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We show the results of a detailed replication of the Emergence of Classes Model Axtell et al. (2004).
We study the effect of possible biases on the original proposal and we find additional results and
conclusions. We also explore the effects of minor changes on the decision rules that agents play.

1. Introduction

The efforts for replicating to replicate previous published models have grown during recent
years. However, model replicating is a very tough task, as it was showed by Axelrod [1]
and Edmonds [2]. In this paper, we replicate the model by Axtell et al. [3] (hereafter AEY),
where two agents want a portion of the same pie, and the portion that a particular agent
gets depends on the portion demanded by the other agent. Our results are in agreement with
their conclusions, both with nondistinguishable and distinguishable agents (the tag model),
as López-Paredes et al. [4] and Dessalles et al. [5] also confirmed in a previous replication of
this work.

In this paper, we analyze the hypothesis that researchers should make to obtain the
results shown in AEY’S model, and we pay special attention to (a) the initial conditions
of the system (potential artefacts/biases following Galán et al. [6] and Kubera et al. [7]),
(b) how dependent the results are on the reward values in the payoff matrix, and (c)
different ways in which an agent can take a decision. These considerations should be carefully
explained to facilitate replication and prevent researchers from making erroneous hypothesis
and considering particular cases as general conclusions.

After that, we go one step further by introducing a change in the agents’ decision
rule: agents behave more realistically and do not compute average benefits. Their decision
depends on the most likely option taken by their opponents in previous games.
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Finally, we change the way in which the agents are paired by placing them on a regular
spatial structure and forcing them to play against any of their neighbours.

Our results confirm the role that tags play in the emergent behaviour of artificial
societies. The effect of tags in human decision processes has been empirically demonstrated
by Ito et al. [8].

2. The Model

We begin by replicating the bargaining model by AEY. In this model, two players demand
some portion of a “pie” (which is a metaphor for a property that is going to be shared out).
The portion of pie that they get (i.e., the reward) depends on the other agent’s demand. They
can demand three different portions of the pie: low, medium or high. As long as the sum of
the two demands is not more than 100 percent of the pie, they receive what they demanded;
otherwise each gets notting.

There is a population of n agents that play in random pairs. Each agent has a memory
in which she maintains the decision taken by their opponents in previous matches. The
information collected in their memory is used to demand the portion of the pie that
maximizes her expected benefit (with probability 1−ε), although sometimes, with probability
ε, the decisions are taken randomly.

At first, the authors assume that the agents are not distinguishable from one another
(except for the content of their memories). They conclude that, whenever there are not
observable differences among the agents, there is only one possible state of equilibrium, in
which all the pie is shared out among the agents (all the agents learn to compromise and
demand “half of the pie”). However, under certain conditions, a “fractious state” can emerge:
in this case, all the agents are either aggressive or passive (some of them demand low and
some of them demand high), and no equilibrium is reached.

In a second stage of their research, they add a visual “tag” to the agents. The players
are capable of identifying their opponent’s tag and they store the decision taken by their
opponents in a different memory set (depending on the opponent’s tag). In this case,
the authors prove that, just by adding different tags to the players, discriminatory states
can emerge under certain conditions, in which agents with different tags follow different
behaviours.

3. The Model with One Agent Type

3.1. Replication

In our replication of the AEY’s model, we used the original payoff matrix (i.e., the combina-
tion of rewards for the different demands) 30 percent for low, 50 percent for medium, and 70
percent for high. We also used the original decision rule.

When two players are paired to play, each one gets the portion that she demands
as long as the sum of the two demands is less than or equal to 100 percent of the pie. For
example,

(i) if player 1 demands 30, she will receive 30 independently of player 2’s decision
(when player 1 chooses 30, the sum of 30 (player 1’s demand) and all the possible
combinations of demands for player 2 are less than or equal to 100 percent of the
pie.)
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(ii) if player 1 demands 50, she will get 50 unless player 2 demands 70 (if player 2
chooses 70, the sum of the two demands is higher than 100 percent of the pie. In
this case, both players get nothing.)

(iii) if player 1 demands 70, she will get 70 only if player 2 demands 30 (if player 2
chooses 50 or 70, the sum of the two demands exceeds 100 percent of the pie and
each agent gets nothing.)

Decision Rule

What makes an agent choose low, medium or high? An agent will check his memory to find
how often each option has been chosen by her opponents. Then, she considers that the
probability that her current opponent chooses 30 (L), for example, is equal to the relative
appearance of 30 in her memory. In the same way, she calculates how likely it is for the
opponent to choose 50 (M) and 70 (H). Once the agent knows this information, she estimates
the expected benefit for the three possible options as follows:

B(L) = L · P (
opponent choosing L

)
+ L · P (

opponent choosing M
)

+ L · P (
opponent choosing H

)
,

B(M) = M · P (
opponent choosing L

)
+M · P (

opponent choosing M
)

+ 0 · P(opponent choosing H
)
,

B(H) = H · P (
opponent choosing L

)
+ 0 · P (

opponent choosing M
)

+ 0 · P (
opponent choosing H

)
,

(3.1)

(where B(“x′′) is the mean benefit I get if I choose “x” and P (“event”) is the probability that
“event” occurs).

Notice that this “rational behaviour” takes place with probability 1 − ε. However,
a random decision is taken with probability ε.

A simulation of this replication is shown in Figures 1 and 2. Both simulations were run
with the same initial parameters (the same number of agents, the same memory size and the
same uncertainty parameter ε).

The simplexes shown in Figures 1 and 2 represent the memory state of the agents. The
more demands of L an agent keeps in her memory, the closer to the bottom-right vertex she
is plotted. Equivalently, if a player’s memory contains a considerable amount of H’s, she is
placed near the top vertex. Finally, if most of the elements in an agent’s memory areM’s, she
is plotted close to the bottom-left vertex.

The simplex is split into three different regions, separated by three “decision borders”.
The top region is dominated by frequent demands of H in previous matches. This is why
agents in this region tend to demand L (with probability 1−ε), as it maximizes their estimated
benefit. On the right region, agents are likely to demand H (with probability 1 − ε) because
L is the dominant element in their memories. Agents on the left region have often found that
their opponents demand M; since demanding M maximizes the expected payoff, they are
likely to choose M (with probability 1 − ε) in the current iteration.

The three “decision borders” intersect in a point that represents Nash’s equilibrium in
which agents have the same preference for L, M, or H .
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High
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Figure 1: Replication of AEY’s model with a number of agents n = 100, uncertainty parameter ε = 0.2, and
memory size m = 30. Equitable equilibrium.

High

Medium Low

Figure 2: Replication of AEY’s model with a number of agents n = 100, uncertainty parameter ε = 0.2 and
memory size m = 30. Fractious state.

AEY states that the system reaches an “equitable equilibrium” when all the agents
have, at least, (1−ε) ·m (where ε is the uncertainty factor and m is the memory size) elements
in their memories equal to M. Figure 1 shows an equitable equilibrium. In this state, all the
agents have found frequent demands of M in the past, and they assume that M is the best
response. Because all the agents demand M, all the pie is shared out among the players,
which means that the system has reached an efficient state. Once the equitable equilibrium is
established, it is very difficult for the system to leave this state, (since the system is ergodic,
there is still a chance that the system reaches every state in the long term, due to the noise
parameter ε.) Figure 2, by contrast, shows a fractious state, in which all the agents are whether
aggressive or passive (most of them select L or H ; M is hardly chosen) and no equilibrium is
reached. In this case, the system was started with different random initial conditions. Because
the agents have not learnt to compromise, some portions of the pie remains undistributed,
which shows the high inefficiency of this system.

Because the system is ergodic, there is a chance that the population evolves from
the fractious state shown in Figure 2 to the equitable equilibrium depicted in Figure 1. The
number of iterations to achieve this change in the state of the system was defined by AEY as
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Figure 3: Replication of AEY’s model. Transition time as a function of the memory length (m); n = 10;
various ε (uncertainty factor).

“transition time”. AEY studied the transition time and analyzed the sensitivity of results to
the memory size (m) and the uncertainty factor (ε), and so we did in our replication. To this
aim, we forced the agents’ memories so that the system reached a fractious state (Figure 2),
and then we measured the number of runs that the system needed to reach the equitable
equilibrium (Figure 1). Figure 3 shows the results of our simulation.

Both experiments, the original and the replication, produce the same result in relation
with the transition time: it increases as the memory size grows. Notice that this simulation
starts in a fractious state; this is why, at first, all the agents tend to demand L or H with high
probability (1 − ε) because their memories contain mainly L and H . This situation provokes
that the agents continue demanding L or H (M never maximizes their expected benefit (at
the first stages of the simulation, when the system is in a fractious state)). Therefore, we
depend on the noise parameter ε to escape the fractious state, as this is the only way to make
M appear in the agent’s memories, and, consequently, make the agents consider that M is
a good option. When the system is started (fractious state), the probabilities that an agent
chooses M is ε/3 (the probability of taking a random decision is equal to ε. Supposing that
this is the case, the probability that the random decision is equal to M is one out of three
(i.e., the probability that L and H are not randomly chosen). In conclusion, the probability
that M is chosen is ε/3.) This is the reason why the higher ε, the higher the probabilities of
leaving the fractious state and thus, the faster the convergence to an equitable equilibrium,
as Figure 3 shows.

3.2. Introduction of a New Decision Rule

After replicating the original scenario, we changed AEY’s decision rule so that the agents
demanded the portion of the pie maximizing their benefits against the most likely option
taken by their opponents in previous games. In this case, an agent assumes that her
opponent’s option will be “the mode” of the content of her memory.

An agent will chooseH if L is the most frequent decision taken by her opponents in the
previous matches; if the most repeated value in her memory is M, the player will choose M.
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Figure 4: Percentage of experiments that reached a fractious state as the first centre of attraction.
Uncertainty parameter ε = 0.2. Original decision rule.

If previous matches show that H is the most frequent decision taken by her opponents, she
will choose L.

When the agents used this new decision rule, the chances of reaching the equitable
equilibrium in the first place were considerably reduced (as López-Paredes et al. [4]
concluded). Figures 4 and 5 show this comparison. To perform this simulation, all the agents
where initialized with random memories (as they were in AEY’s model), and we measured
the percentage of experiments that first reached an equitable equilibrium, versus the number
of experiments that first reached a fractious state.

Furthermore, if we only consider the experiments that reached an equitable
equilibrium, the time to get it was longer in comparison with the same conditions in the
experiment with AEY’s original decision rule.

Figure 6 shows two simulations of our modification of AEY’s model, in which the
decision rule has been changed as described before. The left simplex shows an equitable
equilibrium and the right simplex displays a fractious state, both after 100 iterations. The
simulation was run with the same parameters as in Figures 1 and 2 (100 agents, memory
length = 30 and ε = 0.2). Notice how the “decision borders” have changed as a result of the
introduction of the new decision rule.

3.3. Payoff Matrix Sensitivity Analysis

In AEY’s model, the values of the possible demands are fixed: 30 percent of the pie for low
(L), 50 percent of the pie for medium (M), and 70 percent of the pie for high (H). We have
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Figure 5: Percentage of experiments that reached an equitable equilibrium as the first centre of attraction.
Uncertainty parameter ε = 0.2. New decision rule.
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Figure 6: Modification of AEY’s model with a new decision rule. Number of agents n = 100, uncertainty
parameter ε = 0.2 and memory size m = 30. Equitable equilibrium and fractious state.

studied different combinations for the low (L) and high (H) rewards to analyze the effects on
the behaviour of the system, (in any case, the sum of the values of L and H is equal to 100
percent of the pie.) The combination of payoffs is shown in Table 1.

The analysis of the simulations showed that when the differences H-M and M-L are
high, the transition time between the fractious state and the equitable equilibrium is longer.
A comparison of the transition time for different payoff matrices is shown in Figure 7.
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Table 1: Possible payoff matrices (combination of demands).
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3.4. Changing the Initial Conditions: “Progressive Memory”

In AEY’s model, all the individuals in the experiment have a fixed-size memory (size m)
along all the matches. The agents are generated with m random values in their memories.
Kubera et al. [7] explains that it could introduce biases in the results.

In this modification of the original model, we shall assume that the memory size of
each individual grows at a rate of one unity per match, starting with a 0-size memory, until
the memory size reaches AEY’s fixed value (m). The memory size will not grow any longer
when it reaches this value.

To fix ideas, let us suppose that we have defined a memory size of 6 (m = 6).
This means that each agent can remember the decision taken by her latest six opponents.
Therefore, all the agents have six memory positions. However, in the first match, their
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Figure 8: Comparison of AEY’s model with and without progressive memory. Number of iterations to
equitable equilibrium. Uncertainty parameter ε = 0.1. Memory length m = 12.

memories are empty, as they have never played against any other player before. This is the
reason why, in the first match, the decision taken by each agent is random. Afterwards, all
the agents store the decision taken by their opponents, as they did in AEY’s model. They
will use this information to take a decision in the second match, with the same criteria as in
AEY’s model. Then, the decision taken by their opponents will be stored in their memories
once again. In the third match, each agent will have information about the two previous
matches; they will take a decision based on this information and store the decision taken by
their opponents, and so on. When the number of matches is higher than the memory size for
each agent (m), the agents will store the decisions taken by their opponents in their memories,
but will eliminate the oldest value in their memories so that the memory size is equal to m in
the following matches.

Figure 8 compares the time it takes for the system to reach the equitable equilibrium,
both with and without progressive memory. If the system lacks progressive memory (original
AEY’s model), agent’s memories are initialized with m = 12 random values. In the case
of progressive memory, each agent’s memory is started with one random value and their
memory grows in one element iteration by iteration until it reaches length m = 12.

The simulation showed that just by changing the initial conditions, the results of the
simulation are completely different.

First, as Figure 8 shows, the time it takes for the system to reach the equitable
equilibrium is longer than in AEY’s original model. Because the first decision is random, the
chances of choosing L or H are twice the chances of choosing M, which makes the system
approach to the fractious state during the first steps of the simulation. The presence of noise
in the system (ε /= 0), makes it possible that agents choose M with certain probability, which
leads the system to the equitable equilibrium in the long term. Because of this transitory
situation, in which the system tends to approach the fractious state during some iterations,
the number of runs until the system reaches the equitable equilibrium is higher than in AEY’s
model.

Secondly, notice that, in the case of progressive memory, the value assigned to ε is
crucial. For low values of ε, the system tends to reach a fractious state. The presence of noise
makes the agents choose M at some point of the simulation. The increment of the presence of
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Figure 9: Intratype simplex. Replication of AEY’s model with the original decision rule. n = 20 (10 agents
of each type). m = 5. ε = 0.05.

M in their memories makes the agents consider thatM is a good reply: eventually, the agents
learn to compromise and reach an equitable equilibrium. This fact is not likely when ε grows.

Therefore, although the simulation shows that changing the initial conditions results
in an increase of the time to reach the equilibrium, we conclude that initial conditions are
irrelevant in the long run.

4. The Model with Two Agent Types (the “Tag” Model)

In a second experiment, AEY let the agents be distinguishable from one another by intro-
ducing a tag: they create two types of agents, each of whom with a different tag (colour).
The agents are capable of identifying their opponents’ tag (colour) and they keep the portion
of the pie demanded by their opponents in two memory sets, depending on the opponent’s
tag. AEY states that discrimination (segregation) can emerge spontaneously, both when the
agents play with other agents of the same type (intratype matches) and when the agents play
against players with different tag (intertype matches).

To study the different cases of segregation, AEY uses two simplexes: one shows the
memory state of the agents when they play against agents with their same tag and the other
one displays agents’ memories when they play against agents with a different tag.

Intratype Segregation

Figure 9 shows the three scenarios that can arise when players of the same tag play among
them (intratype matches).

In the case of intratype matches, we could appreciate three different scenarios.

(i) Equitable equilibrium (all the agents demand M independently of their tag).

(ii) Fractious state (the agents are whether aggressive or passive and do not learn to
compromise).

(iii) Intratype segregation: The agents with one tag reach an equitable equilibrium and
the agents with the other tag reach a fractious state.

The first and the second scenarios do not show any kind of discrimination: the system
reaches an equitable equilibrium or a fractious state independently of the agent’s tag, as
it did in AEY’s model with one agent type. The third scenario is more interesting: when
dark players play against dark players, they consider that M is the best response and reach
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Figure 10: Intertype simplex. Replication of AEY’s model with the original decision rule. n = 20 (10 agents
of each type). m = 5. ε = 0.05.

an equitable equilibrium. However, when light players play among them, they do not learn to
compromise and the system reaches a fractious state. This happens even though the decision
rule is the same for both types of agents.

Intertype Segregation

In the case of intertype matches, we can appreciate the two different scenarios shown in
Figure 10:

(i) Equitable equilibrium (all the agents demand M independently of their tag).

(ii) Fractious state (the agents of one colour are aggressive—they choose H—and the
agents of another colour are passive—they choose L).

Some of the experiments showed intertype discrimination. When the agents with
different tags are paired to play, the dark agents find that light agents have frequently
demanded H . Consequently, they decide to choose L, which is the only demand that allows
them to get a nonzero benefit. On the contrary, after a number of iterations, the light agents
have found that light agents are likely to choose low (L). Therefore, they choose high (H), as
it maximizes their benefit. This situation can be seen as a “stable fractious state”, because the
system keeps in this state for longs periods of time: all the agents with one tag are aggressive
(they all choose H) and all the agents of the other tag are passive (all of them choose L).

After a series of simulations, we conclude that the chances that the system reaches
a scenario different from the equitable equilibrium are very low. If fact, when we tried
the same parameters that AEY used in their simulation (100 agents, memory size = 20),
segregation never emerged, (we contacted Axtell to make sure that we were using the same
decision rule that they did.) We needed to reduce the number of agents and the memory
length so that we could appreciate segregation (Figures 9 and 10).

Then, we tried changing the decision rule, so that the agents choose the best reply
against the most frequent option taken by their opponents in previous matches (mode of
their memory), see Section 3.2. The simulation showed that just after changing the decision
rule, segregation emerged spontaneously (much more often than when we used the original
decision rule). In this case, we easily observed all the possible cases of segregation shown in
AEY’s model.
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(a) Random distribution of the
tags

(b) Distribution of the tags in four
zones

(c) Distribution of the tags in two
zones

Figure 11: Distribution of the agents in a spatial regular structure. n = 100 agents (50 of each type). Notice
that the lattice is a torus

5. Distribution of the Agents in a Spatial Regular Structure

In AEY’s model, the agents play in random pairs, which means that any agent can play
against any other agent of the population. In this new extension, we will consider a 10 × 10
toroidal surface where 100 agents will be placed. The agents will be able to play against any of
their eight surrounding neighbours (i.e., they can play against any other agent that belongs
to her radius 1—Moore neighbourhood). As in the original model, there will be the same
number of dark-tagged agents and light-tagged agents.

Since the geographical position of each agent is now considered, we will take into
account how the tags are distributed in the grid. The effects of the presence of initial clusters
have a great relevance in spatial and geographical distribution issues. This is why we will use
three different distributions of tags, as Figure 11 shows.

When the agents were randomly paired, we obtained three different results in
intratype games (Figure 9) and two different results in intertype games (Figure 10). The
aim of this section is to test if these five results can also be obtained when the agents are
placed as Figure 11 depicts. To that end, the simulations will be performed with the same
parameters that we used in the replication of the original model. We will use the “mode-
based” decision rule described in Section 3.2, since it facilitates the emergence of segregation
in the “tag model”, as it was discussed in Section 4.

The simulations confirmed that the same points of attraction that we got in the original
model can be obtained with this new extension of the model, both in intratype and intertype
games.

Nonetheless, we discovered that, with certain distributions of the tags, it is possible
to get new points of attraction that did not appear when the agents were randomly paired
to play. This is the case of intertype games when the tags are distributed in two zones (as
shown in Figure 11(c)). Figure 12 shows the four points of attraction that the system reaches
in the intertype games when this distribution of the tags is used. Notice that due to this
distribution of the tags, only the agents that form the borders can play intertype games: in
intertype games, each agent is paired with any of their neighbours with different tag.

This distribution of the tags creates two borders between the dark and the light agents
(notice that the lattice is a torus). Figure 12(a) shows an equitable equilibrium for both
borders (regardless of the agents’ tag). In Figure 12(b), all the dark agents demand high
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(a) Equitable equilibrium for the two types
of agents. M-M equilibrium in both bor-
ders

(b) Intertype segregation. L-H equilib-
rium in both borders. All the dark agents
demand H; all the light agents demand L

(c) Intertype segregation. L-H equilibrium
in both borders. The dark and the light
agents demand L or H depending on the
border

(d) Intertype segregation. L-H or M-M
equilibrium depending on the border

Figure 12: Four possible results for intertype matches when the tags are distributed in two zones. n = 100
agents (50 of each type). Notice that the lattice is a torus.

and all the light agents demand low, which leads to the emergence of segregation. Both
borders reach a low-high equilibrium. Figure 12(c) shows a new case of intertype segregation.
However, in this case, both types of agents demand low or high depending on which border
they are. Finally, Figure 12(d) shows another case of intertype segregation: the agents in one
of the borders reach a medium-medium equilibrium and the agents in the other border reach
a low-high equilibrium.

Notice that the results shown in Figures 12(a) and 12(b) also appeared in AEY’s
original model (they are equivalent to the points of attraction shown in Figure 10). By
contrast, the results shown in Figures 12(c) and 12(d) only appeared after placing the agents
on a grid and distributing the tags in two zones.

However, we conclude that, as there is no connection among the agents that form the
two borders, the equilibrium that they reach is independent of one another. Nevertheless,
a more in-depth analysis showed that more complex equilibriums can emerge when a set of
agents acted as borders between tags and these borders were not connected between them.
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6. Conclusions

In AEY’s model, segregation emerges spontaneously, even tough all the agents have the same
behaviour rule (regardless of their tag). The recognition of the opponent’s tag—which a priori
does not need to influence on the decisions, as it is an external property—makes the agents
“learn” how to behave depending on whether the agent they play against is a same-tag agent
or a different-tag agent.

The replication of AEY’s no-tags model, showed that there are two centres of attraction
in the system: an equitable equilibrium, in which the agents learn to compromise; and a
fractious state, in which all the agents are either aggressive or passive and no equilibrium
is reached. Because of the ergodicity of the system, there is a possibility that the state of the
system switches between these two regimes. We measured the transition time between the
two regimes and observed that it rises as the memory size and the number of agents grow, as
[3] concluded. The simulation of our replication is completely in agreement with their results.

The modification of AEY’s no-tags model showed interesting results. We conclude that
simple changes within the original model (using the mode instead of the mean to take a
decision), provokes dramatic changes in the studied system. In fact, when we introduced this
new decision rule, the chances of reaching an equitable equilibrium in the first place were
considerably lower than in AEY’s original model.

Moreover, changing the original payoff matrix resulted in a considerable modification
in the transition time: the higher the reward assigned to low, the longer it took for the system
to reach the equitable equilibrium.

Initializing the agents with a progressive memory instead of using AEY’s fixed-size
memory showed an interesting scenario: at first, agents tend to be aggressive or passive,
but after a number of iterations, they learn to compromise. This makes the system reach
an equitable equilibrium in the long run. Therefore, agents’ fractious behaviour in the first
stages of the simulation results in an increase of the transition time in comparison with AEY’s
original model. However, we observed that changing the initial conditions does not affect the
system in the longer term.

After replicating the tag model, we conclude that our results are in accordance with
the original AEY’s work. Additionally, we could appreciate that the chances that segregation
emerges were really low when we used the original decision rule. After replacing the
original decision rule with the mode-based decision rule, segregation emerged much more
often. Placing the agents on a regular spatial structure showed that the system could reach
the same points of attraction as in the original model, although, initially, no geographical
constraints were considered in the original AEY’s model. We are currently considering
different distribution of the tags in the grid, which makes it possible the emergence of new
equilibriums that did not appear in the original model. In future research we will consider
different social networks topologies to study how these equilibriums can be affected by the
new topologies.

Appendices

A. Payoff Matrix and Decision Rule in the Replication of AEY’s Model.

Payoff Matrix

Using mathematical notation, the payoff matrix shown in Table 1 can be explained as follows:
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n: number of agents

ε: uncertainty parameter

m: memory length of each agent

Si: space of agent i (i = 1, . . . , n) possible strategies

j: possible strategy ⇒ j ∈ [L,M,H]/M = 50, H = 100 − L, L < H
(L: select Low, M: select Medium, H : select High).

[v1, v2, . . . , vm]i: memory array of agent i, which stores the strategies vk ∈ [L,M,H]
chosen by the opponents in the m previous rounds

[A,B]: couple of agent randomly paired (n/2 randomly pairs by round).

If agent A chooses strategy i ∈ SA, and agent B chooses strategy j ∈ SB , they will
receive [i, j] if (i + j) ≤ 100, and [0, 0] if (i + j) > 100 (see Table 1, Combination of
payoffs).

Decision Rule

The decision rule used in AEY’s model (Section 3.1) is explained with mathematical notation
below:

nAj : number of positions with value j ∈ [L,M,H] in the memory array of agent

A⇒ [v1, v2, . . . , vm]A

Pr(BAj ) = nAj /m ⇒Probability estimated by the agent A for the possibility that the
opponent B selects the strategy j (equivalent to the relative frequency of occurrence
of value j in the memory array of the agent A).

The utility function for agent A when she selects the strategy i ∈ Si = [L,M,H] is:

U(Ai) = i ·
∑

j∈SB

[
Pr
(
BAj

)
· V (

i, j
)]
/i ∈ SA;

V
(
i, j

)
= 1 if

(
i + j

) ≤ 100;

V
(
i, j

)
= 0 if

(
i + j

)
> 100.

(A.1)

Then, each agent A selects with probability (1− ε) the strategy i that maximizes her
utility function:

A selects i ∈ SA = [L,M,H]/EU(Ai) = maxU(Ai)

and selects a random strategy i ∈ SA with probability ε.

Example A.1.

n = 10; m = 5;

L = 30, M = 50, H = 70 ⇒ SA = [L,M,H] = [30, 50, 70]—space of possible
strategies for agent A,
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if [v1, v2, . . . , vm]A = [30, 30, 50, 70, 30]—current memory array of agent A ⇒ nA30 =
3, nA50 = 1, nA70 = 1 ⇒ Pr(BA30) = 3/5, Pr(BA50) = 1/5, Pr(BA70) = 1/5

U(A30) = 30 · Pr
(
BA30

)
· V (30, 30) + 30 · Pr

(
BA50

)
· V (30, 50) + 30 · Pr

(
BA70

)
· V (30, 70)

= 30 · 3
5
· 1 + 30 · 1

5
· 1 + 30 · 1

5
· 1 = 30,

U(A50) = 50 · Pr
(
BA30

)
· V (50, 30) + 50 · Pr

(
BA50

)
· V (50, 50) + 50 · Pr

(
BA70

)
· V (50, 70)

= 50 · 3
5
· 1 + 50 · 1

5
· 1 + 50 · 1

5
· 0 = 40,

U(A70) = 70 · Pr
(
BA30

)
· V (70, 30) + 70 · Pr

(
BA50

)
· V (70, 50) + 70 · Pr

(
BA70

)
· V (70, 70)

= 70 · 3
5
· 1 + 70 · 1

5
· 0 + 70 · 1

5
· 0 = 42.

(A.2)

Agent A selects 70 with probability (1 − ε), as it maximizes her utility function

EU(A70) = maxU(Ai) = 42, (A.3)

and selects a random strategy i ∈ SA = [30, 50, 70] with probability ε.

B. New Decision Rule for AEY’s Model

Decision Rule

Using mathematical notation, the mode-based decision rule (used in Section 3.2) is explained
below:

Each agent A selects, with probability (1 − ε) her strategy i according to the
statistical mode (Mo) of her memory array as follows:

Mo[v1, v2, . . . , vm]A = i/maxnAj = nAi for all j ∈ SA = [L,M,H]

If Mo[v1, v2, . . . , vm]A = L⇒ A selects strategy i = H

If Mo[v1, v2, . . . , vm]A =M ⇒ A selects strategy i =M

If Mo[v1, v2, ..., vm]A = H ⇒ A selects strategy i = L
and selects a random strategy i ∈ A with probability ε.

Example B.1.

n = 10; m = 5;

L = 30, M = 50, H = 70 ⇒ SA = [L,M,H] = [30, 50, 70]—space of possible
strategies for agent A
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if [v1, v2, . . . , vm]A = [30, 30, 50, 70, 30]—current memory array of agent A ⇒ nA30 =
3, nA50 = 1, nA70 = 1 ⇒ Mo[30, 30, 50, 70, 30] = 30 ⇒Agent A selects 70 with
probability (1 − ε), and selects a random strategy i ∈ SA = [30, 50, 70] with
probability ε.
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