point.

Proposition 2.6. The Neimark-Sacker point in Proposition 2.4, part (ii), is supercritical.

Proof. To prove the supercriticality of the Neimark-Sacker point, it is sufficient to show that
the real part of the corresponding critical normal form coefficient d1,

d1 =
1
2
e−iθ0

〈
p, C
(
q, q, q

)
+ 2B

(
q, h1100

)
+ B
(
q, h2000

)〉
,

h1100 = (In −A)−1B
(
q, q
)
,

h2000 =
(
e2iθ0In −A

)−1
B
(
q, q
)
,

(2.21)

is negative; see [14]. Here, θ0(0 < θ0 < π) is the argument of the critical multiplier, A = J(E3),
and B(·, ·), C(·, ·, ·) are the second- and third-order multilinear forms, respectively. p and q are
the left and right eigenvectors of A

Aq = eiθ0q,

ATp = e−iθ0p.
(2.22)

These vectors are normalized by 〈p, q〉 = 1, 〈q, q〉 = 1, where 〈p, q〉 = pHq is the Hermitian
inner product in � 2 . In the Neimark-Sacker point, a = d/(d − 2) (d > 9/4, so d − 2 > 0). We
get

A =

⎛

⎜
⎜
⎝

d − 3
d − 2

− b

d
d

b(d − 2)
1

⎞

⎟
⎟
⎠, (2.23)
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with characteristic polynomial λ2−((2d−5)/(d−2))λ+1. It follows that�(λ) = (d−(5/2))/(d−
2) and �(λ) =

√
d − (9/4)/(d−2), so eiθ0 = 1/(d−2)(d−(5/2)+i

√
d − (9/4)). The eigenvectors

are

q =

⎛

⎜
⎜
⎝

(d − 2)
b

d

−1
2
− i

√

d − 9
4

⎞

⎟
⎟
⎠,

p =
d
(

2d − (9/2) − i
√
d − (9/4)

)

b(4d2 − 17d + 18)

⎛

⎜
⎜
⎝

1

b

d

(
1
2
− i

√

d − 9
4

)

⎞

⎟
⎟
⎠,

(2.24)

where q is not normalized since rescaling of q does not change the sign of d1 (this can be
proved easily) and we can simplify the computations by not normalizing. The calculation of
the components of B(q, q) gives us

B
(
q, q
)
= −b(d − 2)

⎛

⎝
b

d
1

⎞

⎠, (2.25)

and it follows that

h1100 = b(d − 2)

⎛

⎝
b(d − 2)

d
−2

⎞

⎠. (2.26)

The remaining calculations are done with the help of Maple. The calculation of h2000 gives us

h2000 =
−2(d − 2)3b

−50d2 + 135d + 6i
√

4d − 9d2 − 29i
√

4d − 9d − 119 + 35i
√

4d − 9 + 6d3

·
⎛

⎝
b

d

(
17d − 7i

√
4d − 9d − 23 + 11i

√
4d − 9 − 3d2 + i

√
4d − 9d2

)

i
√

4d − 9d + 22 − 2i
√

4d − 9 + 4d2 − 19d

⎞

⎠,

(2.27)

where

e2iθ0 =
1

(d − 2)2

⎛

⎝d2 − 6d +
17
2

+ i(2d − 5)

√

d − 9
4

⎞

⎠. (2.28)
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For B(q, h2000) and B(q, h1100), we obtain

B
(
q, h2000

)
=

2(d − 2)3b2

−50d2 + 135d + 6i
√

4d − 9d2 − 29i
√

4d − 9d − 119 + 35i
√

4d − 9 + 6d3

·
⎛

⎝
b

d

(
32d − 6i

√
4d − 9d − 29 + 9i

√
4d − 9 − 13d2 + i

√
4d − 9d2 + 2d3

)

i
√

4d − 9d2 + 2d − 8i
√

4d − 9d − 2d3 + 7d2 − 17 + 13i
√

4d − 9

⎞

⎠,

B
(
q, h1100

)
=
(d − 2)2b2

2

⎛

⎝b
(

1 + i
√

4d − 9
)

−5 − i
√

4d − 9

⎞

⎠.

(2.29)

The third-order multilinear form C(q, q, q) is identically zero, so we get

d1 =
1
2
e−iθ0pH

(
2B
(
q, h1100

)
+ B
(
q, h2000

))

=
1
4

(
−2d + 5 + i

√
4d − 9

)(
4d − 9 + i

√
4d − 9

)
b2d

×
(

31d2 + i
√

4d − 9d3 + 44 − 5d3 − 64d − 12i
√

4d − 9 − 7i
√

4d − 9d2 + 16i
√

4d − 9d
)

× (4d − 9)−1
(
−50d2 + 135d + 6i

√
4d − 9d2 − 29i

√
4d − 9d − 119 + 35i

√
4d − 9 + 6d3

)−1
.

(2.30)

The real part of d1 equals −1/2b2d (exact up to a positive factor due to the nonnormalization
of q), which is clearly negative. This completes the proof of supercriticality of the Neimark-
Sacker point in Proposition 2.4, part (ii).

The stability regions (i) and (iii) of E3 obtained in Proposition 2.3 are depicted as
ΩS1

E3 and ΩS2
E3, respectively, in Figure 1. The region (ii) is the open interval on the common

boundary of ΩS1
E3 and ΩS2

E3. We have a complete description of the stability region of E3 for all
parameter combinations.

The biological interpretation of Figure 1 is as follows. The situation with no prey and
no predators exists for all parameter values but is stable only in ΩS

E1, that is, for a < 1. The
situation with a fixed number of prey but no predators exists for all a > 1 but is stable only in
ΩS

E2. Coexistence of fixed nonzero numbers of prey and predators is possible whenever a > 1
and d > a/(a − 1) but is stable only in the union of ΩS1

E3 and ΩS2
E3.

3. Numerical Bifurcation Analysis of E2 and E3

In this section, we perform a numerical bifurcation analysis by using the MATLAB package
Cl MatContM; see [12, 14]. The bifurcation analysis is based on continuation methods,
whereby we trace solution manifolds of fixed points while some of the parameters of the map
vary; see [18]. We note that in a two-parameter setting the boundaries of stability domains
of cycles are usually curves of codimension 1 bifurcations, which necessarily have to be
computed by numerical continuation methods.
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Figure 1: Stability regions in (d, a)-space. ΩS
E1, ΩS

E2 are the stability regions of E1 and E2, respectively. The
stability region ΩS

E3 of E3 is the union of ΩS1
E3 and ΩS2

E3 (which correspond to (i) and (iii) in Proposition 2.3,
resp.), and the open interval that separates them (and corresponds to (ii) in Proposition 2.3).

To validate the model, we compute a number of stable cycles for parameter values in
the regions where we claim they exist; these stable cycles were found by orbit convergence,
independently of the continuation methods. They are represented in the Figures 2, 6, 11,
and 14. Similarly, a stable closed invariant curve was computed by orbit convergence and is
represented in Figure 4. The computation of an Arnold tongue in Section 3.5 by a continuation
method also validates our computations.

3.1. Numerical Bifurcation of E2

By continuation of E2 = (0.5; 0) starting from a = 2, b = 0.2, d = 1.4, in the stable region of E2

with a free, we see that E2 is stable when 1 < a < 3. It loses stability via a supercritical period
doubling point (PD, the corresponding normal form coefficient is 9 > 0) when a = 3, and via
a branch point (BP) when a crosses 1.4. The output of Run 1 is given by:

����� � ��� 	 � 
�������� �������� ��������

����� � ��� 	 � 
�������� �������� ���������

������ ���� ����������� �� �� � �������������

The first two entries of 	 are the coordinate values of the fixed point E2, and the last
entry of 	 is the value of the free parameter a at the corresponding bifurcation point. We note
that the normal form coefficient of the PD point is 9, confirming (2.11). We note furthermore
that the detected bifurcation points in this run are in accordance with the statement of
Proposition 2.2.

Beyond the PD point the dynamics of (2.1) is a stable 2-cycle. Cl MatContM allows to
switch to the continuation of this 2-cycle. It loses stability at a supercritical PD point:

����� � ��� 	 � 
�������� �������� ���������

������ ���� ����������� �� �� � ����� �������
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Figure 2: A stable 8-cycle of (2.2) for a = 3.571920967580968, b = 0.2, d = 1.4.
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A stable 4-cycle is born when a > 3.449490. It loses stability at a supercritical PD point:

����� � ��� 	 � 
������ � �������� �� ������

������ ���� ����������� �� �� � �����������

Thus, when a > 3.544090 a stable 8-cycle emerges. A stable 8-cycle is given by C8 =
{X8

1 , . . . , X
8
8}, where X8

1 = (0.880450408535962, 0) where a = 3.571920967580968, b = 0.2, and
d = 1.4. This 8-cycle is represented in Figure 2. In this situation there are no predators and the
number of prey repeats itself every 8 time spans. Switchings at PD points of the second and
fourth iterates are given in Figure 3.

We note that for E2 the map (2.1) is a logistic map. In fact, in this case the predator
becomes extinct and the prey undergoes the period-doubling bifurcation to chaos when
further increasing the parameter a; see [19].
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Figure 4: A stable closed invariant curve for a = 3.5, b = 0.2, and d = 2.83.

Continuation of E2 starting from the same parameter values as in Run 1, with d as free
parameter, leads to:

����� � ��� 	 � 
�� ����� �������� ���������

The appearance of a branch point is consistent with Proposition 2.2 part (ii) which
states that E2 bifurcates to E3 when b = d = a/(a − 1) = 2.

3.2. Numerical Bifurcation of E3

We now consider E3 = (0.454545; 4.545454) which is in the stable region for the parameter
values a = 3.5, b = 0.2, and d = 2.2 (stability follows from Proposition 2.3 part (i)). We do
a numerical continuation of E3 with control parameter d, and call this Run 2. The output of
Run 2 is given by:

����� � ��� 	 � 
������� ������� �� �� �

������ ���� ����������� �� �� � − ��� ����−��
����� � !"� 	 � 
��� ��� ��� ���� ���������

������ ���� ����������� �� !" � −���� � �−���

E3 is stable when 1.615385 < d < 2.8. It loses stability via a supercritical Neimark-

Sacker (NS) point when d = 2.8, which is consistent with Proposition 2.4 part (ii) (d/(d−2) =
3.5 = a). It also loses stability through a subcritical PD point when d = 1.615385, which is
consistent with Propositions 2.5 and 2.4 part (i) since 3d/(3 − d) = 3.5 = a.

The dynamics of the system prior to the PD point consists of an unstable 2-cycle that
coexists with a stable fixed point. Beyond the NS point the dynamics of the system consists
of a stable closed invariant which coexists with unstable fixed points of (2.1). For d = 2.83,
a stable closed invariant curve is created around the unstable fixed point E3 (see Figure 4).
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Figure 5: Flip and Neimark-Sacker bifurcation curves starting from points in Run 2. We note that the LPPD
point is in reality a BPPD point.

Now, we compute the period doubling curve, with a and d free, by starting from the PD point
detected in Run 2. We call this Run 3.

����� � #���� 	 � 
�������� ������� � � ������

!����� ���� ����������� ��� #���$%�&�� ��' � −���������−���
�� �����−���
����� � (�� 	 � 
�������� ��������� �������� ��� �����

!����� ���� ����������� ��� (�$%�� )' � �������−��� −��� ����−��
Two codim-2 bifurcation points are detected on the flip curve, namely, a fold-flip LPPD

and a resonance 2 bifurcation R2. We note that the LPPD point is in reality a branch-flip
(BPPD) point, which by the software is detected as an LPPD point since BPPD points are
ungeneric on a curve of PD points. This curve is shown in Figure 5 (left curve). Now, we
compute the NS curve, with a and d free parameters, by starting from the NS point of Run 2.
We call this Run 4.

����� � (�� 	 � 
�������� ��������  ������� �� ����� −���������
!����� ���� ����������� �� (�$ * � −������������ � ��������−�� �

����� � (�� 	 � 
����� �  ������� �������� �������� −�� ������
!����� ���� ����������� �� (�$ (�
� � � − ��������−��
����� � (�� 	 � 
�������� ��������� �������� ��� ���� −��������
!����� ���� ����������� �� (�$ %�� )' � �������−��� −���  ���−��

The computed curve of NS points is also shown in Figure 5 (right curve). The codim-
2 bifurcations that are computed along the Neimark-Sacker curve are a resonance 1 : 2 (R2),
resonance 1 : 3 (R3), and a resonance 1 : 4 (R4) point. In addition to the coordinates of the
bifurcation point, parameter values and the real part of the Neimark-Sacker multiplier at the
bifurcation point are output. We note that the PD curve crosses over the NS curve a = d/(d−2)
at a resonance 1 : 2 (R2) point, which is consistent with Proposition 2.4 part (v). It also hits the
BP curve a = d/(d − 1) at a branch-flip point BPPD which is consistent with Proposition 2.4
part (iv).



Discrete Dynamics in Nature and Society 15

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
7

8

9

10

11

12

13

y

x

X3

X2

X1

X4 

Figure 6: A stable 4-cycle near an R4 point for a = 4.99, b = 0.2, and d = 2.56.
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Figure 7: Twofold curves (LP4) emanate from an R4 point on an NS curve.

3.3. Orbits of Period 4, 8, 16 and 32

The normal form coefficient A of the R4 point in Run 4 satisfies |A| > 1, hence two cycles
of period 4 of the map are born. A stable 4-cycle for a = 4.99, b = 0.2, and d = 2.56 is given
by: C4 = {X1, X2, X3, X4}, where X1 = (0.506291269909196, 9.483616960226117). We present
this cycle in Figure 6. In order to compute the stability region of this 4-cycle, we compute the
twofold curves of the fourth iterate rooted at the R4 point. These curves exist since |A| > 1,
see [9], and switching from an R4 point to the fold curves of the fourth iterate is supported
by Cl MatContM. The stable fixed points of the fourth iterate exist in the wedge between the
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twofold curves. The output of this continuation, Run 5, is given below. The curves are shown
in Figure 7.

����� � #���� 	 � 
����� �� �����  �����  � ��������

!����� ���� ����������� ��� #���$%�&�� ��' � −��������−���
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!����� ���� ����������� ��� #���$%�&�� ��' � ���� ����−���
−��������−���

We can further compute the stability boundaries of the 4-cycle. This region is bounded
by the two just computed limit point curves and a period doubling curve of the fourth iterate
rooted at the detected LPPD points on the branches of LP4 curves. Continuation of the flip
curve of the fourth iterate emanated at the LPPD of Run 5 is given below. We call this Run 6.
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����� � +��� 	 � 
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By superposing the flip curve on Figure 7, we obtain Figure 8. We further compute a
curve of fixed points of the fourth iterate starting from the 4-cycle C4 presented in Figure 6,
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Figure 9: Curve of fixed points of the fourth iterate starting from the 4-cycle C4.
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S of the 4-cycle C4. The boundaries consist of NS, LP4, PD4, and NS4 curves.

with control parameter d. The output of this continuation, Run 7, is given below. The curve
is presented in Figure 9.
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The 4-cycle remains stable when 2.502419 < d < 2.608544. Now, we compute an NS-

curve starting from the computed NS point in Run 8 and call this Run 9. This curve is
superposed on Figure 8 and is depicted in Figure 10.

����� � (�� 	 � 
�� ����� ������  ��� �� �������� ���������

!����� ���� ����������� �� (�$ * � −��� ��������� � −����  ����� �



18 Discrete Dynamics in Nature and Society

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

5

6

7

8

9

10

11

12

y

x

Figure 11: A stable 16-cycle around the R4 point of Run 9 for a = 4.68, b = 0.2, and d = 2.66.
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The stability region Ω4
S of the 4-cycle C4 is bounded by the LP4, PD4, and NS4 curves

(see Figure 10).
Now, we consider the R4 point computed in Run 9. Since the corresponding normal

form coefficient A satisfies |A| > 1, two cycles of period 16 of the map are born. A stable
16-cycle for a = 4.68, b = 0.2, and d = 2.66 is given by C16 = {X1, X2, . . . , X16}, where X1 =
(0.596607820551550, 7.625016168527653). We present this cycle in Figure 11.

In order to compute the stability region of this 16-cycle, we compute twofold curves of
the sixteenth iterate rooted at the R4 point. These curves exist since |A| > 1. The stable fixed
points of the sixteenth iterate exist in the wedge between the twofold curves. The output of
this continuation, Run 10, is given below, and the fold curves are shown in Figure 12.

����� � #���� 	 � 
��  ���� �������� ��� � ���������

!����� ���� ����������� ��� #���$%�&�� ��' � ��� ������

������ ��−��
,��-� #.�/0��1 ����������� ��� -����) ������� � ������ ��−��
����� � #���� 	 � 
�� ��� ����� �� ���� �� ��� ����

!����� ���� ����������� ��� #���$%�&�� ��' � �������������

 ���������

,��-� #.�/0��1 ����������� ��� -����) ������� �  ���������

����� � #���� 	 � 
������� ��������  � ���� ���������

!����� ���� ����������� ��� #���$%�&�� ��' � �����  �−���
−������������



Discrete Dynamics in Nature and Society 19

2.6 2.65 2.7 2.75 2.8

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

a

d

LPPD

LPPD

LPPD

LPPD

LPPD

R4

R3

R2 R1

NS4 curve

LP16 curves

Figure 12: Twofold curves (LP16) emanate from an R4 point on the NS4 curve.
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We further compute a curve of fixed points of the sixteenth iterate starting from the 16-

cycle C16 presented in Figure 11, with control parameter a. The output of this continuation,
Run 11, is given below. The curve is presented in Figure 13.
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The 16-cycle remains stable when 4.646130 < d < 4.700640. The dynamics of the system
beyond the supercritical PD is a stable 32-cycle which coexists with the unstable fixed points
of the sixteenth iterate of the system.

A stable 32-cycle for a = 4.7071, b = 0.2, and d = 2.66 is given by: C32 =
{X1, X2, . . . , X32}, where X1 = (0.619778764655944, 7.243979650146042). We present this cycle
in Figure 14.

Now, we compute a PD-curve starting from the computed PD point in Run 10, and
call this Run 12. This curve is superposed on Figure 12, and is depicted in Figure 15. The
boundaries of the stability region Ω16

S of the 16-cycle consist of the LP16 and PD16 curves, as
illustrated in Figure 15.
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Figure 13: Curve of fixed points of the sixteenth iterate starting from the 16-cycle C16.
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Figure 14: A stable 32-cycle for a = 4.7071, b = 0.2, and d = 2.66.
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Figure 15: Stability region Ω16
S of the 16-cycle C16. The boundaries consist of LP16 and PD16 curves.
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3.4. Orbits of Period 3

Next, we consider the resonance 1 : 3 (R3) point in Run 4. Since its normal form coefficient is
negative, the bifurcation picture near the R3 point is qualitatively the same as presented in [9,
Figure 9.12]. In particular, there is a region near the R3 point where a stable invariant closed
curve coexists with an unstable fixed point. For parameter values close to the R3 point, the
map has a saddle cycle of period three.

Furthermore, a Neutral Saddle bifurcation curve of fixed points of the third iterate
emanates [9, Chapter 9]. We compute this curve by branch switching at the R3 point. This
curve is presented in Figure 16.

3.5. Computation of Arnold Tongues

It is well known that near a Neimark-Sacker curve there exists a dense array of resonance
tongues, generalizing the isolated tongue of period 4 in Figure 7. The tongues locally form an
open and dense set of the parameter plane. There are also quasiperiodic invariant circles in
between that correspond to a set of positive measure in the parameter plane.
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Figure 16: Curve of Neutral Saddle bifurcations of the third iterate for b = 0.2.
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Figure 17: An Arnold tongue rooted in a weak 2 : 7 resonant Neimark-Sacker point.

So far, no numerical methods have been implemented to specifically compute the
boundaries of the resonance tongues that are rooted in weakly resonant Neimark-Sacker
points (unlike the strong resonant 1 : 4 case). However, since they are limit point curves of
fixed points of cycles with known periods, they can be computed relatively easily if the cycles
inside the tongue are globally stable (which depends on the criticality of the Neimark-Sacker
curve and the noncritical multipliers as well). It is sufficient to find a fixed point of cycles
inside the tongue by orbit convergence and to continue it in one free parameter to find a
point on the boundary of the Arnold tongue as a limit point of cycles. From this, the boundary
curves can be computed by a continuation in two free parameters.

In Figure 17, we present an Arnold Tongue rooted in a weak 2 : 7 resonant Neimark-
Sacker point. Its computation started from a stable 7-cycle with x = 0.401985064603439,
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Figure 18: An attracting fixed point for system (2.2) for a = 3.5, b = 0.2, and d = 2.67.
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Figure 19: Phase portrait for the system (2.2) before the NS point (a = 3.5, b = 0.2, and d = 2.78).

y = 12.930999111981340, a = 5.844728289174310, b = 0.2, and d = 2.45. We note that the
boundary curves contain further bifurcation points.

4. Numerical Simulation

To reveal the qualitative dynamical behaviours of (2.2) near the NS point in Run 1, we
present a complete bifurcation sequence that is observed for different values of d. We fix
the parameters a = 3.5, b = 0.2 and assume that d is free.

Figure 18 shows that E3 is a stable attractor for d = 2.67. We note that for the given
parameters value, E3 is a stable fixed point consistent with Proposition 2.3 part (iii). The
behaviour of (2.2) at d = 2.78, so before the NS point at d = 2.8, is depicted in Figure 19.
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Figure 20: Phase portrait for the system (2.2) for a = 3.5, b = 0.2, and d = 2.81.
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Figure 21: The breakdown of the closed invariant curve of the system (2.2) for a = 3.5, b = 0.2, and d = 3.13.

Figure 20 demonstrates the behaviour of the model after the NS bifurcation, for d =
2.81. From Figures 19 and 20 it turns out that the fixed point E3 loses its stability through an
NS bifurcation, when d varies from 2.78 to 2.81. The dynamics of (2.2) beyond the NS point
is a stable closed invariant curve which coexists with unstable fixed point E3.

As d is increased further, however, the phase portrait starts to fold. We see that
the circle, after being stretched, shrunk, and folded, creates new phenomena due to the
breakdown of the closed curve; see Figure 21 for d = 3.13.

For increasing d, we obtain the multiple invariant closed curves brought about the NS
bifurcation point of iterates of (2.2). In these cases, higher bifurcations of the torus occurs as
the system moves out of quasiperiodic region by increasing d. The dynamics move from one
closed curve to another periodically, but the dynamics in each closed curve, may be periodic
or quasiperiodic. Figure 22 presents the set of closed curves around the NS bifurcation.
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Figure 22: The existence of multiple closed curves of the system (2.2) for a = 3.5, b = 0.2, and d = 3.215.
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Figure 23: Chaotic attractor for the system (2.2) for a = 3.5, b = 0.2, and d = 3.25.

Moreover, the closed curves may break and lead to multiple fractal tori on which the
dynamics of (2.2) are chaotic. Figures 23 and 24 present strange attractors for (2.2) with d =
3.25 and d = 3.8, respectively, which exhibit a fractal structure.

5. Concluding Remarks

In this paper, we studied a planar map that models a predator-prey interaction with
nonoverlapping generations. We derived analytically a complete description of the stability
regions of the fixed points of the system, namely, E1, E2, and E3. We showed that the system
undergoes branching, period doubling, and Neimark-Sacker bifurcations. In particular, we
determined criticality of the flip, and Neimark-Sacker bifurcations for E2 and E3 analytically
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Figure 24: Chaotic attractor for the system (2.2) for a = 3.5, b = 0.2, and d = 3.8.

by direct computation of the normal form coefficients without explicit reduction to the center
manifold. To support the analytical results and reveal the further complex behaviour of the
system, we employed numerical continuation methods to compute curves of codimension
1 and 2 bifurcation points. In particular, we computed curves of fixed points of different
cycles as well as curves of fold, flip and Neimark-Sacker bifurcations of the fourth iterate,
and fold and flip bifurcations of the sixteenth iterate. These curves form stability boundaries
of different cycles of the system. These tasks were possible by means of the computation
of normal form coefficients and branch-switching algorithms. We further used numerical
simulation methods to reveal chaotic behaviours and a strange attractor near the Neimark-
Sacker bifurcation.
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